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CHAPTER - 11

ABSTRACT

In this second chapter study of p-valent functions, holomorphic
and meromorphic is taken into consideration. We generalise the research
work carried out by Kulkarni - Thakare [2 ] and Kulkarni -

Joshi [ 3 ]
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SECTION 1|

I) INTRODUCTION

In this section of chapter Il we study the properties of the family
of multivalent functions denoted by Sp («,£) in the unitdisc. The
family Sp («,£) satisfies the condition

zf!
"""""" - p
f
.- < 1,
zf" zf"!
[2€ (== = o) <( == - p)]
f f

with appropriate restriction on o & §.

Members of  Sp («,§) have been characterised, the holomorphic
functions with negative coefficient that are in Sp («,£) are also
characterised and several properties are obtained. We also determine
the span of the index parameter in the integrals of the form

f f(t)y - ®/n
( -------- ) G®)

where f € Sp(«,£), p is apolynomial of degree n whose

all the zeros lie outside or on the unit circle and p is a fixed non-
negative number.

In section II a sub family denoted by Dp («,£) - of the class

of holomorphic multivalent functions in the unit disc in the complex
plane satisfying the condition.

t'(z)- p

26 (I'(@)-a) - (F'(z)-p)
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with appropriate restriction on « & £ is introduced. A characterisation
in terms of integral representation of members of Dp («,£) 1s studied,
also sharp bounds on the sizes of | f |, | f'| and Re (f) where

f € Dp («,£) are obtained.

The characterisation have also been specialised to those members
of Dp («,&) which have negative coefficients. We conclude the section
IIT with the study of p-valent meromorphic functions and obtain the
results exactly on the same lines of Kulkarni - Joshi [3 ]. We claim
that all the results obtained in section - I, section - II, and section -1 are
entirely new and not found in the literature.
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I] A Characterisation and Elementary Properties

In this section we obtain elementary properties of the members of
Sp (a,E) We present a lemma that leads to a characterisation of members

of Sp(«a,k)

Lemma 2.1

Suppose that G(z) is holomorphic in U with G(0) =p Then G
satisfies the condition

p-G(2)
rre--e--— | < 1 in U
26(G(@)-a) - (G(2)-p)
if and only if
p-G(z)
reee—-[ =20 (2)

26(G(2)-a) - (G(2)-p)
with appropriate restrictionon a & &.
where 0 (z) is holomorphic in U with | 8(z) | <1

Proof Let us consider

p-G(2)

g(z) =
26(G(@)-a) -(G(@2)-p)

We observe that g(0)=0 and |g(z)| < |
By Schwarz's Lemma we can write down g(z) = z¢ (z) where ¢ (2)
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is holomorphic and | ¢ (z) | <| in U. This is equivalentto  g(z) = z6(=)
~+ with 8(z) holomorphicinUand |0 (z)|<! inU. From this we
get

p-G(2) [

: z 0 (2)
2E(G(2)-a) - (G2)-p)

p-G(z)72EG(2)z0(2)-20Ez0(z2) -G(2)z0(z) +pz6(2)
This yields that

p-20(z)(p-2af)

G(z) =
1 +z0(2) (2(-1)

Conversely we assume that G(z) having the above representation is
holomorphic in U. One easily sees that G(z) satisfies.

p-G(2) J
.- < ]
26 (G@)-a) -(G@)-p

and the proof is complete.
Let us have the following characterisation of members of Sp («,§ )

Lemma 2.2

Suppose that f€ Sp(a ,& ) with appropriate restriction on « & £

Then { has the following integral representation
p
f(z)=z exp [26(p-a) [log (1+xz(1-28)du(x)]
X
wherex =14 x:Ix|=1} and [ dp(x)=1
X
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Proof : From the definition of { € Sp(a ,& )

We have
zf! zf! zt'
....... -p= [28( - &) - (== -p)]
f f f
zf" zf!
= - xz [28( - - ) (e -p) ]
f f
where |x| =1, |z] =1
zf! zt'
....... =p-xz [ Q£ -1)+ (p-28a)]
f f
zf! zf!
....... + Xz [ == QE -1)] =p-xz(p-28a)
f f
zf"'

f I+ xz (28 - 1)
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f' p-xz(p-28«)

f [l + xz (2¢ - lIz

This can be further transcribed as

logf = plogz -2E(p-a) | dp (x)
x | +xz(2¢ -1)

This is equivalent to

p -28(p-a)
f(z)=z Exp | [ log(1+xz Q€ -1) )dp(x) ]
28 -1 X
Theorem 2.3

Suppose f is holomorphic in U with {{0)=0 Then fe€ Sp( «,§)
if and only if
z p-t0 () (p- 28a)
f@=Exp [ | ] dt
o [1+0O@®QRE-D]t

Proof : Let f belong to Sp(«,f) then zf'/f
satisfies the condition of kemma 2.1 and zt"'/ f has the representation
We have
zf! p-26(z) (p-2&a)
Gz)= - = :
f | + z0(z) (2¢- 1)z

p-t0(t) (p-2€a)
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_t0(t) (p -2¢
f=Exp [ P10 (p-2te) dt ]

0 [1 +10(1) (26- 1]t

Conversely

Let us suppose that f has the above integral representation.
Simple computation gives that

zf! has the representation
f

zf! p-10(t) (1-26a)

f [1 + tO(t) (2f- I}t

But then it leads to the conditions of lemma 2.1 which f must
satisfy and completes the proof.

