

55

Ctu^>tttr~3
FAST FOURIER TRANSFORM

Introduction:
Fast Fourier Transform (FFT) is a particular method of

performing a series of computations that can compute the

discrete Fourier transform much more rapidly than other

available algorithm.

(3.1) Beatrix Formulation
Consider the discrete Fourier transform.

X(n)
N-l

= 2 xc(k)k«0
-i.2Xnk/N©

n = 0, 1, ... N-l (3.1.1)

Where k, n stands for kT & n/NT resp. This is system of N

equations in N unknowns.

For example consider N - 4 & let W * then (3.1.1)
gives.

X(0) = xo(0)W° + x0(l)W° + x0(2)W°+ x0(3)W°
X(l) - xo(0)w° + XofDW1 + x0(2)Wz+ x0(3)W3

X(2) - xo(0)W° + XotDW2 + x0(2)W4 + Xo(3)W*

X(3) * xo(0)W° + x0(1)W3 + x0(2)W6+ x0(3)W9

>------- (3.1.2)

It. Matrix form it can be written as
r a r a r aX(0) w° w° w° w° Xo(0)
X(l) am w° w1 w2 w3 Xo(l)
X (2) w° w2 w4 w6 Xo(2)

^X(3) ^ W3 W6 W9^ Jo(3)

---(3.1.3)

56

or X (n) - Wn)f x0 (k) ------- (3.1.4)

To find the solution of (3.1.2) it require N2 complex

multiplications and N(N-l) complex additions. Therefore we are

interested to develop a algorithm which will reduce the number

of complex multiplications and complex additions.

Since W = we can writ

X(0)

X(l)

X (2)

X (3)

111
1 1 W2 W3
1 W2 W° W2
1 w3 w2 w1

(3. 1.3) as
Xo{0)
Xo (1)

xo<2)
xo(3)

(3.1.5)

By factorization of coefficient matrix we get,
r X(0) W° 0 “1 rT 0 w° ^ r “\Xo(o)

X(2) - 1 w2 0 0 0 1 0 w° Xo (1)

X(l) 0 0 1 w1 1 0 W2 0 xo (2)

X (3) 0 0 1 w3 0 1 0 w2 X0(3)
L J V. J J L J

—(3.1.6)
But simplification on the R.H.S. gives the vector X(n) with row

interchanged as shown. Let us denote it by
rX(0) •"v

X (n)
X(2)
X(l)

U(3) J

57

Let us consider
rxi(0) (i 0 w°
Xi(l) 0 1 0

xi(2) 1 0 w2
xi(3)V J

1 0

*0^ rXo (0)

w° xo(l) -------(3.1.7)

0 xo (2)

Multiplication on the r.h.s. gives

Xi(0)- xo(0) +W0xo(2) ------- (3.1.8)

which includes only one complex multiplication & a addition.

Similarly,

*i(l) = x0(l) + W° x0(3) ------(3.1.9)

xi(2) = xo(0) + W2 x0(2) = x0(0) - W° xe(2)

(v W2 *= -W°)

i.e. xi(2) = x0(0) -W°x0(2) ------(3.1.10)

and X!(3) = Xo(l) + W2xc(3) - x0(l) - W° x0(3)

Thus, xi(3) = x0(l) - W° Xo(3) ------(3.1.11)

The complex multiplication in (3.1.10) is already done in

equation (3.1.8) hence it includes only one complex addition

and the complex multiplication in (3.1.11) is done in equation

(3.1.8) hence it includes only one complex addition.

58

Thus the intermediate vector xi(k) is then determined by
only four complex additions and two complex multiplications.
Next consider,

-x(or rx2(0? /I w° o o\ (op

X(2) - X2 (1) = 1 w2 0 0 Xl(l)

X(l) x2 (2) 0 0 1 w1 xi(2)
.X(3l x2(3) L J l? 0 1 V Xi (3)

V- J

-----(3#1.12)
i.e. x2(0) = Xi(G) + W°xi(l)

x2(l) = xt[0) + W2 Xid) - xj{0) -T^xjd)
x2(2) - xi(2) + W1 xi(3)
x2(3) = xi(2) + W3 Xi(3) - xj(2) -W1 xi(3)

Thus vector x2(k) is determined by only two complex
multiplications and four complex additions.

