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Chapter-1

Convolution and Correlation
(1.1) Convolution Integration:

If f(t) and g(t) are two time functions. Then convolution 
of f(t) and g(t) is a function h(t) defined by

h(t) = (f * g) (t) - / f (t-y) g(y)dy ------ (1.1.1)
—oe

Where f (t-y) is the image of f (y) in ordinate axis shifted by 
the quantity t. The multiplication of f(t-y) & g(y) is 
integrated for each value of t from to °°.

A general rule for determining the limits of integration 
can be started as :

Given two functions with lower nonzero values L* & L* and 
upper nonzero values Ui & U2, choose the lower limit of 
integration as

Max.^Li,
And the upper limit of integration as 

Min-jjJi,

These lower and upper non-zero values remains unchanged for the 
fixed functions, however the values of the sliding function 
f(t-y) change as t changes.
Convolution integral can be alternately defined as
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h(t) - (f * g)(t) = / f(t) g(t-y)dy ------- (1.1.2)
—PO

That is, either f(t) or g(t) can be folded and shifted.

Example Let

f(t) - e_t , tStO 

- 0 , t<0

and g(t) - sint, O^t^w/2

= 0 , otherwise 

Find f(t)*g (t) .

Solution From equation (1.1.1)
00

h(t) - (f * g)(t)- f f(t-y) g(y) dy
—00

The integral limits are obtained by using the above 

procedure. The lower and upper limit of the function 
f (t-y) = e"(t"y) is -« and t resp. For the function g(t) the 

lower value is 0 and the upper non zero value is 11/2. Therefore 

for O^t^n/2

Upper limit = Min [t, n/2 3 = t 

for t ^ n/2 t Upper limit - n/2

and Lower limit = Max [-°°,o] o
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h (t)=

t
S e"(t"y) siny dy , o&tSidz 
0

nl2
S e'(t_y) siny dy , t2sn/2 
0

L 0 , t £ 0

Evaluating we obtain

h (t) - 0 , t £ 0

* 1/2 ( sint - cost + e-t), o<t£*/2

- (e_t/2) (1 + e**), t £w/2

• Convolution Theorem The relationship between the

convolution integral and its F.T. is known as convolution 

theorem. It is stated as if F(w) & G(w) are the F.T. of 

f(t) & g(t) resp., then the F.T. of f(t)* g(t) is 

F(w). G(w).

Proof :- We have

h(t) - / f(t-y) g(y) dy
•— oo

Form F.T. of both sides.
W 00 ^ 00

/ h(t)e'iwt dt= / e“lwt f(t-y)g(y)dy J dt

.'. H(w) = / g(y) [S e“lwt f(t-y) dt] dy
-w —oo

---- (1.1.3)



Putting x — t-y the term in bracket becomes

S f {x)e-iw(x+y) dx - e'iwy / f(x) e'iW8 dx
—oo —oo

- e‘iwy F{w)

Equation (1.1.3) can be written as

OO

H(w) - J g (y) e'iwy F(w) dy
—oo

oo
= F (w) ; g(y) e~iwy dy

—•00

- F(w). G(w)

Thus,

F[f(t) * g(t)] - F[ f(t)] . F[ g(t)3 

• Some properties

i) Convolution is commutative ;

f(t) * g(t) - g(t) * f(t), te(—,-)

ii) Convolution is associative ;

h(t)*( f(t) * g(t>] = (h(t>* f(t)}* g(t)

iii) Convolution is distributive over addition;
h(t) *[f(t) + g(t) ] = jh(t) * f(t) ]+(h(t) * g(t)

'2. 2-Bxanple Determine the F.T. of e" at * e_pt 

f(t) - g(t)«

00

- ; e"iwt e'^dtF[f(t)]
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/ iwt) dt
.N

But at2 + iwt *= a[ (t+iw/2a)2 + (w2/4a2) ] 