We state the following distortion theorem:

Theorem 2.4 Let f bein Sp(a,) then for zin U
p- (p28a)|z] zf”! pt(p28a)|z|

: < Re { ----- <

1+QE-1)|z] f 1-QE-1)]z|

Proof As f belongs to Sp(«,£) we have from lemma 2.1

p-20(z)(p-28a)
G2) =

1 +20 (z) (2¢-1)
zf! p-z0(z)(p-28u)

f I +20 (z) (2¢-1)
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weuse - |z|< Re (z) < |z|

zt" p-z0(z)(p-28a)
Re( ...... ) - Re { ;
1 +20 (2) (2&-1)

p-(p-2&a)|z| zt pt(p-28a)|z|
< Re( )
1+( 28-1)|z] f 1-( 2E-1)|z]
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[ll] Functions with Negative coefficients

We specialise our consideration for those members of Sp («,£)
that have negative coefficients. The motivation to carry out such study
arises from investigation carried out by Kulkarni - Thakare[ 2 ]

Let T be the subclass of holomorphic function in U having the
power series representation

p n
f(zy=z - X |dn]z
n=p+l

For those holomorphic function which li¢ in both  Sp («,€) and T
we obtain several refined results.

Let S o (@.€) = Sp(@.En T

First we state a coefficient theorem that completely characterises the
members of Sp («,&)



(18)

Theorem 3.1
A function p n %
fz)=z- X |an|z isinS p(a,f)
n= p+l

if and only If

o0

Y (an|{(n-p)- (2€a-2nE-n-p)! <2E (p- @)
n=p+l]

*
Proof Suppose f(z) € S P (a,€). To prove the coefficient

inequalities
_"‘A o n
00
f(zy=z-) | dn| z

for |z|=1 we have
= |zf'- pf| - |28 (2f'- af) - (2f'-pf) |

o n oo o

'-Z |an| z (n-p) |-|26(p-a)- £ nl@n|+a Tian|
n=p+l n=p+]| - n=ptl

+Y (an| - Y  [an|p
n=p+1 n=p+1

1

o0

Y lan((n-p)+@n&-2Ec-n+p) -2E(p-a)< 0
n=p+l1
by hypothesis)
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. Thus by maximum modules theorem function f is in
S D («,£). For the converse we assume that the coefficient inequality is
satisfied to prove  f belongs to S*p(a, &)

zf' - pf

28 (zf' - af) - (zf ' - pf)

oo n

- 2. lan|z (n-p)
n=p+1

o0 n

28z(p-a) +) |an| z (n-p+2&a-2nk)
n=p+1

since | Re(z)| < |z| forall zwehave

n

-y lan| z (n-p) |
Re N Y

oo n

28z(p-a) + Y |an| z (n-p+2Ea- 2nE)
n=p+1

We select the values of zon the real axis so that f'(z) is real.
Simplification of the denominator in the above expression and
letting .

z — 1  through real values we obtain
o0

Y lan| {(n-p)+<p-n-2§a+2n@ )} < 2E (p- @)

n=p+1

and it results in the required condition.
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The Result is sharp for the function

p [ 2E(p-a) ] n
f(z) =z - - z
l~(n-p) + (p-n-2&n+28a)

The following two results show that the family S*p(a,&) is closed under taking
arithmetic mean and convex linear combination.

Theorem 3.2
p n
If f(zy=z-)Y Jan| z and
n=p+|
p *® n
g(z) =z -Y lbnl z arein S*p(a.£)
n=p-!
then
p 0 n
hz) =z - ' Z lan+bn} z € S*p(a,f)
n=p+I|
Proof As f and g both being members of S*p(w,£) we have in
accordance with theorem 3.1
o0
> [ (np) - (n-p+ 28a-2n€)] |An| <2& (p-a) -===--mu- (A)
n=p+I|
and
(o0}
Y [ (np) - (n-p+ 28a-2nE) | |bn <2€ (p-a) ---e-ee- (B)
n=p+I

To show that h is a member of S*p( «, £) it is enough to show that
oo

Y2 X[ (n-p) - (n-p+ 2Ea-2né) ] lantbn| < 2& (p-a)
n=p+1

This is exactly an immediate consequence of  (A) and (B)
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Theorem 3.3

Let 28 (p-a) 'n
fn (z) :L- ~~~~~ --] z
n-p) + (p-n-2&a-2ng)

for n=23,............ then fe S*p(a,&) if and only if it can be expressed in
the form
p o0
f(z)=z - X An fa(2)
n=p+l1
[o.0]
where An> 0 (n=123......... Y and ¥ An=l
n=
Proof Let us suppose that t
p o0
flz)=2z- X Anfn(2)
n=p+1
p 28 (p-o) n
=Z = Y e AN Z

Now

o I (n-p)+(p-n-28at 2nk) 28 (p-a)

> An }5 1
n=p+1I 28 (p-a) (n-p) + (p-n- 2§ a+ 2nk)

so that by theorem 3.1 f € S*p ( «,&)
Conversely suppose that f € S*p ( «,€) theretore by theorem 3.1 we have

28 (p-a)
|an| < ———- (n=23,....... )
(n-p)-(n-p+2a&-2nk)

(n-p)+(2n€ - 2a&-n+p)
let An= e —————— an .
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Then we have

o0 o0
n=~z':p+l An< 1 -An>,o0 Xl = 1- n§p+1 An
We have

p oQ
flmy=z- X An fn (z)
n=prl

and the proof is complete

(S. R. Kulkarmi Ph. D. Thesis, 1981, Shivaji University,
Kolhapur (Unpublished) ]

(forollarv -1

- e o™

Let f beinS(a,B,). Then we have

-8 (1-28a ) 1+8 (1-28a )
< Re(zf'/f) <
+B (28-1) I-p(2€-1)

Let us also list the following known pariticular cases of Theorem 2.3 that
give distortion properties for various sub families of S.