Computation of X(n) thus requires a total of four complex
multiplications and eight complex additions. But computation
of X(n) from (3.1.3) requires sixteen complex multiplications
and twelve complex additions. Factorization of a matrix
reduces the number of multiplications and additions. Since
computation time is proportional to the number of calculations
factorization increases the efficiency of FFT algorithm.

If N * 27 then FFT algorithm factorize NxN matrix into y

matrices each of order NxN. It reduces the computation time as

59

the number of complex multiplications and additions are My/2

and Ny resp. The approximate ratio of direct to FFT computing

time is given by

N2 - 2N
Ny/2 y

The matrix factoring gives
r
X(0) Instead of r *\X(0)

X (2) X(n) - X(2)

X(l) X(l)

X (3)v J X (3)
v. J

To obtain the required vector X(n) we rewrite X(n) by replacing

arguments with its binary equivalent.
"x(0p rx(oo) ^

X (2) e* X(10)
X(l) X(01)
X (3} X(ll)V J k. J

If we reverse the binary arguments in 2Bd and 3rd row we get.

X (n) rX(00)
X(10)

X(01)

X(ll)
L J

Flips
to

r "\X(00)

X(01)

X(10)

X(ll) V. J

60

This is useful in development of FFT. For large value of N

matrix factorization process is cumbersome so that graphical

formulation is used to develop a flow graph for a computer

program.

Signal Flow Graph:-

We convert equation (3.1.3) into signal flow graph as

shown. We represent the data vectors xo(k) by a vertical column

of nodes on the left of the graph. The 2nd vertical array of

nodes is the vector Xi(k) computed in equation (3.1.7) and the

next vertical column corresponds to the vector xa(k) -> X(n) as

computed in equation (3.1.12) The no. of vertical arrays equals

the number of matrices obtained by factorization i.e. y.

The interpretation of flow graph is as follows: The two

solid lines incident in each node are called the transmission

paths from previous node. A path brings a quantity from a

previous node, multiplies the quantity by Vf and inputs the

result into the node in the next array. Wp appears below the

arrowhead and if W** =1 no need to write it. Results entering a

node from the two transmission paths are combined additively.

Thus signal flow graph is a brief method for representing

the computations in FFT algorithm. This method is easy to

utilize.

rb« firm7 /7-t y 7 i

*>(K)

/Vwo y a.

*2<>9

(F FT 61 'jncJ (7 j c w ytajph x N = 4,)

S-IJ) (a_)

DA“A
ARRAY

COMPUTATION ARRAYS
___________ A__________

/ = 1
x-j(k)

/ = 2
*20<)

/ * 3
x3(k)

/ = 4

f-1jure -S.L (b)

63

Dual Nodes; In every array the pair of nodes corresponds to

the transmission paths which leaves the same pair of nodes in

the previous array. The pair leaving the nodes is said to be

dual node pair.

For example consider signal flow graph for N =» 16

(fig.3.1)(b) the nodes Xi(l) & Xi(9) are computed in terms of

xc(l)& x0(9) . But xo(l) & Xo(9) does not take part In any other

computation. Hence it is possible to compute xi(l) & x%{9)

simultaneously and stored in the previous storage locations of

xo(l) & xo(9). In above figure (fig.3.1)(b) in array £= 1, dual

node pair say xj{0); Xi(8) is separated by k==8, N/2* = N/2 In

array £= 2, a dual node pair, say X2(8); X2(12) is separated by

k=4 «= N/2^ = N/22, Similarly a dual node pair X3(4); X3(6) in

array £=*3 is separated by k*=2 = N/2* « N/23 etc. Generalizing

we get the spacing between dual nodes in array t is N/2*. Thus

dual node of Xi(k) is xi(k + N/2*).
Dual Node Oonyutatlon:

If the weighting factor at one node is Wp, then the

weighting factor at the dual node is wp+n/2 and sinc€

Wp - -WF+N/2 only one multiplication is required in the

computation of a dual node pair. It is given by

64

x,(k) « x^i(k) + W* x^-i (k+N/2*) '

►
---(3.1.14)

x/ (k+N/2') » x^i(k) - Wpx^i(k+N/2^)

As above the dual node in the £th array is always down N/2' in

the array. Since the spacing is N/2', we must skip after every

N/2' node. In general we will compute equation (3.1.14) for the

first N/2' nodes, skip the next N/2' and so on. W® will stop

the skipping if node index greater than (N-l).
Determination of W*

The value of p is determined by -

i) Writing the index k in binary form with y bits.

ii) Scaling the binary number by (y -1) bits to the right and

filling zeros to the left.

iii) Reversing the order of the bits. This bit-reversed number

is the P.

