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Chapter-3
FAST FOURIER TRANSFORM
Iatroduction:

Fast Fourier Transform (FFT) is a particular method of
performing a series of computations that c¢an compute the
discrete Fourier transform much more rapidly than other
available algorithm.

(3.1) Matrix Formalation
Consider the discrete Fourier transform.

N-1
X(n) = goxo(k) e-iZ!nk/N

n = 0, l, vee N"'].- ——————— (3.1.1)
Where k, n stands for kT & n/NT resp. This is system of N

equations in N unknowns.

For example consider N = 4 & let W = e*#¥ then (3.1.1)
gives.

¥{0) = xo(0)W° + Xo(1)W® + Xo(2)W° + Xo(3)W°
(1) = Xo(0)W® + Xo (L)W' + x,(2)W? + x,(3)W
}' ------- (3.102)
¥(2) = %,(0)W° + xo(1)W + Xo(2)W + x,(3)W°
X(3) = X (0)W° + Xo(1)W + X, (2)We + xo(3)W )

Ir Matrix form it can be writtan as

rxw)\ rw‘-’ W w° w°\ rx‘,w)N
X (1) = W oW W W %o (1) |=m—mmmm (3.1.3)
X(2) W W oW ow %o (2)
_X(3) Wil (Xo(3)
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or 1 O 7 Y (3.1.4)

X (n) =

To find the solution of (3.1.2)- it require N? complex
multiplications and N{N-1) complex additions. Therefore we are
interested to develop a algorithm which will reduce the number

of complex multiplications and complex additions.

Since W= e***%ye can write (3.1.3) as
(x(0) ) (11 1 1) /.XO(O)\
X(1) 11w W %0 (1)
X(2) i 1w W W %(2) | ——==--- (3.1.5)
x<3;—/ \1 W W w; \*xo(a)—/
By factorization of coefficient matrix we get,
rxmﬁ ﬁ W 0 D a W° o\ rxo(o)
X(2) 1 W 0 0 01 0 W xo(1)
X(1) 0 01 W 1 0 WO X0 (2)
X (3) 00 1w 01 0W X0 (3)
- J N S . J J
------- (3.1.6)

But simplification on the R.H.S. gives the vector X(n) with row

irterchanged as shown. Let us denote it by

;(n)=

rX(O).\

X(2)

X(1)

\X(3) _J
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Let us consider

r N
(%1(0) ) (T o w 0) %0 (0)
x1(1) 01 0 W x0{1) | =———mem (3.1.7)
x1(2) 10 W o0 %0 (2)
(}1(3) \0 1 0 W) o (3)

Multiplication on the r.h.s. gives

x1(0)= %,(0) + Wxo(2)  mmee—e- (3.1.8)
which includes only one complex multiplication & a addition.

Similarly,

x1(1) = %xo(1) + W® x%0(3) = mmemee (3.1.9)

%1(2) = Xo(0) + W xo(2)= %0(0) - W® x,(2)

(v W = -W0)
i.ce. x1(2) = %x0(0) - Wxo(2) 0 meme—— {3.1.10)
ard x1{3) = xo(1l) + W xo(3) = x0{1) - W x,(3)
Thus, x1(3) = %x,(1) - W x,(3) = ——eeme— (3.1.11)

The complex multiplication in (3.1.10) is already done in
equation (3.1.8) hence it includes only one complex addition
and the complex multiplication in (3.1.11) is done in equation

(3.1.8) hence it includes only one complex addition.
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Thus the intermediate vector x1(k) is then determined by
only four complex additions and two complex multiplications.

Next consider,

(x(0)})  (x2(0)) AAw 0 B\ (xlo)
X(2)] = |xw()} = |1 W 0 O x1(1)
X(1) x2(2) 00 1 w x1(2)
_X(3))  x2(3) \0 ©0 1 w:"/ \XI(B)./
------ (3.1.12)
i.e. %2(0) = %1(0) + W x(1)
x2(1) = x1(0) + W xi(1l) = x(0) - W x;(1)
%2(2) = x1(2) + W' x:(3)
x2(3) = x1(2) + W x1(3) = x1(2) -W x(3)

Thus vector x,(k) 1s determined by only two complex

multiplications and four complex additions.