Corollary - 2 :

i
Ifz= re, z=Re, where 0<r<1 and R > 1, then

-1 z |
S A * C T — [ p—— X
R-1 z-zl R+1

We shall also recall in brief some partinent concepts that would be needed.
The family K(6),(0 <6 < 1), consists of those univalent holomorphic functions
fin E, which are convex of order &, 1.e. Re {1 +zf"/f'} > 6. Clearly

K (0) = K. the usual class of convex functions. A holomorphic function f € S is
said to be close-to-convex of order 6,(0< 8 <1 )if [Arg zf/f|< 670 /2 for

all z €e Eandsome nFeS* with n| =1 Wethenwrite f € C(d). For

0 = 1, one obtains the usual class C ot close-to-convex functions. Patil and
Thakare [ & ] have given the following charactenization of close-to-convex functions
of order & -wlich i1s a generalisation of similar characterization obtained by Kaplan
[6] for close-to-conv ex functions.
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1V] SPAN OF THE INDEX PARAMETER

Here we are concerned with the integrals of the form

z fity & p/n

Hz)= [ () (p(t)) dt
0 t

with appropriate restrication on o && where feSp( O ,§),

p is a fixed non negative number, p €p R > 1. Our interest lies in the
determination of the span of index & so that the integral given by above is either
convex or close-to-convex in the unit disc U for p =0 and p=£=1 we get the

results for the starlike functions of order &

Theorem 4.1
Let p € p (n,R), p afixed non-negative number R > land f € Sp(a,§)

then the integral H given by
z f@) d  pimn
Hiz) =) (- ) (p(t)) dtisinK ()
0
(0L A<p)with |z|<]| for

(1-24)(1+(1-28))

a S d S e + a
2+2E ((1+a)
where
-p (I+(1-28))
a =
“2+2E( a+1) (R-1)
Proof By routine calculations we get
zH" (2) zt" n z
[+ emmmmmmmeeee = (1-d)+d&( - ) rpm I e
H' (z) f k=1 zzk

By using distortion property and some corollary (1) of theorem 2.3 of
Sp (a,&)
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H'(z) I+ (1-28) R-1
zH" (2) p-(28a-p) p
Re (14 -oemeemes ) 2 (1-d)+ {6’( ][ }}
H'(z) I+ (1-2€) R-1

Now H(z) € K (1), convex function of order A therefore by definition of
convex function

zH "(z)
2T (S —— ' >4 0<A<p
H'(z)
(1-A) (1+(1-28))
ie. a<d< +a
2+ 2E (l+a) ’
where

-p (1+(1-28))

2 +28 (a~1) (R-1)

We need the following results due to Kulkari [ 3 ] for our further study
state the corollaries.

Theorem 4.2

Suppose that fe Sp(a,E) , pe ® (n,R) and p is any fixed non-negative
numbers R>1 then H €€(A) in U (0 < A < p) where H (z) 1s given by

z f(t) d ph
H(z) =] (- ) (p()) dtisinK(X) for
0

p( 1+ (1-28) A (1+(1-28)  (2+4) (1%(1-28) p( 1+ (1-28)

- - <d <--- -

(242E@+2E)  2-2FEa+2E  A(-1+E(l+c) (R-1)(-2+2E a+2E)
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Proof ; By usual computation we get
zH" zf’ n z
Re [ I+ —=mee- ] = (1-3)+d Re[----]+ p/n )} Re (---—--- )
H' f k=1 z-zk

where 6 >0  we have in view of corollary | of page 41 (S.R.K.) and corollary
on page 51 which have been stated further the following

02 zH" { p-(p-28a) P
[ Re (14 ——-——- o> { (1-8 )+ - } (62 - 61)
01 H' 1+(1-28) R-1
p-(p-28 @) p
[(1-6)+6 { ----------- } ------- )} (82 -61)> A
+(1-2€) R-1

02 zH "(z)
-AT< [ Ref l4-cmmemes 'V d< A +2m
0l H'(z)

continuing the theorem we get

02 zH" (2) 62 p-(p-28a) p
[ Re [+ —ecmeeeen 1d 6 >, [ (1-8)+6 { - } dO
o1 H'(z) 01 1+(1-28) R-1
02 zH " (z)
[ Re [ I+ -meeeeemee ] d6> - AT
01 H'(z)
for
(2+4) (1+(1-28) p (1+(1-28)
0< 0 < mmmmmmm e ¢ e
4(-1+¢ (1+a) ) (R-1) (-2+28a+28)

we have the night hand side of the above mequality never less than - AT
for
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(2+A) (1+(1-28) p(1+(1-28)
§ < .
4 (-1+€(1+a)) (R-1) (-2 +2E a+2E)

On the other hand for <0 we have on account of corollary 1 of page 41
Kulkarni S.R. [ 2 ] and corollary of page 51

02 zH"
[Re{ I+ ) d6<[(l-6)+6{
a1 H

p-(p-28a) P
}- )1(62-61)
|+ (1-2€) R-1

The right hand side of the above nequality i1s always less than 2T + 2T

for
P (1+(1-28) - A(+(1-28)
- < 6<0
(-2+28 a+28) (R+1) (-2+28 a+28)
Theorem 4.3

Let M(z) and N(z) be the polynomials belonging to® (m,R1; and
Pm,R2) withm>1 n>0andR1, R2> 1, p isa fixed non-negative number and
Let f e Sp( «,&) with usual restrinction on «,£ and then the integral G(z)
given by