«■ a(t +iw/2a)2 + w2/4a 

Put Z = Va (t +iw/2a)

dz = Va dt or dt = dz/ Va 

Therefore at2 +iwt * z2 + (w2/4a) and

oo oik

S e'(at"+ iwt) dt - / e" <z+ ^ dz/Va
-oo — eo

oo
= ; e'Z dz

Va

= V(*/a)e~w>4a -------- (1.1.4)

Similarly

F[g(t)] - V(?rfp)e’*/4<J ------- (1.1.5)

Using convolution theorem#

F [f (t) * g (t)] - F[f (t) ]. F[g(t) ]

* V(7i/a) e-w''4a ' V(7i/p)e"wA/4p

= (n/VaP) e_<w/4) <1/a + l/*> 

Example : Determine h(t) * g(t) where 

f(t) * e_at, t > 0 

=0, t < 0

and
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g (t) = e"bt , t > 0 

*= 0, t < 0

Solution : By Definition,

(f*g)(t) S f <t—y) g (y) dy

The lower and upper values of t for f(t-y) are 0 & t which 

are the same for the function g(y). Thus

(f*g) (t)
t

X e'
O

<

a<t-y) e-by

0

dv t>0
>•

t<0 J

<
at [e(a~b)t

(a-b)
1]

0

t>0 >

t<o/

-<
1 [e*bt -e“at] 
(a-b)

0

t>0

t<0

If either f(t) or g(t) is an impulse function then 

convolution integral is of simplest type. Let us consider,

g (t) = 6 (t-T) + 8 (t + T)

then convolution integral gives
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h(t) - (f*g)(t) - s f(t-y) g (y) dy
—eo

os

- J f(t-y)[8(y-T) + 8(y+T)]dy
—oo

But we know,
oo

S 8(y-T) f (y) dy - f(T)
—oo

oo oo

.'.h(t) - J f (t-y) 8(y-T)dy + / f(t-y) 8(y+T)dy
—oo ->00

* f(t-T) + f(t + T)

Thus the convolution of the function f (t) with an impulse 

function is evaluated by simply reconstructing f(t) with the 

position of the impulse function replacing the ordinate of 

fit) .

If g(t) is a series of impulse functions then convolution 

of f(t) with g(t) is simply obtained by replacing each impulse 

by the function f(t).

• Frequency convolution theorem It is the relation

between the Fourier transform of the product of the 

functions in time domain and the convolution of their F.T. 

in frequency domain.

It is stated as if F(w) & G(w) are the F. T. of 

f(t)and g(t) respectively, then.
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F[f(t) g (t) ] - F(w) * G(w) -----------------(1.1.6)

Proof By definition,

eo

H(w) = F(w) * G(w) - S F(w-y) G(y) dy

Taking the inverse

oo

s eiwt H(w)dw -

F.T. on both sides we get,

oo oo
S eiwt[f F(w-y) G(y)dy)dw

/ G (y) [Jelwt F(w-y)dw] dy
—oo —oo

S eity G(y) f (t) dy

f (t) / eity G(y)dy
—oo

h(t) - f(t). g(t)

Thus inverse F.T. of convolution in frequency domain is 

equal to the product of the functions in time domain, or F.T. 

of the product of the functions is equal to the convolution of 

their Fourier transforms.

* Parseval'a Theorem :- If F(w) is the F.T. of f(t) then

S [f(t)]2 dt «* J lF(w)|2dw (1.1.7)

Proof Consider the function h(t) * f(t).f(t) 

By convolution theorem 

"F[h(t)] - F(w) * F(w)
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S e'iwt h (t) dt - S F(w-y) F(y)dy
—oo — oo

oo 0»

/ e"lwt [f (t) ]2dt - / F(w-y) F(y)dy
— OO —‘09

Putting w - 0 in the above expression, we get
oo oo

- / [f (t) }2dt - / F(w) F(-w) dw
—oo —oo

(Replacing y by w)
Since F(w) = R(w) + il (w),
Where R(w) = Real part & I (w) «= Imaginary part.