Computation of X(n) thus requires a total of four complex

multiplications and eight complex additions. But computation

of X{n) from (3.1.3) requires sixteen complex multiplications

and twelve complex additions. Factorization of a matrix
reduces the number of multiplications and additions. Since
computation time is proportional to the number of calculations

factorization increases the efficiency of FFT algorithm.
If N = 2" then FFT algorithm factorize NxN matrix into ¥

matrices each of order NxN. It reduces the computation time as
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the number of complex multiplications and additions are MNy/2
and Ny resp. The approximate ratio of direct to FFT computing

time is given by

N? = 2N
Ny/2 ¥

The matrix factoring gives

{~ N\ s ~
X(0) Instead of X(0)
_ X(2) X(n) = |X(2)
X{n)=
X(1) X(1)
\X(3)J \?(3)J

To obtain the required vector X(n) we rewrite X(n) by replacing

arguments with its binary equivalent.

(%0 ) ( x(00) )
x2) | = | xa0)
X(1) X (01)

\X{3)) \X(ll)

If we reverse the binary arguments in 2™ and 3™ row we get.

X(n)= rX(OO)-\ (}-((OC)'\

X(10) X(01)
Flips
X(01) to X(10)

X(11) X(11)
. ) ~ -
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This is useful in development of FFT. For large value of N
matrix factorization procéss is cumbersome so that graphical
formulation is used to develop a flow graph for a computer
program.

Signal Flow Graph:-

We convert equation (3.1.3) into signal flow graph as
shown. We represent the data vectors xg(k) by a vertical column
of nodes on the left of the graph. The 2™ vertical array of
ncdes is the vector x3(k) computed in equation (3.1.7) and the
next vertical column corresponds to the vector x;(k) wli(n) as
computed in equation (3.1.12) The no. of vertical arrays equals
tke number of matrices obtained by factorization i.e. vy.

The interpretation of flow graph is as follows: The two
sclid lines incident in each node are called the transmission
paths from previous node. A path brings a quantity from a
previous node, multiplies the quantity by W and inputs the
result into the node in the next array. WP appears below the
arrowhead and if WP =1 no need to write it. Results entering a

node from the two transmission paths are combined additively.

Thus signal flow graph is a brief method for representing
the computations in FFT algorithm. This method is easy to

utilize.
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COMPUTATION ARRAYS

DATA A
ARRAY =1 =2 =3 T
x((k) x.’(k) Kz(k) )(3"() ’(4“()
. — s ¥ 410}
*ol0 \ Z\\(m ;7",(2(0) :(3(0’ 2
0
XGH) . \X “3
- \\ 1(1 x2(1) x3(1)
" II N 7
x~{3) A m
0 llw 12(3) WwB X33
\ » x3(4)
3 xd(d)

x0(4)

A v 2
w DUAL
E}- x4(5

R ol
&M’Iﬂwﬁ Al
mm'" j:zt:, T
: AR
ol LK \‘\\Ii" -
w0 \‘\AA’
MNAXXE” T

‘\\WXM

xg(13)

xo(gl

x4(10)

/ 8 x¢(13) X3(13| wil
2 o 14}
xgl(14) / ‘S/(M) e xz(Ld) xq!
w
d [ 2o (15)
x0(15) wB x‘(15) wm x2(15) 4 x3(15) W15 Xg

{-Lgure &L (b)
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Dual Nodes: In every array the pair of nodes corresponds to
the transmission paths which leaves the same pair of nodes in
the previous array. The pair leaving the nodes is said to be
dual node pair.