.‘..p

f(t) m (t)
G(z) = JZ ( ) (- ) dtisinK(x)
0 t n (t)
0<A<p when |z|<1 for
- p (1+(1-28) M N (1-A)(1+(1-28)
el R I
2 +2Ea+2E)  RI-1 R2+1 2+2E o +2E
-p (1+(1-2€) M N
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We have
z f(t) o M(t) p
G@)=/I 1 ] dt
0 t N(t)
zG"(z) zZf'(z) M '(z) zN'(z)
-------- =0 [ -l ] +p[ - - e ]
G'(2) f(z) M(z) N(z)
o zf' (z) m z mtn z
= (1- Q) + —=--emmmmmmmeeem +p X e -p X -
f(z) I z-zk m+l z-zk
Now by distortion property of Sp (a,£)
zG "(z) p- (p-2Z 0y ] p M p N
R > (1-8) + 6{ ------- - -
G'(z) [+(1-28) J R1-1 R2+1
Now if G(z)e K(A) then by definition of convex function
zG"(2)
Re { I+ -—emeee- V> A
G'(2)
for
( 1-4) (1+(1-2¢) (1(1-28) M N
6 < - P ) [ +
2+2Ea+2E -2 +2Ea+2E) R1-1 R2+1
(1+(1-28) M N
where a= - p { ~-memecmmmomemeees { -------- ST
2 +2Eq-2E) Ri-1  R2-1

|
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(1-2) (1+(1-28)
2428 a+2E
Theorem 4.4
Suppose fe Sp( «,E) M(z) and N(z) polynomials belonging to o(m, R1)

and p(n, R2) with M>,1, N>0 and RIl, R2>1 p isafixed non-negative
number and let fe Sp( «,€) with usual restriction on a,€ then the integral

z  ft) <6 M@O p
G(z)=[ [--memememr ] — ] dtisin €(A)

0<A<P,when|z<1 for

- p(1+(1-28)) [ M N ] A(I(1-28))
L — - - <8<
2+2E o +2E R1-1 R2+1 4(-1+E(a+l)
M N
(2+2) (1+(1-28) ) pl-——- - 1 (1+(1-28))
R1-1 R2—1
4(-1+E(a+1) 2+2E o +2€
Proof We have
d p
z f{t) M(t)
G@=] [~] [===] d
0 t N(t)
zG"(2) zt '(z) m z n z
I s J=(1-8)+8 e D M

G'(z) f{z) k=1 z-zk  k=m+] z-zk
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Now By distortion property of Sp («.£) We have

02 2G "(z) p-(p-26a) pM  pN
[ R —— vd 0 >{ (I- 8)+6 f----mn- J— ! (02-01)
0l G '(2) I=(26-1)  RI-1 R2+I

By Kaplans theorem if G(z) e €(A) Then

62 zG " (2)
[ Re { 1+ --cceeemm- 1dO > -An
0l G'(2)
for
M N
P + ]

(2+A) (1+(1-28) RI-1 R2-1
8 < - - (1+(1-28))

A-1+E(1+a) ) 2-2Za+2E
and
- p (1+(1-28)) M N -A(1+(1-28))

[ oo oo ] - <d

242E a+2E RI-l  R2+1  4(-1+E(1+a)
In the definition of Sp( «,f) we replace

zf! zf"

----- by (1+-—-)

f ' f'

with the same restriction on « and £ We note that this new class denoted by
Kp(a,f)is arelated to the class  Sp( «,£)  in the same manner as the class
of convex univalent function to the class of starlike functions.

A Taking into consideration the relationship between starlike and convex

functions we write that € Kp ( «,€) it

28(p- atzf" ) - zt"

£ t




4

z € U we are interested in determining the span of the index parameter
0 so that the following integral is p-valent or 1s i some subclass of S

z d p/n
G2 =] [f'®] [p®] dt
0

Now we state only the results

Theorem 5.1’
Let Pe® (n,R), p afixed non-negative number R> 1 and f € Kp( «.£) then
the integral G given by

z 0 p/n
G@)=] (f'()) (p()) dt
)

M (t)
Replacing p(t) by ( ------ ) isin Kp(A)
N(t)
0<A<p with |z|<]) for

(I-4) (1+(28-1))

a<d < +a
28(1-a)
with
- p(1+(28-1))
a =
(R-1) 2€(1-a) )
Theorem 5.2

Suppose that f e K p (a,€ ), pep (0. R) anc p is any fixed non-
negative number R>1 then G detined by
z d pn
G(z) = [ (£'@)) (p(t)) dt replacing p(t) by ( M/(1) / N(t))
0
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is C(A) 0<A<p for

p(1+(2E-1) A(1+(26-1) (A-2) (1+28-1)  p (17(2§-1)
- o JE— - -
(R+1) 2¢(1-a)  4&(1-a) 4E(1-a) 28(1-a)R-1)
Theorem 5.3'

Let M(z) and N(z) be the polynomuals belonging to p (m,R1) and
e (n,R2) with n>0 andR1, R2 >1 andletf€ Kp(a,E) thenthe

integral
z @& p/n
G@)=[ (') (p(t)) dt
0

Replacing p(t) by  M(t)
(~-=----- Jisin K(A), ~>p

N(t)
when| z | < | for
-p(1+(2¢&-1) M N (1-2) (1+Q2E-1)
[ + ] <6< -
28(1-a) RI-1  R2+1 2E(1-a)
-p (1+(2&-1) M N
( + )
28(1-a) RI-1 R2+1

Theorem 5.4'

Suppose fe Kp (a,), M(z) and Niz) polynomials belonging to
(m,R1) and p (n,R2) with m =1, n=t and R1, R2 > 1 Then the integral
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z o p/n
G@=[{"®) (p®)) dt
0