For example consider X2<8). Since y=*4, k=8, & £**2, then k

in binary is 1000. Scale this number by y -£ * 4-2 = 2 places

to the right and fill in zeros. i.e. 0010 After reversing the

order it gives 0100 i.e. 4.

P - 4.

In the final step in computing the F.F.T. we came to know

that while reversing the binary number if we proceed down the

65

array, interchanging x(k) with suitable x(i) we may have node

previously interchanged. To skip a node that has previously

been interchanged, we check the condition

if i < k (i is the integer obtained by bit-reversing k.)

If condition is satisfied this implies node has been

interchanged by a previous operation.

FFT Algorithms for Real data:
If we consider the time function in the complex form, that

is, h(k) => hr(k) + hi(k) then the discrete transform is

generally in the complex form as

H(n) - (1/N) 2 fhr(k) + i hi(k)|
k-0 v. J

-i2*nk/N
------ (3.1.3.5)

and the alternate inversion formula is given by

h(k> =(1/N) I S |Hr(n) + iHi[N-l * -jSo[Hr(n) + iHi(n)^ J (3.1.16)

Since equation (3.1.15) & (3.1.16) contain the common factor
Q-i2*nk/N values can be calculated in a single computer
program. If given time function is real function then its
discrete Fourier transform is computed as follows :
Let h(k) & g(k) be two real time functions,

y(k) * h(k) + i g(k) .
from linear property
Y(n) - H (n) + iG(n)

r (n) + iGi (n)j= |Hr(n) + iHi(n)j+ifG

Gi(nD-0Hi(n) +

consider

66

• R(n) + il(n) --- (3.1.17)

Decompose R(n) & I(n) in even & odd component

Y(n)»ffr(n) + R(N-nn + |TR(n) - RtN-nfl
2 2 ti. 2 2

+i ni(n)-H (N-npl + i fl (n) - I(N-n) -|
2 2 t— 2 2

--------(3.1.18)

H(n) * R«(n) + i I0(n)

0(n) +R(N-nfj + ijt (n) - I (N-n) ~j

Similarly,

iG(n) - R0(n) + ile(n) or G(n)

G(n) = fl (n) +1 (N-n7|- i fR(n) -
^2 2i

(3.1.19)

=» Ie(n)- iRo(n)

R (N-nfj

--------(3.1.20)

Thus (3.1.19) & (3.1.20) gives the discrete Fourier

transform of two simultaneous functions.

(3.2) Transform of 2M Saonqples with an N sanple Transform:

Consider a function x(k) with 2N samples. To compute the

discrete Fourier transform with N sample transform we break the

2N point function x(k) into N sample function as

h(k) = x(2k)

g (k) - x (2k+l), k«0, 1, «N-1. --------(3.2.1)

X(n)
2N-1
2 x (k) e"i2*nk/2N
k-0

67

z'xtfk) e■A2*,,(2k)/2,, +rl x(2k+l) e”i2*n(2k+1)/2N
k-0 k-0

N-l N-l
£ h(k)e-i2*nlc/N + e'ix*/N 2 g(k) e~i2Knlc/N
K-0 K-0

H(n) + e'i*n/N G(n) (3.2.2)

As before H(n) £ G(n) are computed,
.-. X(n) «jR«(n) + iIo(nT| + £ Ie(n) - iRo(n)]

Xr(n) + iXi(n) (3.2.3)

Where, Xr(n) - (R(n)-t- R (N-n)l + Cos(wn/N) & (n) + I (N-n)
L 2 2 J C2 2 -

- Sin[7in 1 fe(n
N J 12)- R(N-n)

& Xi(n) -f I(n) - I (N-n) Vsin(ttn/N) f I (n) +1 (N-n) 1
L 2 2 J L2 2 J

-cos(nn/N) [*?L_- R(N-n) 2)
Thus we have the computation of 2N samples Fourier

transform by means of N sample transform.

