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/. INTRODUCTION:

The general idealization of space-time demands that it will be filled 

with relativistic perfect fluid described by well known stress-energy 

tensor ( Eric A Lord, 1976 ),

Tab = (p+P)UaUb-Pgab . ---- 11

Where p is matter energy density, P is the isotropic pressure and ua 

is unit flow vector. Lichnerowicz (1967) has developed stress-energy 

tensor characterizing perfect fluid with infinite conductivity and constant 

magnetic permeability (|x).

According to Ray and Banaiji (1980), in Ferrofluid the magnetic 

induction vector and polarization vector are linearly related and the 

magnetic permeability is variable quantity. They have considered the 

stress-energy tensor characterizing Ferrofluid with infinite electrical 

conductivity and variable magnetic permeability.

According to general article on physics of Ferrofluid by Mehta 

(1989), Ferrofluid is defined as the magnetically soft fluid. Here 

Ferrofluid means an infinitely conducting relativistic charged fluid with 

variable magnetic permeability. The Lichnerowicz’s formalism deals with 

constant magnetic permeability where as the Ferrofluid deals with 

variable magnetic permeability.

The relativistic dust distribution ( Eric A Lord, 1976 ) is used to 

discuss the physical implications of cosmological FRW models. On 

similar lines we want to study Relativistic Magneto-Dust Distribution 

with variable magnetic permeability. Moreover, the roll of magnetic field 

in the cosmological evolution of space-time will be given due 

importance.
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This study is juncture of two streams. One of which is the roll of 

Conformal symmetry and its impact on the dynamical structure. The 

other one is to the restrict stress-energy tensor by Magneto-Dust 

Distribution and thereby to examine the geometrical properties of the 

space-time.

2. PRECURSORY NOTATIONS:

We mainly deal with four-dimensional manifold V4 with 

Lorentzian metric of signature (-, -, -, +).

The various symbols used are as follows :

, : Partial derivative

; : Covariant derivative

x : Covariant derivative of x with respect to time like vector.
L : Lie derivative along the vector £,

3. STRESS-ENERGY TENSOR FOR 

MAGNETO-DUST DISTRIBUTIONj

A relativistic magnetohydrodynamical scheme consisting of a 

space-time filled with infinitely conducting charged fluid and infinite 

electrical conductivity and constant magnetic permeability (jx) 

characterized by stress-energy tensor is given as (Lichnerowicz, 1967)

Tab = ( p + P+jXh2)uaub-(P +!/2 jlh2)gab-ilhahb , — 3.1

If the magnetic permeability is allowed to vary, then the new 

scheme ( Cissoko, 1978 ), ( Ray & Banaiji, 1980 ) composed of infinitely 

conducting charged fluid and variable magnetic permeability (p) is 

described as
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Tab = ( P + P + |xh2) uaiib - ( P + y2 jxh2) gab - p. hahb. — 3.2

Where, p : matter energy density 

P : isotropic pressure 

p : variable magnetic permeability 

ua: time-like vector 

ha : space-like vector

uaua = l,haha = -h2,uaha = 0 —- 3.3
i
i ' 'r\ ^ i

If this system (3.2) is free from isotropic pressure P, then we call it 

as Relativistic Magneto-Dust Distribution. This is presented by following 

stress-energy tensor

Tab = ( p + ph2) uaub - ‘/a ph2 gab - p hahb . — 3.4

Where p is variable magnetic permeability. Through^the dissertation this 

form (3.4) has been used. 0 Jt-

4. EIGEN VALUES FOR (3.4) :

i) If we transvect (3.4) with ua, we obtain :

Tab Ua = ( p + ph2 ) UaUaUb - */a ph2 Ua gab

i.e. Tab ua = ( P + ph2 ) Ub - ‘/a ph2 ub,

i.e. Tab ua = ( p + !4 ph2 ) Ub.

ii) Transvecting (4.1) with ub, yields

Tab UaUb = ( p + Va ph2 ) UbUb,

Tab Uaub = ( p + y2 ph2) . — 4.2

V UbUb = 1

- puahahb,

v vide (3.3) 

— 4.1
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iii) On multiplying (3.4) with ha, we obtain

Tab ha = ( p + |xh2) ha uaub - V2 ph2 ha gab - phahahb,

i.e. Tab ha = - V2 ph2 hb + ph2 hb, vide (3.3)

i.e. Tabha = Vi ph2 hb . — 4.3

iv) Further contracting (4.3) with hb, gives

Tab hahb = 1/2ph2hbhb,

i.e. Tabhahb = -y2 ph4. —- 4.4

v hbhb = -h2

v) On multiplying (4.1) by hb, we obtain

Tab Uahb = ( p + y2 ph2) hbub ,

i.e. Tab uahb = 0 — 4.5

v hbUb = 0

vi) If we contract (3.4) with gab, yields

Tab gab = ( P + ph2) gab uaub - y2 ph2 gab gab - P gab hahb,— 4.6

Using uaua = 1, haha = - h2, gab gab = 4 in (4.6), we get 

Tab gab = p + ph2 - 2 ph2 + ph2,

i.e. Tab gab = T = p . ~~ 4.7

Thus stress-energy tensor (3.4) involves two eigen vectors one of 

which is the time-like eigen vector ua with eigen value ej = p + y2 ph2 

and the other is space-like eigen vector ha with the eigen value
e2 ^ i
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Also, we have trace of (3.4), T = p which represent active 

gravitational mass density for Magneto-Dust Distribution.