M(t)
Replacing p(t) by (-------- y isin C(A), A<
N(t)
for
A(+QE-1) Mo Ny e
RI1-1 R2+I
- P <06 <
4E(1-a) 2E(1-a)
M N
2+A)(1+2¢&-1) ( + )
_ Ri-1  R2+]
-p o [1-Q€-1) ]
4¢(1-a) 2¢(1-a)

SECTION - 11
I INTRODUCTION

A new subclass of p-valent function m the unit disc has been introduced
in this section. The motivation starts from the desire to generalise the class
studied by Kulkarni - Thakare. The family that we intend to introduce is deeply
connected with the family Sp («,£) as in section I. We denote this new class
by Dp («,€) This class can be

Al
obtained by replacing ---- by f"

f
Dp («,8) is asubfamily of p-valent functions f that are holomorphic in the
unit disc U and satisfy the condition

with appropriate restriction on o, 5.
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In this section we obtain characterisation of members of Dp («.§)
in terms of integral representation. We also derive sharp distortion theorems on
the sizesof | f |,|f'] and Re(f) where fe Dp (a,€) Finally we specialise
our consideration to those holomorphic functions which are in Dp («,£) and
whose series expansion have negative coefficients. All our results are shown to

be sharp.

II] Characterisation and Related Properties
of Dp (a,8)

We derive a lemma that gives us a representation formula for functions
in Dp (a,£)

Lemma 2.1
Suppose that G(z) is holomorphic in U G(0)=1

with appropriate restrictions on o & &

p-G(z)
- <]
28 (G(2) -a) - (G(2) -p)
for zin U then
p-z0(z) [p+2£a] p-1
G(z) = v4

1+ z0(z) (1-2&)

where 0(z) 1s holomorphic and |68(z) | < |
for z nU

Proof consider

p-G(2)
8(2) = -
2€ (G(z) -a) - (G(2) - p)

We observe that g(0) =0 and | g(z) ;<] Therefore by applyvirz
Schwarz lemima we have g(z)=zd¢ (z) where ¢ (z) is holomorphic ard
| ¢ (z)| <1 nU. This is equivalent to g(z) =z 0 (z) with 8(z) holomorph.
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“and |0(z) | <1 nU

p-G(z)

28 (G(2) -a) - (G(2) - p)
is given by
p-z8(z) (p-20&)  p-|

G = -z
I+z 0(z) (2€-1)

Conversely we assume that G(z) having the above representation

p-z0(z) (p-28a) p-1
G(z) = =m-mmmmmmmemmee e v4
1+z 8(z) (2¢-1)

is holomorphic in U It is quite clear that

p-G(2)
—] < ]

G(z) satisfies -
28 (G(2) -0)- (G(2) - p)

and completes the proof. This formula hence formulatesgthe characterisation of
members of Dp(a,£).

Theorem 2.2
Let f be holomorphic in U with £(0)=0. Then fe Dp(a,£).if and only if.
z p- t O(t) (p-2& ) p-1

f@=][- —  ]dt
0 I+ (1-2E)  6(1)

where 0(z) is holomorphic and satisties | 0(z) | <| in U and with appropriate
restriction on o € |
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Proof Let fe Dp(a,8) then ' satisfies the condition of lemma
2.1 Hence f' must have a representation of the type

f' p-z0(z) (p-2€a)

p-1 1+ 2z 0(z) (2E-1)

z

integrating we get

z p-tO(t)p-28a)  p-l
f=] [ t ] dt
o 1+t6(t) (2E-1)

conversely
Let f be given by
z  p-tO(t)(p-26a)  p-l

fzy=f [ t ] dt
0 I+t O(t) (2E-1)

Then simple computation yields that f' has the representation.

| p - 28(z)(p-2€ a) p-1
G(z) = yA
I+ z0(z) 2€-1)

Thus as a consequences of lemma 2.1 ' equivalently satisties the
condition

p- G(z)

28(G(2) -a) - (G(z)-p)

We shall explicitly apply the contents of the above lemima to obtain sharp
Distortion theorem on the sizes of ||, |f'| and Re (f')where f isin

Dp( «,&)
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Theorem 2.3

If feDp( «,&) then for |z|=r, 0<r<!l wehave

pt (p-2€a)r p-1
(D [f'@)| £ mmmmmmmmmmrmmmeeee s r
I- (2E-1) r
i) pr(p-2ag) p-l ptr(p-2§a) p-l
r <Re(f)< r
I+r (2E-1) l-r (2E-1)
2] 1 0 Izl p+t(p-26a)  p-l
(111) |f(z)|5f;f'(te ) | dt < | t dt
0 0 I-t(2€-1)
-p
p  (28-1) 28 (p-a)
=|z| - log ( 1-]2] (2¢-1))
(28-1)
2| z| p-t(p-28a) p-1
(IV) [fiz) |= | Re(f' (1) )dt > | =-mmmmmmmemmmommeee t dt
0 o I+t (2¢&-1)
p
p (28-1) (28&(p-«a) )
=|z] - log ( 1+ |z] (28-1))
(2¢-1)
Proof (D)) Bylemma 2.3 wehave |0(2)|<1
we have
p-28(z) (p- 2§ @) p-1
f'= y4
1428 (2) 2€-1)
p-z0(z)(p-2€ o) p-1
[£(2) | = | —mmemmmm oo z

-z O(z)(2€-1)
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for { 6 (z)|<1 we get
p
p-lz|(p-28 @) |z:

I+|z]|(2E-1) |z |
also for|z| =r we get

p-(p-28 a)r r

[+ (2€-1) v

R0 I I S — r
I+r(2€-1)
) p-r (p2¢ a) p-1 ptr(p-2§ a)
. r < Ref' <
I+r (2E-1) -1 (28 -1)

