CHAPTER-III

FIXED POINTS OF GENERALIZED NONEXPANSIVE MAPPINGS IN GENERALIZED
HILBERT SPACE
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3.1  INTRODUCTION

Precupanu [36-39] studied the H-locally convex linear
topological spaces (i.e., the locally convex spaces whose
generating family of seminorms satisfies the parallelogram law).
Hicks and Huffman ([14] have considered such H-locally convex
spaces for completeness and termed them as generalized Hilbert
spaces (GHS) and they extended some fundamental results of
3rowder [3], Browder and Petryshyn {[8], Z.Opial {32}, et.al. for
nonexpansive mappings in generalized Hilbert spaces (GHS). Further
Mukherjee and T.Som [27] have studied generalized nonexpansive
and contraction mappings in generalized Hilbert spaces and extended
the result of ﬂicks and Huffman {[14]. In this chapter we have
proved the results comcerned the convexity of fixed point set,
demiclosedness of a mapping g .construction of fixed points by using
the generalized contraction mappings. The result thus obtained .
generalize those of Browder [3], Browder and Petryshyn ([8], Z.
Opial [32], Hicks and Huffman [14], Mukherjee and T.Som [27-28] et al.
Now we prove the result about convexity of fixed point set as

follows :

Theorem (3.1.1) Let X be a Hausdorff H-locally convex space
and T be a generalized contraction selfmapping of a convex subset
C of X. Let F(T) be the -nonempty fixed point set of T. Then

F(T) is convex.

Proof : Let x,y e F(T) and 0 < t < 1. Suppose z=tx+(l-t)y and

z¢ F(T) i.e. Tz # 2.
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Now, using the parallelogram law and the property of T (1.4)2),

we obtain

Fix-y)= @ ( (x-Tz)- (y-Tz))

/.

g(x-Tz) + pz(y-Tz)

ll

pz( Tx-Tz) + pZ (Ty-Tz)

a1 pz(x-z) + a2 g(Tz-x) + a3pz(Tx-—z) +

N

+

a4 pz[(I-T)x-(I-T)z] + pz(y-z) +

+

a2 pz(Tz—y) + ag g(Ty-—z) +
+ a, L LI-T)y-(I-T)z].

i

31 pz(x-z) + a2 pz(x-Tz) + 83 pz(x-z) +
+ a4 pz[(x-z) - {x-Tz)] + alpz(y—z) +

2 2
a, 0(Tz-y) + agp (y-z) +

+

+

a, 0 l(y=2) = (y-Tz)]

alpz(x—-z) + az pz(x-Tz) + a3 g(x—z) +

A

+a, | Flx-z) + F(x-T2)] + a & (y-2) +
+ 2, pz(y-Tz) + a5 pz(y-z) +
+a, Fly-2) + Fly-Tz)]

== (a1+a4) { pz(X—Z) + pz(z-y)] +

+

(a2+a4) { pz(x-Tz) + pz(Tz-y)] +

a,l Flx-z) + pZ(Z"y) ]

+

A

(al+a4) pz(x-z+z-y) +
2
o+ (a2+a4) p (x-Tz+Tz-y) +
2
+ ag p (x-z+2-y)
2
= (al+a2+a3+234) p (x~y)
2
< p(x-y),



since al + a

contradiction implies that z ¢ F(T) and F(T) is convex. This

2 + a3 + 2a4 < 1. Thus pz (x-y]<pz (x-y) and this

completes the proof.
For the following result we need def inition (1.4.12) and theorem
(1.6.5) of Hicksand Huffman [14].
The result runs as follows :
Theorem (3.2.1) : Let C be a closed convex subset of a GHS X
and T be a generalized contraction mapping of C into X. Then
(I-T) is demiclosed.
Proof : Let {xn} be a sequence in C which is weakly convergent
to an element X, in C and let X, € F(T). Let the sequence {xn—T)% }
converge to an element % in X. Now, as T is generalized
contraction mapping and X isa GHS, we obtain
2 2 2
o (Tx"TX ) ¢ 3y p(x~X ) + 3y p"(Tx =X ) +
¢ 8,  2(Tx ~x )+ a, 2((1-T) x_~(I-T)x )
3P n o 4 P n )
= (a,+a )' z(x -X )+a Z(Tx -Tx )} +
17927 P Y’ 3 P e