For example consider signal flow graph for N = 16
(fig.3.1) (b) the nodes x3(1) & x;(9) are computed in terms of
xc(1)& x,(9). But x(1) & %0(9) does not take part in any other
computation, Hence it 1is possible to compute x;(1) & x1(9)

simultaneously and stored in the previous storage locations of

x0{l) & x0(9). In above figure (fig.3.1)(b) in array #¢=1, dual
node pair say x1(0); x1(8) is separated by k=8, N/' = N/2 In
array £=2, a dual node pair, say x:(8); x2{12) is separated by
k=4 = N/¢ = N/22, Similarly a dual node pair x3(4); x3{(6) in
array #=3 is separated by k=2 = N/2 = N/2? etc. Generalizing
we get the spacing between dual nodes in array £ is N/2‘. Thus

dual node of xi(k) is xi(k + N/2%).
Dual Node Computation:
If the weighting factor at one node is W, then the

W2 and  since

weighting factor at the dual node is
W = -W*%? only one multiplication is required in the

camputation of a dual node pair. It is given by
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XK} = xp1(k) + W Xp1(k+N/29
---({3.1.14)

x, (k+N/29) = x,1(k) - Wxaq(k+N/2%)
As above the dual node in the £*! array is always down N/2! in
the array. Since the spacing is N/2¢, we must skip after every
N/2! node. 1In general we will compute equation (3.1.14) for the

first N/2' nodes, skip the next N/2’ and so on. We will stop

the skipping if node index greater than (N-1).
Determination of W

The value of p is determined by -
i) Writing the index k in binary form with ¥ bits.

ii) Scaling the binary number by (y -1) bits to the right and
filling zeros to the left.
iii) Reversing the order of the bits. This bit-reversed number

is the P.

For example consider x;{8). Since y=4, k=8, & #=2, then k

in binary is 1000. Scale this number by vy - = 4-2 = 2 places
tc the right and fill in zeros. i.e. 0010 After reversing the
order it gives 0100 i.e. 4.
. P= 4.
In the final step in computing the F.F.T. we came to know

that while reversing the binary number if we proceed down the



65

array, interchanging x(k) with suitable x(i) we may have node
previously interchanged. To skip a node that has previously
been interchanged, we check the condition

if i < k (i is the integer obtained by bit-reversing k.)

If condition is satisfied this implies node has been
interchanged by a previous operation.
FFT Algorithms for Real data:

If we consider the time function in the complex form, that
is, hi(k) = he(k) + h; (k) then the discrete transform is
generally in the complex form as

N-1

H(n) = (1/N) 2 [hr(k) + i hi(k)] g i2nk/N
=T e (3.1.15)
and the alternate inversion formula is given by
- * *
h(k) =(1/N) ZOEH‘(H) + iHi(n)]] ~~~~~~ (3.1.16)

Since equation (3.1.15) & (3.1.16) contain the common factor

e /N poth the values can be calculated in a single computer
program. If given time function is real function then its
discrete Fourier transform is computed as follows :
Let h(k) & g(k) be two real time functions, consider
y(k} = h{k} + i g(k) .

from linear property

Y(n) = H(n) + iG(n)
[Betn) + iHi(n)]+i[Gr(n) N iGi(nﬂ

Eir(n)— Gi(na+ i EHi(n)-k lGr(nj)J

(]



66

= R(n) + iI(n) = —em—em—- (3.1.17)

Decompose R(n) & I(n) in even & odd component

Y(n)= (n)+Rﬂ%nH+ﬂRm)-IHWmU
2 2 L2 2

+1i I({n)+I{N-n + iE(n) - I{N-n) ]
2

2 2 2
——————— (3.1.18)
.« H{n) = Rei(n) + i Ig{n)
{(n)+R{N-n) 1+ ifI(n) - I{(N-n)
2 2 :] [:2 2 ]
——————— {3.1.19)

Similarly,
iG(n} = Rg(n) + iI.(n) or G(n) = T.({n)- iRg(n)