Proof

By lemma 2.1 we know that f lies in a disc whose centre is

2 2
ptr (2p€-p-4& a)
2 2
I-(QE-1) r

and has radius equal to

28r (a(l+r) -p

2 2
I- 2E-1) r

The real axis intersects the disc having end points
p-(p-260) 1 p-l pHr(p-28a)  p-l

e gy
A
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This makes possible for us to write down

p-r(pH2€a) Pl Refs prr(p-26a)  p-l
I+r (1-28) 1-r(1-2€)

(III) We obtain this result from (1) by integrating

|| i0 Izl  ptt(p-2§a) p-1
fz)| <] | f'te )dt < | —t dt
0 0 -t (2E-1)

Proof Using (1) and integrating we obtain

iz 10 Izl  prt(p-2€a)  p-i
[f(z)| <] f'(te )dt < t dt
o) 0 -t (2€-1)

z| prt(p-2§a) p-I lz| p+t(p-28a)
t dt = | dt
o 1-t(2&-1) 0 I-p
(1t (QE-1)t

We get

-p
prip-28e) _ p (261 Q&(p-a))
I-p 1-t (2E-1)

1-
-tQE-D)t P
integrating

-p
| prt(p-2€a) zl (2€-1) € (p-a))
- dt + dt

I-p o |- 0 -t (2€-1)
1-t (2E-1)t t

O—N

-p
Izl ptt(p-28a) p (28-1) (2&(p-a))
| dt < |z] - -m-meemeemmmeeeenee log (1-z.(26-1))
0 I-p
-t QE-1I) (2€-1)




(43)

(1V) Using (11) and integrating we obtain

Il Izl p-t(p-28a)
[f(z)|> [ Re(f'(t))dt>] dt
o] 0 I-p
[ +(2€-1 )t
, P
lzZl  p-t(p-28a) p (28-1) (2¢(p-a) )
o dt =z - log (1+]z](2E-1)
0 1-p 2E-1
I+t (2E-1) t
|| Izl p- t(p-28a)
~f(@)>] Re(f'(t)) dt> | -- dt
o] 0 l-p
I+t(2E-1) +

P
P (28-1) (2&(p-a))
=|z]| - log (I+{z[(2¢-1))
(2€-1)
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III) Functions with Negative coefficient
We carry out the investigation that are very similar to our consideration of
section - [.  We recall the definition of T mentioned theremn. The family

P*p ( a,)=T n Dp ( «,f) gives us the beautiful results not found m the
literature. We begin with a characterisation of members of P*p ( «,£)

Theorem 3.1

A holomorphic function

p o n
f(z)=2z - Y |an| z isin P*p(«,£) ifand only if
n=p+lI
Y njan|2& <2& (p- «) this result is sharp.
n=p+1
Proof
Let |z]=1 then
p-1 p-1 p-1
|f'-pz | -[28(f'-az )-(f'-pz )|
oo n-1 = )
=!-Y n|lanlz | - |28 (p-). nlan]| - a)+Y njan|
n=p+1 n=p+l| n=p+I
< Y nfan| (142€-1) - Q2€p+2E )
n=p+1

< 0 by hypothesis

Thus by maximum modules theorem we have fe P*p(a€). Forthe
converse let us assume that
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oo -1

l 1-12;& | njan| 7 ’

< |

p-1 R o :
l2§z (p-o) anHnlan, z (2E-1)

for Jzj<| since |Re(z)l <|z| forall z we have
0 n-1
Y njan| z
n=p+1
Re { } <1
p-1 oo n-1

26 z (p-a)-X njan| z  (2&-1)
N=p+|

for |z|<| we choose the values of z on the real axis so that t'(z) is real
simplifying denominater in the above expression and letting z ~ 1
through real values we obtain

2 njan| <2&(p-a) - X njan] (2&-1)
n=p-1 n=p+I|

and we get the required condition. We obtain boundson || and |f'] in the
following theorem

Theorem 3.2
If feP*p(a,E)thenforjzf=r (0 <r<1) wehave
p 2 p-« p 2 p-o

() r-r (meeem) S (E(Z)] S0+ 0

() 1-r (p-o) < [f'(2) 1 < 141 (p-a)

Proof From theorem 3 | we have
> 2: (p-a)
D I V) T R



(4%)

‘equivalently X [an|] £ ---eeee-

p 2 (po)
Hence | f(z)| < r + 1 ( - )

similarly

p 2
fiz)) >r1 -1 (- )

9
7
R

(11) we have

* 28 (p-a)
) U N | —
n=p-1 2¢
00 p-o
Y lan| € ---eeee-
n=p+l n
p n
Now f{z)= z- Y | an|z
n=p+1
p-1 = n-1
f'(z)= pz- Y nlan|z
n=p~|
p-1 n-1

f'(z)|=}pz - ) n;an| z
H:p*rl
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Also ‘ n-1 o
f'(z)|> 1 -r X njan]
n=p+I|

-1 (pra) < [f'@D)] <1 + 1 (p-a)

Our next concern lies with the problem of determining the radius of
convexity for the members of P*p( a,£).