Note : Theorem (Hawking & Ellis, 1973 )

“Any stress-energy tensor with distinct eigen values has distinct 

eigen vectors orthogonal to each other.” This Theorem holds for 

Magneto-dust Distribution. — vide (4.2), (4.4)

5. ENERGY CONDITIONS:

According to Hawking & Ellis (1973), the stress-energy tensor 

(3.4) has to satisfy following energy conditions :

i) Weak energy conditions :

It is stated through

Tab uaub > 0 — 5.1

i.e. p + »/2 p-h2 > 0 vide (4.2) — 5.2

ii) Strong energy conditions :

This is given by 

Tabuaub-'/2T >0,

i.e. p + ‘/2 ph2 -14 p > 0, 

i.e. p + p,h2 > 0 .

iii) Dominant energy conditions :

p + Vi |xh2 > 0 and (p + p-h2) ub which is time-like vector.

It justifies that stress-energy tensor (3.4) is physically transparent.

— 5.3

vide (4.2), (4.7) — 5.4
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6. GEOMETRICAL SYMMETRIES:

Some definitions leading geometrical symmetries are stated below :

i) A group of conformal motions :

A one parameter group of continuous infinitesimal transformation 

described by

xa = xa + £,a St —- 6.1

is said to exhibit a group of conformal motions if
L gab = 2 ifl gab — 6.2
s

where if/ is scalar function of co-ordinates and L is Lie derivative 

along vector

ii) A group of Conharmonic conformal motions :

(Abdussattar & Babita Dwivedi, 1998 )

A group exhibited in equation (6.2) is said to exhibit a group of

Conharmonic Conformal motions if

L gab = 2 \|f gab , ijf ; ab gafc = 0 • ---- 6.3

iii) Dynamical Inheritance:

The transformations (6.1) lead to Dynamical Inheritance if 

L Tab = 2 a Tab. 6.4

■V]

Note

where a is scalar function of co-ordinates.

ff~ ^ l? ^ Lj. <£t ■=1 Z-'jE '

i) Equation (6.2) leadrto group of isometric motions if i}/ = 0
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ii) Equation (6.2) leadsto group of special Conformal motions

if*l*;ab = 0,l|/;a*0

iii) Equation (6.4) leadsto Dynamical
S

collineations if a = 0 ,

7. FIELD EQUATIONS GOVERNING FERRO-FLUID:

We study the field equations that are necessary for describing the 

geometrodynamical features of Ferro-fluid. These are mainly Einstein 

field equations for gravitation and Maxwell field equations for 

electromagnetism. The coupled Einstein-Maxwell field equations are 

stated below:

^6 fyad Einstein field equations have the form.,

Rab-^Rgab = -kTab -- 7.1

Where Tab is stress-energy tensor.

These are 16 non-linear partial differential equations of which 10 are 

independent.

Transvecting (7.1) with gab, yields

R = k T — 7.2

Hence from (7.2), (7.1) can be written as

Rab — V2 k T gab — — k Tab -- 7.3

If we introduce cosmological constant A in (7.1), we have the 

following alternative form of gravitational field equations

Rab — V2 R gab + A gab ^ ~ k Tab ■ ---- 7.4

We know that in empty space stress-energy tensor is zero. 

Therefore (7.1) reduces to 

Rab — V2 R gab 0 •
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And on contracting this with gab gives 

R = °

Equation (7.3) can be rearranged as

Rab = - k ( Tab - 14 T gab ) _ --- 7.5

Hence dynamical expression for Ricci tensor compatible with Ferro-fluid 

exhibited by (3.4) can be written as

Rab = - k [ ( p + ph2) uaub - Vi ph2 gab - P hahb - 14 T gab 3,

— 7.6

i.e. Rab = - k [ ( p + ph2) uaUb - x/% ph2 gab - p hahb -14 p g* ],

vide (4.7) — 7.7

i.e. Rab = -k[(p + ph2)uaUb-1/2(p + ph2)gab-phahb].— 7.8

8. MAXWELL EQUATIONS:

Electromagnetic field has to satisfy the Maxwell equations that are 

yalid for condition of infinite conductivity which are in the form of 

(Lichnerowicz, 1967),

[p(htf-uahb)]:b = 0 -- 8.1

P ( ha : bUb + haUb;b-Ua ;bhb-Uahb ;b )

+ (haub- uahb) p ;b = 0 . 8.2

On multiplying equation (8.2) with ha, we obtain

p (ha ;bhaUb + hahaub;b-ua;bhahb - uahahb • b ) 