. Gn)=[l(n)+I(N-n)}- i [R{n) - R(N-n)
[? 2 2 J [:2 2 :]

------- (3.1.20}
Thus (3.1.19) & (3.1.20) gives the discrete PFourier
transform of two simultaneous functions.
(3.2) Transform of 2N Samples with an N sample Transform:
Consider a function x(k) with 2N samples. To compute the
discrete Fourler transform with N sample transform we break the

2N point function x(k) into N sample function as

h(k) = x(2k)
glk) = x(2k+1), k=0, 1, .N-1., --=—=- -(3.2.1)
eN-1
.. X(n) = 2 X(k) e-—iZRnk/tN

k=0
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N-1 N-1
- :Z-OX(Zk) e-iZﬂn(Zk)/Zﬂ +‘Z:0 x(2k+1)e-12!n(2k+1)/2N

N-1 N-1
- z h (k) e~i21lnk/N + e*iﬂn/N z g (k) e"i?ﬁnkm
K=0 K=0

= H{n) + e*™% Gg(n) = —ccemm- (3.2.2)

As before H(n) & G(n) are computed,

e X(n) s[Re(nH iIo(n] + g i/ [ I.(n) - iRo(n)]

= Xe(n) + iXy(n)  memee——- (3.2.3)

Where, X.(n) = [%(n)+ R(N-nn + Cos(wxn/N) L (n)+ I(N-nﬂ
L2 2J {2 2 J

- Sin[zt_n_] R(n)~ R(N-n)
N L2 2 J

& Xi(n) ==[ I{(n) - I(N=-n) ]*sin(ﬂn/N){ I(n) +I{N-n) ]
2 2 2 2

-cos (nn/N) [R(n) - R(N—n)]
2 2

Thus we have the computation of 2N samples Fourier
transform by means of N sample transform.
(3.3) FFT Convolution And Corrxelation

Due to increase in computational speed which can be
achieved using the FFT, it is advantageous to use frequency
domain analysis. We develop the technliques for using the FFT

for high speed convolution and correlation.



68

* Finite Duration Waveforms :-

~ We know, if x(k) & h{(k) are periocdic functions with period
N then their convolution is given by

N-1

y (k) = 2 x(i) h(k-1i) ——=—=--=(3.3.0)
1=0
ard it gives more correct values if it is performed correctly.

Consider the convolution of periodic functions x(t) and

h{t}.
4 A A
%{t) h(t) y(t)=x(t)*h(t)
1
B I 1T A
— > = gy > P— >
a t b t (a+b) t
(Continuous Convolutiom)
A XKD rhoe A YR
it .
‘/l' %
a Tk E . :; it b '>k
N N

{Discrete convolution)
Since x(t) & h(t) are shifted from the origin, large N is

required to avoid the overlapping or end effect.
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But this results inefficlent convolution as shown in
following figure(fig(3.3) (¢c)) To compute the waveform identical
with continuous using FFT we first shift both x(t}) & h(t) to
the origin by a & b respectively choose N >P+0-1, N=2!, ¥

integer. The resulting sampled periodic functions are given

by.

x(k) = x(kT +a), k=0, 1,...P-1
= 0 k=P ’ P+ 1 ’ .-..-N" 1
& h{(k) = h(kT+b), k =0,1, . Q-1
= 0 k=09, O+1,... . N-1 = cmeee—e (3.3.1)
4 X (k) 4 hk,
J I TN ..

L4 l,{)__ ........
e \*K [2) ‘ "k
M AT I

4y
N ﬁ‘-{‘

( "F‘.a‘ure Gs3)¢¢) )
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The discrete Fourier transform of x(k) & h(k) are given

by
N-1
X(n) =% x(k) gri2nmk/N -~——=(3.3.2)
N-1
H(n) = Eloh(k)e'iz"“’“ —————— (3.3.3)
.. Y{n) =X(n). Hn)  ————— (3.3.4)

Finally, the discrete convolution is given by
N-1
y(k) = (1/N) I Y(n) gt2mkmN —==——(3.3.5)
Thus equations (3.3.2),(3.3.3),(3.3.4),(3.3.5) together compute
the convolution of the functions. Due to computing speed of FFT
algorithm, these four equations gives a shortcut by the long

way around.