F(-w) = R(-w) + il(-w)
and it can be proved that R(w) is even function and I (w) is an 
odd function ie.

R(-w) - R(w) & I(-w)-- I(w)
F(-w) = R(w) -il (w)

this gives
F(w). F(-w) = R2(w) + I2(w) - | F (w) |2

OO oo

S tf(t)]2 dt* S iF(w) |2 dw proved,

Thus parseval's theorem states that the energy in waveform 
f(t) is equal to the energy in F(w).
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(1.2) Correlation The integral defined by
oo

y(t) - I f(t+y) g(y) dy ------ (1.2.1)
—oo

is called the correlation integral and the functions f(t), g(t) 

are called correlated.

Also the autocorrelation function of square integrable 

functions is defined by
OO

y(t) - X f(t+y) f(y) dy ------ (1.2.2)

The relation between convolution and correlation:

<= FOLDING

(b)
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•^INTEGRATIONS

The convolution & correlation integrals are closely 
related. The convolution is the sequence of folding, 
displacement, multiplication, and integration. But the 
correlation does not contain the folding. Thus when the 
function is even function the convolution and correlation are 
equivalent since an even function and its image is identical.

Bx. Determine the autocorrelation function of the waveform 
f(t) = e“at, t>0

ss 0 1 t<0
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Solution By definition,

y(t) - s f (t+y) f (y) dy
—oo

0 00
,y(t) - s f(t+y) f(y) dy + J f(t+y) f(y) dy

0
S e-a(t+y) e-ay dy, t > 0

e“#tJ e~2ay dy, t > 0 
o
-at -2ay

2aV. V’

"at , t > 0
2a

eat , t < 0 
2a

y (t) e~Bltl , 
2a

-* < t <

Ex : Determine the correlation integral for the following 

functions

f (t) - 1, 0 < t < a

* 0, t > a, t < 0

and

g (t) * (b/a) t, o < t < a 

*=0 , t > a
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Sol. By definition, correlation of f(t) & g(t) is given by
DO

y (t) - / f(t+y) g(y) dy
—oo

Waveforms of the given functions are as below

F{y)

The lower and upper values of y for f(t+y) are -t & a-t and 

those for g(y) are 0 & a.

Therefore for 0 < t < a

Upper limit of integration = Min (a-t, a] « a-t 

Lower limit of integration = Max [-t, 0]= 0

a-t
y(t) = i 1. (by/a) dy, 0 < t < a

o

\__
til

•m o IA c+ IA
 

0)

i - 
)

■015

1 < J i ftrti to

It is shown as below.
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Now, for - a < t < 0, the lower and upper values of y for 

f(t+y) are -t & a-t and therefore,

Upper limit of int. » Min. k-t, a J- = a

Lower limit of int, Max. _ _t

y(t) = Jb (a2-t2), -a < t < 0 
2a

b (a-t)2, 0 < t < a
2a

.y(t) = <_b (a2-t2), -a < t < 0
2a

0 , otherwise
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Correlation theorem: It gives the relation between the 

correlation integral and its F.T.

Statement : If F(w) and G(w) are the F.T. of f(t) and g(t) 

respectively and

oo

y (t) =Jf (t+y) g (y) dy, then
—.00

F.T. of y(t) is F(w).G*(w), where G* (w) is the complex 

conjugate of G(w).

Proof We have

00

y (t) = J f (t+y) g (y) dy
—00

find F.T. on both sides.

OO OO 00

.-. J eiwt y(t) = [J eiwt (J f (t+y)g(y)dy) ] dt
—00 —00 f—00

Put t + y = x and rewrite the term in bracket as

00 ao

f eiw(x_y) f (x) dx = eiwy / eiwx f (x) dx

- eiwy f (w)

00

. y(w) = s g(y) eiwy F(w) dy

00 oo

.'. Y (w) “F (W) [/ g(y) coswy dy + i / g(y) sinwy dy]
mmOO
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- F(w) [ R(w) il (w) ] ------- (1.2.3)

But the F.T. of g(y) is given by
oo

G (w) = / e'iwy g (y) dy
—oo
oo oo

“ f g(y) coswy dy - i f g(y) sinwy dy
—oo —oo

= R(w) -il(w) ------- (1.2.4)

The bracketed part in (1.2.3) is complex conjugate of 

(1.2.4), equation (1.2.3) can be written as 

Y (w) = F(w).G*(w) proved.