+ (hahaub - uahahb ) p; b = 0, — 8.3
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If we put ua; a = 0, haha = - h2, uaha = 0, jx = jx ; bub and h2 ;bUb = (h2)’ in 

equation (8.3), we get

jx(ha;bhaub-h2ub;b-ua;bhahb) + (-h2)|Ji;bUb = 0, ~~ 8.4

i.e. ^(ha;bhaUb-h20-ua;bhahb) -jxh2 = 0,

i.e. |x (h2 0 - ha ;bhaub + ua ;bhahb ) + jxh2 = 0, — 8.5

i.e. |x (h2 0 + !/2 (h2); bub + ua; bhahb) + jxh2 = 0 , —- 8.6

v ha;bha = -!/2h2;b

i.e. jx(h20 + 1/2(h2j + ua;bhahb) + (lh2 = 0

i.e. jx[h20 + y2(h2)Vua;bhahb] + fLh2 = 0. 8.7

Also contracting (8.2) with ua and using uaha = 0, ua; bUa = 0 , ha; b ub = fia, 

we obtain

|x(Ubhb + hb;b)+|X;bhb = 0. ^ 8.8

• Conclusion : The equation (8.8) implies that the magnetic 

permeability is conserved along the divergence free magnetic lines iff 

4-acceleration is normal to magnetic lines.

9. EQUATIONS OF MOTIONS:

The well known contracted Bianchi identities provide the local 

conservation laws through the conservation equation T abb = 0. These 

equations for Tab expression (3.4) yield the following equation :

[ ( p + |xh2 ) uaub - |xh2 gab - p. hahb ]; b = 0 —- 9.1
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i.e. ( p + ph2); buaub + (p + ph2) [ ua; bub + u\ib; b ]

- V2 [ p ;bgabh2 + ph2 ;b gab ] - p ;bhahb- p ha ;bhb

- p hahb ; b = 0 . — 9.2

On contracting (9.2) with ua, we get

( p + ph2) ;bua uaub 1 ( p + ph2) [ ua ;buaub + uauaub ;b ]

- '/> [ p ;b gab ua h2 + ph2 ;b gab ua ] - p ;bhauahb- p ha ;b uahb

- p hauahb; b = 0 — 9.3

If we use uaua = 1, uaha = 0, p ; bUb = p, p; bub = p and ua; bua = 0 in (9.3), 

we obtain

(p + ph2) ;bub + ( p + ph2) (0)

- Vi [ ph2 + p(h2)’ ] - p ha; buahb = 0 —- 9.4

i.e. p + ( ph2)’+ p 0 + ph20 - 1/2 ph2 - '/2 p(h2)*- p ha;buahb = 0

— 9.5

i.e. p + ( ph2 ) + p 0 + ph20 — V2( ph2) + pua;t>hahb = 0 — 9.6
5 5

i.e. p + p 0 + J/2 ( ph2) + ph20 + p ua;bhahb = 0 , — 9.7

i.e. p + p 0 + */2 ph2 + !/2 p(h2)*+ ph20 + p ua;bhahb = 0 , — 9.8

i.e. p + p 0 + p [ h20 + V2 (h2)*+ ua;bhahb ] + !/2 ph2 = 0 , -- 9.9

i.e. p+ p0 + (-ph2)+1/2jxh2 = 0, vide(8.7)

i.e. p+ p0-‘/2ph2 = 0. — 9.10 /

This equation (9.10) is called continuity equation for Ferrofluid.
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Note : If the flow lines are expansion free (0 = 0) then the equation (9.10) 

implies that p = 0 «=> jx = 0 

Hence we have a claim,

The matter energy density is conserved along the expansion free 

flow iff the magnetic permeability is kept invariant along these lines.

Further multiplying equation (9.2) with ha, we get

( p + |xh2 ). bha uaub + ( p + fih2 ) [ ua; bhaub + hauaub ; b ]

- y2 [ p. ; b gab hah2 + ph2 ;b gab ha ] - pi ;bhahahb

- p. ha;bhahb- pi hahahb;b = 0 , — 9.11

Using uaua = 1, uaha = 0, haha = - h2 in (9.11), we have 

( p + pih2 ) [ uaha ] - 'A [ pi; bhb h2 + pi h2; bhb ]

+ h2 pi; bhb - pi ha; bhahb + p h2 hb; b = 0 , — 9.12

i.e. p uaha + pih2 [ uaha + hb.b ] + '/2 h2 pi ;bhb- Vi pih2 ;bhb

-piha;bhahb = 0, — 9.13

As ha; bha = - lA h2; b, hence from (9.13), we have

p uaha + pih2 [ uaha + hb; b ] + h2 pi; bhb - pi h2; bhb

+ pi Vi h2 ; bhb = 0, 9.14

i.e. puaha + [pi(ubhb + hb;b) + 1/2pi;bhb]h2 = 0, — 9.15

i.e. p Ubhb + [- pi ;bhb + >/2 pi.bhb ] h2 = 0 , vide (8.8)

i.e. p Ubhb = lA pi; bhb h2. 9.16
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This implies that

ub 1 hb o (x;bhb = 0. 9.17

• Conclusion : The acceleration is normal to magnetic lines iff 

magnetic permeability is conserved along magnetic lines.