Computing Speed of FFT convolution:

Time required for the computation of y(X) from equation
(3.3.0) is proportional to N° (number of multiplications). But
the time taken by (3.3.2),(3.3.3),(3.3.4) propertional to
3N‘logz (N} and computation time of equation (3.3.5) is
proportional to N. Thus the computation of convolution using
FFT is more faster than the direct computation.

FPT Correlation:
FFT correlation is very similar to FFT convolution.

Consider the discrete correlation.
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N-1

Z(k) = 2 h(i)yxtk+1)y emee—— (3.3.6)
i=0 )

Where h(k) & x(k) are the periodic functions with peried N. To

apply the FFT to the computation of (3.3.6) our period N should

satisfy
N2P+9Q-1, N=2' , y integer valued
and X(k) = O' k= O' 1,.--(N - P) ——————— (30317)

x{k) = x(kT +a) , k=N-P+1, N-P+ 2,.. .N -1
After shifting & sampling x(t), i.e. P samples of x(k) are
shifted to the right of the N samples defining a period.
Function h(t) is shifted and sampled according to the relations
h(k) = h(kT + b), k=0, 1,. . . .Q -1
= 0 k= Q, 41, . . . N =1 ==-re-- (3.3.8)

ard then

N-1
X(n) - on(k) e-i”nklﬂ

N-1
H(n) = z h(k)e—izlnk/N
k=0 .

e Z2(n) = X{n)H (n)

N-1
.. Z(k) =(1/N) Eozm)e'”"""’" ------- (3.3.9)
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Ex : Consider x(k) & h(k) as shown in figure.

A& x(k) é h (k)

k“i P redfuaveeaa,
P
.

® d

[».d
| 2

({3

% e
| 2

j 3
N

N
By definition correlation is shown by the

following Zigure:

'y N-1
2(k) = T X h(i) x(k + i)
i=0
a Jh;ﬁ et
:'*\-a:d * K
¢ "
N

Because of the choice of N correlation results in a
irefficient result as the large number of zeros produced in the
irterval (0, a-d)

If we shift both the functions to the origin as shown in figure

(3.3) (d) then the resulting correlation is given by

A x(k) 4 hik)
1o
7% EEETETE TR . ‘
o >\ g > K
—————1 ]

Figure(3.3) (d)
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4
_;-d“." : ’
X
‘ —l
' Figure (3.3)(e)
A 4
N-1
x (k) 2(k)=T £ h(i) x(k + 1)
ir ..
, » k e >
N=p k
e J
o N 7 Figure (3.3) (f)

Algorithm to compute convolution of two functions:
1. Let x(t) and h(t) be finite duration waveforms shifted
from origin by a and b respectively.
2. Let x(t) and h(t) be represented by P & Q samples
respectively.
3. Choose N such that N > P+Q-1, N=27, Y integer valued.
4, Define x(k) & h(k) as follows :
x(k) = 0, k =0,1 .. N-P,

= x{kT + a); k=N-P+1, N-P+2,. . . . N-1

h (k) h (kT+b), k=0,1. . . Q-1

= 0 , k=0 Q+l, ---- N-1
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Compute discrete transform of x(k)} & h(k)

N-1
X(n) = z x(k) e-izﬂnk/“
k=0

H(n) = ;:é:h(k) o-12%nk/N

Compute the product

Z(n) = x(n) H*{n), (* indicates complex conjugate)
Compute the value of convolution by

N-1
z(k) = Zo(l/N) 2% (n) @ i2rnk/N

nm-

(3.4) Theoretical Development of the Base 2 FPFT Algorithm:

Consider the Fourier transform of xp(k)
N-1 N-1

X(n) = T xo(k) ™M = T xo(k) w*
k=0 k=0

n = 0, 1'- « N"lo ~~~~~~ (3.4.1)

Let N = 4 = 22 =y =2

.« Representing n & k in binary numbers.

k Binary n Binary
(k1s ko) (ni,nop)

0 00 0 00

1 01 1 01

2 10 2 10

3 11 3 11

Then we can write

k = 2ki + ko & n= 2n; + ng
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Therefore equation (3.4.1) becomes

1 1
X(ni,ng) =X I xXolky, ko) Wyt np)(ek+ k)
ko=O k=0  mem———- (3.4.2)

1 1

= 2 TXo (Ka, ko) WIn*t ng) 2k i2ny+ ndk,
ko=0 k41=0
1 1

= 2 Txo (k1, ko) Wohpky 20yt np)K,
k°=0 k1==0

( = W% =1)

I

1 1
= [Z xo (k1, ko) Woho*y :l wize, ¥ 0K,

ko=0 k1=0
------- {(3.4.3)
First write the bracketed part as
1
x1(no, ko) = X xo(ky, ko) W%,
k=0 eeeee—- (3.4.4)

Thus equation (3.4.4) in matrix form gives the first of

the factored matrices or array £=1 of signal flow graph

similarly consider

1

X2{ng,m) = Txi(ng, ko) WZ* 7 )%,
‘ kesO eeee—— (3.4.5)

This determines the second of the factored matrices from

{(3.4.3),(3.4.4),&(3.4.5)

X(ni,ng) = x2{me,m) —————— (3.4.6)
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Equations (3.4.4), (3.4.5) & (3.4.6) represents the
original cooley-Tukey formulation of the FFT algorithm for N=4.
Now, consider N=g = 23 hence ¥y = 3

Therefore, Binary representation of n & k is

n, k Binary equivalent
(nz, ny, no)
000

001
010
011
100
101
110
111

SOOI W I N = TO

Therefore n & k in terms of binary equivalent are
represented as

n = 4n; + 2nqy + ngs k = 4k; + 2k1 + ko

——————— (3.4.7)
Equation {(3.4.1) becomes
1 1 1
X{nz,n1,ne) = X Z Txo(ka, ka, ko) WHR 2Ryt n) {4k p2k ok )
ko=0 ki1=0 k=0
——————— (3.4.8)

Simplification gives

[

1
X({nz,ny,ng) = 2 2
k0=0 k‘l

=0

1
% [xolkz ki ko) W W%
2

x WHn Pk o (3.4.9)
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Now let
1

x1(ng, k1,ko) = Ixo(kz, k1, ko) W
k=0
1

X2 (np,ny, ko) = Zx1(no, kq, ko) WiZ",* R
k1=0
1

X3(ne,N1,02) = TXz(ng,ni, ko) W20
ko=—'0

X{nz,ni, ng) = Xs(ne,ny,nz)  me————— (3.4.10)

Thus (3.4.10) determines the matrix factorization or FFT signal

flow graph for N=8.

Now to develop the general result consider N=27,

Y integer. Then n & k can be represented in binary form as

n=2"n,+2"n,+ . . .40

------ (3.4.11)
k= 2" kyy + 272 kyp + . . Ltkp
.« Equation (3.4.1) becomes
1 1 1
X (ny-1,Ny-2,... ng) = X pIPR EX(ky-uky-z,...ko)W'
ko=0 k1=0 ky1=0
—————— (3.4.12)

Where P =(2""n, 1+ 2"% nyp +.. .+nmp) (27 Ky #2772 kypt. .. tko)
—————— (3.4.13)
=(2"1 nyq + 2¥% nyp +...4ng) 2" Ky