If g(t) is even function then G(w) is purely real and 

hence G(w) * G*(w) i.e.

Y(w) - F(w). G(w)

Thus, in this case the correlation is equivalent with the 

convolution.
(1.3) Fourier Series

If f (t) is periodic function of period To then it is 

expressed as a Fourier Series given by
oo

f(t) =*(ao/2)+ Z[a„ cos(nrt/To) + bn sin(nrt/To)3
n=l
oo

= (a0/2)+ E[a„ cos (nflw0t) + bn sin(nrw0t)3
n-1

------- (1.3.1)
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Where w0 is the fundamental frequency given as Wo^l/To. The 

coefficient an,b„ are given by

To/2
an » (1/To) / f (t)cos(nnw0t)dt, n=Q,l,2,. . .-To/2

------- (1.3.2)

To/2
bn *= (1/To) S f(t) sin (n7Jw0t) dt, n=»0,l,2,. . .-To/2

----- d.3.3)
We can write expression (1.3.1) as

f (t) (a0/2) + 2
n-1

^ein«wot + e-in*wot j + 
_

+ bB (ein^ot - e-ln,wot 
2i

* (a0/2) + (1/2) 2[a„ -iha)eiimtot +
n=l

+ (1/2) 2[an +ibn)e-in*wot ------(1.3.4)
n-1

Now, using expression (1.3.2)

To/2
a.n = (1/T0) / f(t) cos(mtw0t)dt = an/ n=l,2,-To/2

and



29

To/2
b-n = (1/T0) S f(t) sin(-nnw0t)dt,-To/2

To/2
= (-1/To) S f(t) sin (-n7iw0t) dt = -bn n *= 1,2,3 ...

“To/2

Thus a_n = an and b_n = -bn ------- (1.3.5)

This gives
00 — oo

1 an e‘ln*V “ E aD ein*V -------- (1.3.6)
n=l n=—1

and

Zib„ e"in*V =-Sib„ ein*V ----------(1.3.7)
n=-l n«-l

putting (1.3.6) & (1.3.7) in (1.3.4), we get
oo

f(t) = (a0/2) + (1/2) Z(an -ibn) ein*V +n-1

+ (1/2) 2(an -ibn) e 
n—1

iitfwot

= (a0/2) + Z(an -ibn) e
n=-°°

We can write it as

inxvot

f(t) = z An e1"*"* 

11=—°°

(1.3.8)

Wh©r@ An ciji ibn/ n*—0,il,i2,i3,i. . .

The equations (1.3.2), (1.3.3) & (1.3.5) together gives



30

TO/2
A„ = (1/To )/ f (t) e

-To/2
-in*w t ji.o dt / (1.3.9)

Example Determine the Fourier series of the periodic

So|B : Given waveform is symmetric in ordinate axis hence given 

function is an even function defined as 

f(t) - t+1/2, -1/2 < t < 0

- -t+1/2 , 0 < t < 1/2

1/2

An = / f(t) cos(nnw0t) dt,

1/2
- S f(t) cos(nxt)dt (since T0 = l/wD= 1)

-in

S° (t+1/2) (cosnxt) dt + fV2 (-t+1/2) cos (met) dt 
-1/2 0
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2 [1- cosroi/2]

r

A„

2 _2 n it

2 _2n n

-<

if n= 1,3,5,

if n= 2,4,6,

if n= 0
^ *4

Hence

f(t) = (2/n4) + 2 An cos(nirw0t)
n=-°°

f (t)
7t

cos(7tw0t) + 2 cos (3itw0t) +. .
9h2

Consider the periodic triangular function

f (t) - 2 + 4t , To < t < 0 ^
T0 T? 2

>
2__ - 4t ,0 < t < To
To T? 2

(1.3.10)

As above its Fourier Series is an infinite set of 

sinusoids. The same relationship can be obtained by using the 

Fourier Integral.