(3.3) FFT Convolution And Correlation
Due to increase in computational speed which can be

achieved using the FFT, it is advantageous to use frequency

domain analysis. We develop the techniques for using the FFT

for high speed convolution and correlation.

68

Finite Duration Waveforms
We know, if x(k) & h(k) are periodic functions with period

N then their convolution is given by

y(k)
N-l
2 x (i) h(k-i)
i-0

(3.3.0)

and it gives more correct values if it is performed correctly.

Consider the convolution of periodic functions x(t) and

h (t) .

(Continuous Convolution)

t xo<:>

i ■-

cl

N

(Discrete convolution)
Since x(t) & h(t) are shifted from the origin, large N is

required to avoid the overlapping or end effect.

69

But this results inefficient convolution as shown in
following figure(fig(3.3) (c)) To compute the waveform identical
with continuous using FFT we first shift both x(t) & h(t) to
the origin by a & b respectively choose N >P+Q-1, N=2Y, y
integer. The resulting sampled periodic functions are given
by.

x(k) = x(kT +a), k=0, 1,„..P-1
= 0 k=P, P+lr __N-l

S h (k) =* h (kT+b), k =0,1,____ Q-l
= 0 , k = Q, Q+l,----N-l ------- (3.3.1)

('Pi|Uire U sj(c) j

70

The discrete Fourier transform of x(k) & h{k) are given
by

N-l
X{n) * 2 x(k) e"i2nXk/N ------(3.3.2)

le-0

N-l
H(n) - £ h(k)e"i2nBk/" ------(3.3.3)

.‘. Y(n) = X(n) . H(n) ------(3.3.4)

Finally, the discrete convolution is given by

N-l
y(k) - (1/N) 2 *(n) ei2nWt/N ------(3.3.5)

n-0

Thus equations (3.3.2),(3.3.3),(3.3.4),(3.3.5) together compute

the convolution of the functions. Due to computing speed of FFT

algorithm, these four equations gives a shortcut by the long

way around.

Ccagmting Speed of FFT convolution:
Time required for the computation of y(k) from equation

(3.3.0) is proportional to N2 (number of multiplications). But

the time taken by (3.3.2),(3.3.3),(3.3.4) proportional to

3N‘log2(N) and computation time of equation (3.3.5) is

proportional to N. Thus the computation of convolution using

FFT is more faster than the direct computation.

FFT Correlation:
FFT correlation is very similar to FFT convolution.

Consider the discrete correlation.

71

N-l
Z(k) = 2 h(i)x(k + i) ------ (3.3.6)

i-0

Where h(k) & x(k) are the periodic functions with period N. To
apply the FFT to the computation of (3.3.6) our period N should
satisfy

N £ P + Q - 1, N=27 , y integer valued

and x(k) =0, k= 0, 1, ... (N - P) ------ (3.3.7)
x(k) - x(kT + a) , k-N-P+1, N-P+2,.. .N-l

After shifting & sampling x(t), i.e. P samples of x(k) are
shifted to the right of the N samples defining a period.
Function h(t) is shifted and sampled according to the relations

h(k) * h(kT + b), k» 0, 1,. . . .Q - 1
- 0 ,k- Q, Q+l/N - 1 ------ (3.3.8)

and then

N-l
X(n) - 2 x(k)

k-0

N-l
H(n) * 2 h (k)e“i2*nk/N

k-0

Z(n) - X(n)H*(n)

N-l
Z (k) * (1/N) 2 Z(n) e“12*nk/M ------ (3.3.9)

n=0

72

Ex : Consider x(k) & h(k) as shown in figure.

By definition correlation is shown by the

following figure:

Because of the choice of N correlation results in a

inefficient result as the large number of zeros produced in the

interval (0, a-d)

If we shift both the functions to the origin as shown in figure

(3.3)(d) then the resulting correlation is given by

Figure(3.3)(d)

73

1. Let x(t) and h(t) be finite duration waveforms shifted

from origin by a and b respectively.

2. Let x(t) and h(t) be represented by P & Q samples

respectively.