+(2"Y nyy + 2% nyp +...tmg) 2% Ky +



78

e o (2" nyy 4+ 272 nyp .. .tD0) Ko
=(27% nyg ky-1 + 277y kyr +...4271 ng kyp) +
+ (2773 nygkyz 4277 nyop Kyez +o. o420y 2772 kyp +np 2772 Kyeo)
+ooo+ (2" nyy kot 27 nyp ko +. .. +00ko)

=[2’ (272 nyy ky-1) + 27272 nyp kya) ... + 270 g k,-J +

+Ez’ (27 ny-1 ky-2) 427 (27* Ny kye2) +. ..+ (2D + ng) 277 k,-zj +

. .0(2"'“‘1 n»,-1ko + 27° Ny-2 ko +...+ noko]

. Y i -
gince WZ =WH=(6 lZ:IN)xze lhzl

2v-! ngk,_y+(2ny+n) 212 k,_2+,..+(2"'n 2¥2,

"_11- 1-2*“""0)*0

W =W

-2 = -
- wz'f“‘nok,,_, Wt 2w, w(zY CINE b ST S

—————— (3.4.14)
From equation (3.4.12) gives
] 1 1 il
X(n, 4,0, 55eBg) = Z 2 e 2 X (K oKy gsekg) X W "yt
k=0 k=0 Ky =0
9 w(";*lo) av? k?"z‘ N W(z"’q' —{"‘21.2"1—2*’"'”0)30
~~~~~~ (3.4.15)

Performing each of the summation separately and labeling

the intermedlate results, we obtain
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. 2H"t)ky--l
X, @k, k)= XK, K k)0 W )

k'.;-o

1
20, +ng)2" ¥
Xy (0,0, K50 Ko)= D%, (0g, Ky gyenko) x W v

K,=0

1 Q2"'n,, +2%n, +...+10,)k,
X, (s e, ) = va_,(no,n,,...,ko)x W T v
e 3.4.16)

X (Ny-1,Ny-2¢p No) = Xy(No, N1y < ooy Nya)

The set of equation (3.4.16) represents the cooley-Tukey
formulation of the FFT for N=2'. For the computation of these
relationships only Ny/2 complex multiplications and Ny complex
additions are required.

Cooley-Tuley Algorithm

For N = 4, We have the FFT algorithm
1

X1(no, ko) = 3 xo (ko k1) W5
k1=0
1

Xz(mo, nm1) = 3 x1(no, ko) W%
ko=0

In this algorithm the input data is in natural order and
the output data is in scrambled order. To determine
p = nk, we require k to be bit-reversed but we want k in the

natural order. It is possible to rearrange the signal flow

graph in order to transform the input data in scrambled order
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and output data in natural order. This is obtained by only
interchanging (01) & (10) in each array, carrying the inputs
with that node to each node. The result signal flow graph is

shown in figure (3.4) (b).

PR) X () Aolk)

(Figore 54) ®
Sande - Tukey Algorithm:

We have for N = 4, the FFT is,

1 1
X(ni, ng) = T IZxo(ky, ko) W' ) (ZK* k)
ko=0 k=0
------ (3.4.17)
Instead of k we separate the components of n.
wen + a0 ik v k) R R A R
- Wanko . who(2k1+k03 ( ‘L W‘ =1)

Thus equation (3.4.1) can be written as

1 1
X (nly nO) = Z ZXO (kll kO) W2n0k1 Wnoko Wanko
ko=0 | k=0

—————— {3.4.18)



Define
i
Z1{no, ko) = ZXo(Kki,sKko) W25 Wk )
k=0
1 >— ————— (3.4.19)
Xx2(np, n1) = ZX1(no, ko) W
ko=0
&
X {ni, no) = X2 (ng, N1)

-
Using equations (3.4.19) the signal flow graph is shown as

below

) ALY xp (k) X (I

81