By convolution theorem the periodic triangular waveform 

(period To) is nothing but the convolution of the single 

triangle and infinite equidistant impulses given by
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g(t) = 2 8(t-nT0) ------- (1.3.11)
n—“

Therefore periodic waveform

h (t)= f(t) * g (t) ------- (1.3.12)

Finding F.T. on both sides and using convolution theorem,

H(w) - F(w). G(w)

«o

- F(w) (1/T0)2 8(w-n/To)
OO

- (1/To) 2 F(n/T0) 8(w-n/To) ------- (1.3.13)

(Because h(t) 8(t-te) = h(tQ) 8(t-t0))

Expression (1.3.13) shows that the F.T. of the periodic 

waveform is the infinite set of sinusoids with amplitude of 

F(n/T0) .

In the definition of A„ the limits of integration are from 

-To/2 To T0/2 and

f(t) - h (t), -T0/2 < t < T0/2 ------- (1.3.14)

Therefore, using f(t) in (1.3.9) we get

To/2
An - (1/To) I f (t)e"iw,o*t dt

-To/2
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- (1/T0) F(nw0) * (l/T0)F{n/T0) ------ (1.3.15)

Thus the coefficients obtained by Fourier integral and the 
Fourier series are identical for periodic function.

(1.4) Wkvttfoxm Sampling
Similar to the transform theory of continuous and impulse 

functions of time we can develop the same about the sampled 
waveforms.

It the function f(t) is continuous at t=T then a sample of 
f[t) at time equal to T is expressed as

FA(t) - f(t) 8(t-T) * f(T) 5(t-T) ------ (1.4.1)
The amplitude of the resultant waveform at t-T is equal to 

the function value at t - T, If f (t) is continuous at t => nT, 

n = o, ±1, ±2. . . then
DO

fA(t) - 2 f(nT) 8(t-nT) ------ (1.4.2)
D«b~w>

is termed the sampled waveform f(t)with sample interval T. 
Thus f*(t) is the infinite sequence of equidistant impulses and 
amplitude of each impulse is the function value at that point. 
Eq.(1.4.2) is the product of a continuous function f(t) and the 
sequence of impulses we can use the convolution theorem to find
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the F.T. of the sampled waveform. Thus F.T. of the sampled 
waveform is the periodic function where wave in one period is 
equal to the F.T. of the function f(t). It is illustrated 
below.

If T is very large in At, the equidistant impulses in Aw 
will be very close to each other. Because of the decreased 
spacing of the frequency impulses, their convolution with the 
frequency function F(w) results in overlapping waveform. This 
distortion of the desired F.T. of a sampled function is known 
as aliasing. This error can be removed by sampling the time
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function at a sufficiently high rate. Generally this 

overlapping occurs until the separation of impulses of A(w) is 

increased to 1/T = 2W*, where Wk is the highest frequency 

component of F.T. of the continuous function f(t). Thus to 

avoid the overlapping T=*l/2wk.

Furthermore, these samples can be combined to reconstruct 

identically the continuous waveform.

• Sampling theorem : -

It states that if the F.T. of a function f(t) is Zero for 

all frequencies greater than a certain frequency wc, then 

the continuos function f (t) can be uniquely represented 

using the sampled values,
•o

fA(t) = f (nT)Z 8(t-nT) 
n«-«>

Where T = l/2wc

Thus the necessary conditions are

i) The F.T. of f(t) should be band limited.

ii) The sample spacing ie T should be l/2wc ie impulse 

functions are required to be separated by 1/T *= 2We. 

If T< l/2wc, then aliasing will result and if T>1/2WQ,

the theorem holds.