3. Choose N such that N > P+Q-l, N*=2T, y integer valued.

4. Define x(k) & h(k) as follows :

x(k) * 0, k -0,1 ... N-P,

- x(kT + a); k-N-P+1, N-P+2,. . . . N-l
h(k) - h(kT+b), k - 0,1. . . Q*-l

- 0 , k = Q, Q+l,--- N-l

74

5. Compute discrete transform of x(k) & h(k)

N-l
X (n) - £ x (k) e”i2*nk/N

k-0
N-l

H (n) -2 h(k) e‘i2*nk/N
k=0

6. Compute the product

Z(n) = x(n) H*(n),(* indicates complex conjugate)

7. Compute the value of convolution by

N-l
z (k) = £ (1/N) Z* (n)e‘i2*nk/Nn-0

(3.4) Theoretical Development of the Base 2 TFT Algorithm:
Consider the Fourier transform of Xo(k)

N-l N-l
X(n) - £ x0(k)e'i2*nk/N - £ x0(k) Wnk

k«0 k-0

n * 0, 1,. . . N-l. ------- (3.4.1)

Let N = 4 = 22 => y *2

Representing n & k in binary numbers.

k Binary
(ki,k0)

n Binary
(ni,n0)

0 00 0 00
1 01 1 01
2 10 2 10
3 11 3 11

Then we can write

k = 2ki + ko & n = 2ni + no

75

Therefore equation (3-4.1) becomes

1 l
X(m,n0) «2 S x0(k!, k0) w(2V V <2V ko ’

k0“0 ki-0 (3.4.2)

2 2*o (k1# k0)W(2V V2Y(2Y Vkoko=0 ki=0

- 2
k0=0

2x0 (ki, k0) W2n0ki+<2ni+ n0>!to
ki^O

(v wVi =1)

1
2
k0=0

1
2 x0(klrko)W2noki
.ki=0

ra(2n + n)K W j 0 0

------- (3.4.3)

First write the bracketed part as

1
xi(n0, k0) - 2 x0(klf k0)W2n0ki

ki-0 ------- (3.4.4)

Thus equation (3.4.4) in matrix form gives the first of

the factored matrices or array of signal flow graph

similarly consider

1
x2(n0,ni) - 2x1(n0,k0)W(2V no)lco

k0«0 ------- (3.4.5)

This determines the second of the factored matrices from

(3.4.3), (3.4.4),*(3.4.5)
X(ni,n0) =» x2(no,ni) ------ (3.4.6)

76

Equations (3.4.4), (3.4.5) & (3.4.6) represents the

original cooley-Tukey formulation of the FFT algorithm for N=4.

Now, consider N~8 = 23 hence y = 3

Therefore, Binary representation of n & k is

n, k Binary equivalent
(n2,ni,n0)

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Therefore n & k in terms of binary equivalent are

represented as

n ® 4n2 + 2ni + n0; k * 4k2 + 2kj + k0

(3.4.7)

Equation

X(n2,ni,n0) *

(3.4.1) becomes
111
£ £ £xo(k2,k1,k„) »«■«■,* V"V!W
ko=0 ki=0 k2=0

(3.4.8)

Simplification gives

lii
X(n2,ni,n0) - 2 £ 2 [x0(k2,ki,k0)W4^ W<2VV2ki

k =0 k *0 k *0 0 12
x w<4V2Wko] (3.4.9)

77

Now let
1

xi(n0,ki,k0) - Sxo(k2, ki,k0)W4nok2
k2=0
1

x2(n0rni,k0) - 2xi(n0f ki,k0)W(2V no)2ki
ki=0

1
x3{n0,ni,n2) - Zx2(n0,ni,k0)W(4n2+2Wke

k0=0

X(n2,nifn0) - X3(n0,ni,n2) ------- (3.4.10)

Thus (3.4.10) determines the matrix factorization or FFT signal

flow graph for N=8.