Theorem 3.3
If fe P*p(a,f) thenf isconvex inthedisc jz{<r=r(c,§)
where "
I I/n-p
£ () = Inf[ —eee ]
n n(p-a) n=23_..........

p p-o n
fiz) =z - [ --=--ommmm- ]z
n
Proof It is enough to show that | zf"/f'| < | for z| <1
first we note that
o n-p
{p(p-1)-Y n(n-1) janiz }

n=p+|
|2t | < e
oo n-p
p-) lan|n z 4
n=p-l

——



p-p-Y njan z + Y njanjz | <

49)

The conclusion follows provided that

x n-p

p- Y njanjz
n=p+l n=p+1 n=pl

w 2 n-p n-p

This reduces after simplification to

o 2 np 2
Y n |an|z < p
n=p+1

By theorem 3.1 we have

e 0]

Y njan|2¢ < 2 (p-a)
n=p+1

Hence f is convex if

2 np 2né
n|z| < -- - n=23,... ...
28 (p-a)

This complete the proof.

We explicitly show that the family P*p («,€) 1is closed under the

formation of Arithmetic means.
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Theorem 3.4

p n
If f(zy=z- Y lan!z und
n=p+l
p o n
gz)=z- Y |bn|z arein P*p (a,8)
n=p+1|

p % n

Then h(z) = z-172 Y |antbn| z
n=p+l|

isalsoin P*p(a,£)

Proof

Since f and g are in P*p(«,&  we have

Y, njan|2f <2¢ (p-a)

n=p+1

and ¥ njbn 2 <2¢ (p-a)
n=p+1

for h to be a member of P*p (a,f) itis enough to show that

1 oo
— Y {n2E Jantbn] } < 28 (-a)
2 n=p+l

which follows immediately by the use ¢: anove two inequalities therefore

p an+bn n
h(Z) == Z"Z ----------------- Z

n=p-+| 2
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isalsoin  P*p(a,&)

Finally we show that the convex hnear combination of members of
P*p(a,£) is again a member of P*pia_£)We show that the family P*p(a,£) is
closed under the formation of convex linear combination.

Theorem 3.5

Let l-a n
Then fe P*p(a,£) if and only if it can be expressed in the torm
f(zy=z - Y An tn(z)
n=p+1
where An>0 (n=1,2, ... . )

o0

and Y A n=|
n=p+I|

Proof

Let us suppose that

p o
f(z) =z - Y Anthz)
n=p-1
p « l-o n
=z-) ((==meeeee- ) ANz
n=p+1 n
© n [ -
Then Yy cecooeeeeee | — Vo

n=p+1| -c n
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and by theorem 3.1 f € P*p («,&)

Conversely we suppose that f € P*pia.£)

p-o
By theorem - 3.1 we have |an| < -------
n
n
setting An= -----m---- fan| n=23, ..
p-a
then wehave Y in < | An>0
' n=p+I
p-l e
~Al=pz - Y An so that
n=ptl
p =
we have f(z) =z - } An t(z)
n=p+|

and the proof is complete.

n=23...
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SECTION - 111

In this last section we introduce a class 8p*(a,p,£) = 6p (a,B,ENT of
meromorphic p-valent functions of the type

, 1 00 n
f(z)=-—---- -Y |ani z in punctured disc
p n=p
vA

Ut ={z: 0<|z <i}

and investigate same mapping properties of F(z) when F(z) is in

6p*(«,B,8)

Il ¢
where F(z) =c¢ ({ u f (uz)du ¢ >1

we also consider the converse probleni.

INTRODUCTION |
o n
Let 8p denote the class of functions f{z) = ------ - Y jan| z
P n=p
Z

*
which are meromorphic and p-valent inthe U={z:0<|z|<|}. We have
introduced a subclass 8p («,p.£) ¢t 6p that satisties the following
condition

zf' (2)
___________ + p
f(z)
: < B,
zf ' (z) zt' (z)
2E (rmeree +a) - (e p)
tz) 1(z)

0< B < p with appropriate restricton on o and §
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We have specialised our consideratiors for those members of 6p («,p,£) that
have negative coefficients.

Let T be the subclass of Bp of meromorphic function in U* that have
the power series representation of the form

1l o n
flz)=---—- -Y & z

p n=p

z

We have investigated some results for those meromorphic functions which are
in both family 6p («,$,) and T Ler 6*p(a,B.8) =6p(a,B.6)NT.

The motivation to carry out such study anises from Kulkami - Joshiﬁﬂnpanicular
we have studied mapping property of F(z) when f(z)1s i 6*p («,pB,€)

where

I ¢
F(z)= ¢ | u f(uz) du c> 1
0
Theorem (1)

| S n

A function f(z) =----- -} anj| zismm 6Bp*(«,B.£)
P n=p

z

ifand only if } [n+p+P 2€n+2Ec-n-p)] <2PE&(p-a)

[1=p
Proof Let us
Y [n+prB in+26a-n-p)  jan] <2BE(p-a)
n=p

since |zt +prj-B 25zt -of' Y- (2t wpt)] <0

oo n -D oo n o«

n
Y (Fp)lanfz | -p{-2€(p-c z-[ (n+a)janjz+ Y (n+p)anjz 1F 0
n=p n=p n=p
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for|z|=0<r<1 above expressionis bounded above by

R n x I
Y (ntp)lanjr -2BE(p-a) +p Y (2ie~2n&-n-1)[an|r
n=p n=p

=Y [ n+p+B(2£oc+2nEn—l)] [anj -2p&p-¢) <0
n=p

therefore f (z) € 6* («,B,€).
Now we prove the result conversely

Let zt"
...... + p
¢
e ——————— -—- - < p
vil zt
28 (- o) - ((mmeees tp)
f ¥
o 1
Y (ntp)lan|z
p=1
o0 n
28 (p-a)- Y (28a + 2t -n-p)ian|z
n=p

As [Re(z)] < izl forall zwe have

o0 n
Y (n-p) fan] z
n=p

[

2£(p—a)-§:(2,:a+2n£)~n-p) danj z
n=p
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choose values of z on real axis such mat = ----=----- is real and

f(z)
clearing denominator of above expression and letting z - 1 through real values
we get