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In this algorithm the input data is in natural order but
output data is in scrambled order and the powers of W occur in
natural order. To obtain natural flow signal graph result we
proceed as in the cooley -~ Tukey algorithm. It is also
possible to develop an algorithm which require natural order to
occur in natural order. But it requires storage twice that of
above.

{(3.5) FPT Algorithms for Arbitrary Factors:

The condition N=2' is restrictive in FFT algorithm, It is
removed by considering N = ry r;...r, where r; is an integer.
This is more significant than the previous in time saving.

Firast consider N= rjr, Where r;, r; are integers. We can

express n & k in terms of factors r, & r; as

n=1ryn+ng & k = ra» ki + ko
np = 0,1 ...m~1 n =0,1,...r>-1
------- (3.5.1)
ko = 0,1...1‘.‘2"'1 k1 = 0,1,...1‘1"1

Then equation
ro-1 r1-1

x(ni, ng) = T  ITxolki, ko) W™ becomes
ko==0 k1==0

rz-l ri=1

x(ny,ne) = X2 Txo(ki, ko) WMt 7} (FkHk)
ko=0 k=0
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r-1 ri-1
=3 Txo(ki, ko) WiafaMM t (5% 4 ) Ko P S 0k
ko=0 k1=0
r>-iir~1
. ex(ny,ne)= 2 Txo(k1, ko) W25 [WE™* "%,
ko=0} k=0
(v W= W =1)———v (3.5.2)
I1f we consider
r;-—l
xi1(no ko) = Zxolky, ko) Wo's2 ~  —--m-- (3.5.3)
and k3=0
rz”l
x2(no,m1) = Txi(mo, ko) W™ %% emeee—o (3.5.4)
ko=0
finally, X{ni,ng) = =Xx2{ne,m)  =meme———— (3.5.5)

Thus equation (3.5.3),(3.5.4),(3.5.5) defines the FFT
algorithm for N = rir;.
Cooley Tukey Algorithm for N = rr; »r, :-

If N= rirp,,.rm , where ry, r2 . . . Iy are integers.
Expressing n & k in terms of factors we get

n = Np.1(1rz,. . rn1) + Npa(rirs,. . Cp-2)+.. .4Mrq1 4 N

k = kp1(rars,..ra) + Keo(rare.,.ra) +. « .+ Kira: ko -(3.5.6)
Where nl—l = 0' 1' 2,o - pri-—l _'1 ’ 1 < i 5 m

ki - O' 1’ 2}. s o Inp-i ""1 ’ 0 _<_ i S m-l

'« X(Ng-1/0p2,...01,00) =2 2. .+ ZXo(kn-1, k-2, ko) W™
ko ki1 Kn-1



Using (3.5.6)
nk _ K (r...r) k (r...r)+..k]
W = Wop1 2 n Wn[m—z 37" 0

hence (3.5.1) becomes

X{Np-1,Np-2 . .. N1, N0) =2 Z.. -[;Zxo(km-x, Kn-2,...k¢ ) x
ko k1

m-1

We define

X1(no, km2, ...,ko) = ZxXolkm, ... ko) Wom1 F2 " %y
km~1

.. Equation (3.5.9) becomes

X(Np-1) Dp2 ., .01, No) =2 T ...2. Xi1(np, kp-2,..., ko )
ke ki Kn-2

n k r « ¢ ¢ [ + .4 .+hk l

X2 (ng, N1, Kn-3,..., ko) = Ix1(no, ke-z,..., ko) WK 3
km—z

o Jheootk
( r) +0]

£ r..
4 5 m

Continuing in this manner, we have

xi{np, n1 ... Ni-1, Km-i-1,...,Ko) = Xxj.1(no, n1,...0i-2, Ke-i... Ko} X
kn—l

n r r +...°¢ + o+ s s +tn k r . e
x Wny 4 (5 5, 31! o) Fmeilin m

i = 1'2' . . .
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This is valid if we consgider (riy17 « « « rm) =1 for i > m-1

and k; = 0
This gives finally

X{ng-1, ««-r No) = Xu( Nos..., Np1)