Now to develop the general result consider N*2y,

y integer. Then n & k can be represented in binary form as

n ** 2y_1 ny-i + 2y~2 ny-2 + . . .+no 1

k - 2y_1 ky-i + 2y"2 ky-2 + . . .+ko J

.'. Equation (3.4.1) becomes

1 1 1
x (ny_i, ny_2f.., no) =* E Z-. • Ex (ky-i, ky_2,... ko) Wr

ko^O ki*=0 fy-j^O

Where P * (2y_1 ny_i + 2y“2 ny-2 +.. .+no) (2y 1 ky_i+2y 2

(3.4.11)

--- (3.4.12)

ky_2+ . . . + ko)

(3.4.13)

“ (2y_1 ny_i + 2y*2 ny_2 +...+no) 2y 1 ky_i

+ (2t y ny-i + 2y 2 ny-2 +.. .+no) 2y 2 ky-2 +

78

. . . + (27 1 ny~j + 2 7-2 iiy-2 + ...+n0)k0

=*(22y"2 ny-i ky-j + 22r_3ny_2 ky-i + ...+27'1 n0 kT-i) +

+ (227-3 ny-jkT-2 +227-4 ny-2 ky-2 +.. .+2nx 2T"2 ky.2.+n0 27-2 kr2)

+ .. .+ (27-1

(27-2 nr-i ky-i)

ny_i ko+ 27*2 ny_2 ko+...+n0k0)
+ 27{27 3 ny_2 ky-i) + ... + 27 1 n0 ky-ij +

ny-i ky_2)+27 (27-4 ny-2 ky-2) + -• •+(2ni + no}27*2

ny_iko + 27 2 ny_2 ko + ...+ noko |

+

since W2* = W* = (e'i2x/H)H = e“ i2x=l
wp = ^2T’lnokT-t+(2ni+no> 27-1 Va+ +(*^1Vi+2T’2V2+ +80)k0

^r(2ni"V 27-2 Vz ^<2T"1“t_1+^t“2V2+ •**0>k0

------(3.4.14)

From equation (3.4.12) gives

T! T! ••• 2 ^(^i^jvi^o) x ^ °*k7 x

kg<« k,«0 kr,-0
x ^3al*mO> 27-2 kr2 . W(2T_l,V-»+2Y~2V*+-+-o)ko

------ (3.4.!5)

Performing each of the summation separately and labeling

the intermediate results, we obtain

79

x1(n0,kr_2,..j£0)= 2>0<kT-i.kT-».....
k,^-0

x2(n0,n1,kt_3,..jk0)=]Tx,(n0,kr2,...,k0)x W<2n,+n#>2T *krJ
kr_j«Q

xt(ii0,n1>...,nT_1)=
ks^O

V \v »T-.+2T

... -(3.4.16)
X (nj_i, Vly-2r ~t Ho) “ Xj(UQfXltt . ..* Hy-i)

The set of equation (3.4.16) represents the cooley-Tukey
formulation of the FFT for N*=2y. For the computation of these
relationships only Ny/2 complex multiplications and Ny complex
additions are required.

Cooley-Tuley Algorithm

For N = 4, We have the FFT algorithm
1

xi(n0, k0) = 2 x0(k0/ki)W2noki
ki=0
1

X2(n0, ni) - 2 xi(nofko) W(2Vno)lco
ko=0

In this algorithm the input data is in natural order and
the output data is in scrambled order. To determine
p = nk, we require k to be bit-reversed but we want k in the
natural order. It is possible to rearrange the signal flow
graph in order to transform the input data in scrambled order

80

and output data in natural order. This is obtained by only

interchanging (01) & (10) in each array, carrying the inputs

with that node to each node. The result signal flow graph is

shown in figure (3.4)(b).

We have for N ~ 4, the FFT is,

X(nlf no) 2
ko=0

Zxo(ki,ko)W
ki=*0

(2n + n) (2k + k) 1 o 1 o

(3.4.17)

w(2«i
Instead of k we separate the components of n.

+ no) # ^ + kQ) „ . w2Vo .Wno<2ki+V
= W2^ • Wn0(2VV { *.* W4 =1)

Thus equation (3.4.1) can be written as

X(ni,n0)
1
2
k0=0

1
2x0 (klr k0) W2n0ki Wnok0
ki=0

W2\ko

(3.4.18)

81

Define

Xi (no, ko)
1
£xo(ki,k0) wViWVo
ki«=0

x2(n0, ni)

&
X(ni, n0)

Using equations

1
£xi(n0,k0) W2ni%
k0=0

x2 (nor ni)

(3.4.19)

(3.4.19) the signal flow graph is shown as

below

CrO

82

In this algorithm the input data is in natural order but

output data is in scrambled order and the powers of W occur In

natural order. To obtain natural flow signal graph result we

proceed as in the cooley - Tukey algorithm. It is also

possible to develop an algorithm which require natural order to

occur in natural order. But it requires storage twice that of

above.