Y (o+p) +P(2&a +2n€ -n-p)jan < 2PE(p-a)
=P
Theorem 2
| 00 n
Let f(z)=------- - Y jan| z be in 8p* (o,B,€)
Y n=p
z
1
Then f(z)= ------ [(cil)ytiz*z20(2)] ¢>0
c
] o c+n~l n
N I Ja| -
p n= c

Belongs to 6* (5.B.£)

forO<izl<r=r(a,B.£.0)

where .
c2BE(p-0) [17—p~PREa+2nE-n-1) ] 1/n+p
r(a,B,£,0) = Inf [-------- - e ]
n 2B&(p-o) [n~1-P2ES+2nE-n-p)] (c+ntl)
n=1.23

The result is sharp tor the tar.uons



] 2B%(p-¢) n
fi(z) =  ----- - e
zp [n+p+PBEa—2ui-n-p)]
Proof It is sufficient to prove :hat
zf' + fp
— < |
B(2E(zf*+dp) - (zf *+ip)
o0 c+n+l n-p
Y (ntp) -----mmmeee an z
n= c
ctntl n-p
BQE(p-5) - Z (2£8+2nE-n-p) —-—----- janj z
n=p ¢
o ¢ntl n-p
Y (ntp) ---m--mmee- an |z
n=p C
< ————— et 1 o e e e 0 0
3 n-p  cntl
2BEp-8)- Y 226-2nnp fa| [ e
n=p ¢
Last expression is bounded above by one if
o0 n+p+P(2£6+2n&-n-p) cn+l
)} an| ||
n=p 2BE(p-9) ¢
By theorem (1) we have
o n+p+tP( 28 a+2né-n-py
S — lan| < |
n=p 2Bp&p-a)

Hence (1) will be sausnied ir

(1)
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[n+p+P(2E5+2nE-n-p)] (¢tn=1) n-p  [ntprP(2Ea+2n§-n-p)]

----------------- [z2]  <-eemeeee

2B E(p-6)c 2B&(p-a)

solving for |z] we get

c 2P &(p-8) [ n+p+B(2Ea—2n§-n-p) | I/n-p
lzl <[ 1
2BE(p-a) [ n+p+P(2E6+215-n-p) ] (ctn+l)

writting |z =r (a,p,£,8) the desirad result follows we note the following
known case.

Theorem (3)
1 o n
If f(z) = -----n-- -Vian z Lelongs o 6%p(a,B.6), ¢ >0
p nsp
v4
1 ¢ 1 x ¢ n
Then f(z)=c f ufz)du = ——-— -y oo |an| z
p n=p c-n+l
z
belongs to
pl1+p-2pEa+2BE-P+2PE-P |- 2 2 2
[actacpt2BEac-Pea-Icpa +7(56atp+9 Pp c+2PpEpa-p P]
S* ]

[c+] +pt+ 2B Ec-PBer2pEa+Ppr2BE-B] + [pop + 2B€aC~BDC+2ﬁEa -Bp+Ppc2€-Pcut)

m 0 <|z|<1. The result is sharp for

z {n+p+{5i2£a+2n§~n~p)]
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Proof

Since we have f(z) € 6*p ( «,B,% )

Y [ n+p+ P(2&a+2nf-n-p)] an, <2PE(p-a)
n=p

Now we make use of theorem | with « replaced by 6 we shall find out the largest value
of 6 for which

o c(n+p+ P(2E6+2nE -n-p)
) tan < |
=p 2BE(p-6)(ctn-1)

n

It is sufficient to find the range of values of 3 Tor which

c(n+p+ P(2E6+ 2nE -n-p) (n-p+P(2€a +2n€ -n-p)

———————————— % . " - Y " P S L 1 S D S

2BE(p-6) (c—n+l) 2BE(p-a)

foreach n solving this we obtain

112p +op [1+p-20&a - 2BE-P-2nEP-Pn ]+ | acn +gcp+(302n£oc 5
-Peng-Bepat 2pEacp +p - Ppc+ 28afp-p B

6 <
n” +n [c+1+p=2P Ec-Be-2p Ec-ph2BE-B] + [pc +p+2P Eac-Ppc
2B Ea-Bp +Ppc2E-Pc2Ea]

for each fixed ( o, B, € ) and c let
n2p +np [Iwp-2 2o - 2p5-3-2uZP-Pn |+ | acn -f-gccp+[57c2n£a
Pens-Bepat 2Eacp v p - Ppcy 26aPp-p B

2
n+n[cri-p2B Le-Pe-2p La-Pp—-2PE-B] + [pe tpt2PEac-Ppe
+2Bt-Pp +Pp2E-Pe2fal
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Then

@n+1)p+p[2PE-PB] +[ac +2pEac-fea]l
f(n+1)-f(n) = 5 -- ?0
(n+1) " +(n+1) [c+1+p+2PEc-Pet2PEa-Pp+2PE-B] + [pc +pr2P Eac-Ppe
+20€a-fp +Ppc2€-Pe2fal

Hence f (n) is an mcreasing function of n since

pI+p-2P8a +2BE-2p+2PE |+ [ wc tacpr2Plag )
-Bea-Pepat 2pEacp +pT - Ppc+28aPp-pB]
f(1) =
[c+1+p+2BEc-PBet2PEa-Pp-2PE-B] + [pe +p+2BEac-Ppc
+2BEa-Pp +Bpc2€-Pe2la]

The result follows
The result is sharp for

l 2E(p-a )
f(z) = ------ - ————

z? [n+p~B(28a+ 2nf - n - p)]