(3.5) FFT Algorithms for Arbitrary Factors:

The condition N=2r is restrictive in FFT algorithm, It is

removed by considering N * rj rz — r, where ri is an Integer.

This is more significant than the previous in time saving.

First consider N= rir2 Where ri, r2 are integers. We can

express n & k in terms of factors rj & r2 as

n = ri ni + no & k <• r2 ki + k0

(3.5.1)

Then equation
r2-l rj-1

x(ni, no) « 2 Zxo(kif ko) Wnlt becomes
ko~0 ki=»0

r2-l ri-1
x(ni,n0) * 2 2xo(ki, k0) W(riV V (r2ki+V

k0=O ki=0

83

r2-l
* z

k0=0

rj-1
/u 1, \ tar c n k +(rn ,n) k + r n k ZXo(Ki, k0) W i 2 i i ll+o o 2 o 1

ki-0

. ‘ .x (ni, n0) =
r2-l n-i
2 2x0(ki, k0)
ko*0 ki=0

Wr n k
2 o W (r n + n)k

11 o o

(v Wr!r2 - W* =1)------------(3.5.2)

If we consider

ri-1
Xi(n0, k0) - Zx0(ki, ko) Wn0kir2 ------------ (3.5.3)

and kj=0
r2-l

x2(n0/ni) - Zxi(n0, k0) W(ciV no)ko ------------(3.5.4)
ko=Q

finally, X(ni,no) = x2(no,rii) ------------(3.5.5)

Thus equation (3.5.3),(3.5.4),(3.5.5) defines the FFT

algorithm for N - rir2.

Cooley Tukey Algorithm for N - rtr2...ra
If N = rir2,..rm , where ri, r2 . . . rm are integers.

Expressing n & k in terms of factors we get

n = nm-i(r-Lr2...rm-i) + nm_2(rir2...rB_2) + .. .+niri + nQ

k • k*_i (r2r3...r») + km_2 (r3r4...r,) +. . .+ kir» + k0

where ni-i = 0, 1, 2, . . . ri_i -1 , 1 < i < m

► -(3.5.6)

ki * 0, 1, 2,. . .r«-i -1, 0 < i < m-1

.-. X(n»-i,nm_2,. , .ni,n0) 2 2. . .Zxo(k*-i, k„-2, k0) Wnk
k0 ki km_i

(3.5.7)

84

Using (3.5.6)

Wnk _ T.7n k (r . .~ W o m-1 2

hence (3.5.1) becomes
x(nB-i,nm_2 . . . nj,no)

r)IQ W"[V (r .
2 3

..r)+.
m .]

(3.5.8)

IS* • • kra-2|.».^0) ^
ko ki Jc»-i

wV„- (r r . 12 3 *r)
B " m- (r

•2 3

We define

r) + .m .+ k)0
---(3.5.9)

Xi(n0, km-2, . . . ,k0) Zxo(kB-i, ... k0) WnoVi <r2 V
km-l

Equation (3.5.9) becomes

X (np-if nm-2 ... n^, n0) 2 £ •••]£• xi(no, km-2,..., ko)
ko ki k._2

Wn [km- r) + ...+ k] m 0

Define
X2(no#ni,kni-3,...,ko) Zxi(no,kB_2....... ko)Wn[K)n,3(r4 r5'"rm, + --- +k0]

km-2

Continuing in this manner, we have

xA(n0, ni ... ni-i, km-i-i. ,k0) * £x±-i(n0, ni,...ni_2, k*-i... k0) x
km-i

X W[ni-! it t 1 2
ci-1) + . + n] 0 k (r m-i i +1 r)

ID

i - 1,2, . . .m

This is valid if we consider (ri+i . . . rm) =* 1 for i > m-1

and ki * 0

This gives finally

X(n»-i, ..., n0) - xm(n0, ..., nM_i)