2
+ a4 0 (xn-xo)-(Txn-—Txo)

2 2 :
(a1+a2) p (% xo) *a; o (Txn-TxO)+
2 ' 2
+ a4[ o) (xn—xo) + p (Txn-Tx0)~
- 2 p(xn-xo-Txn+Txo) ]
2
< (al+a2+a4) o} (xn-xo) +

¢ (agra,) P (Tx ~Tx)

or

(a,+a,+a,)

2
P (Tx -Tx ) § (1-a,-a,)

oz(xn-xo) ..... (3.2.2)



But from the Definition{1.4.12) of T,

a1+a2+a3+284<1
or
a1-|-212~t»a4<1-&13-a4
or
(al+82+a4) <1
(1-a3-a4)

Hence the above inequality (3.2.2) reduces to

2 2
0 (Txn -Txo) < p (xn- xo)
or

p (X, - %) > O(Txn—Txo).

Taking the limit inf, of both sides as n-w, we have

lim inf »p (‘xn - xo) > lim inf‘p(Txn -T:-:0 )
1N »co >

= lim inf p(x - y -Tx ).
Hence by applying Theorem (1.6.5), it follows that (I-T) is
demiclosed and the proof is complete.
Remark (3.2.3) :
As immediate corollaries to our result (3.2.1) we have the Theorem
(1.6.6) of Hicks and Huifmen [14], Theorem ( 1.5.9) of Z.Opial(32]..
3.3 0 L
A result concerning the construction of fixed points for generalized
nonexpansive mappings {1.4.13)
According to the definition (1.4.13), T 1is called generalized

nonexpansive mapping if
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2 2 2 2
p (Tx-Tylg 8, p (X-y)+a, o (Ty-x)+az p (Tx-y) +

+a, Zla-Tyx- (I-T)yl .. (3.3.1)

For all x,y€ C and a2 0 , i=1,2,3,4 with a, + a

i 1 2
The above inequality (3.3.1) can be written as follows :

2 2
& (Tx-Ty)g a, 02 (x-y)+ay F(Ty-x)+ay 5 (Tx-y) +
& 2
*a, (Tx-x) + a4p (Ty-y) ..., (3.3.2)

The prerequisites for our result are Theorem (1.6.1) of Hicks and

Huffman [14] and (3.3.2)

Theorem (3.3.3) Let € be a closed, bounded, convex and weakly
sequentially compact subse! ofa Hausdorff generalized Hilbert space
X. Suppose {TJ.} be a sequence of generalized nonexpansive

selfmappings of C with

p(zj-Tx)* 0Oas j »~ for all xeC,  ..... (3.3.4)
where T is a generalized nonexpansive selfmapping of X. Then T

has atleast one fixed point.

Proof : For 0 <j < 1, let

T () = 5 T ¢ (1D Y,

where V0 is a fixed point of C. Then the =xistence of a fixed
point uj for the generalized nonexpansive mapping Tj can easily
be proved by following the proof of Theorem {1.6.2) of Hicks and

Huffman {14]. Since C is weakly sequentially compact, the sequence

{uj} has a subsequence {uj} such that {uj} converges weakly
k k
to a point u, in € , i.e. uj > U, weakly as k+« . Hence from
k

(3.3.4) it follows that



: ou

p(.TVk -Tkvk) = p(TVk - vk }» 0 as Kk »o ,

where vk = u,

Now , T is. generalized nonexpansive mapping, from (3.3.2)we

have
2(T -Tu ) a 2(v -u)+a2(Tu -V, ) +
A% o) € 840 k 0 2Pt VK
+ a 2('I‘v -u_J+a Z(Tv -V, }+a Z(Tu -u )
3P k 0o 4P k k' 400 o'
..... (3.3.5)
Also
2y =Tu )= o2(Tv, -Tu )=(Tv, -v. ))
PLVET )= p WEV™ Y, K 'k
<ol T 2(7 3.3.6
So (Tvp=Tu )+ p(Tv-v, ), ....(3.3.6)

substituting (3.3.5) in (3.3.6), we obtain

2 2 . 2, _ 2,0
p(vk-TuO)\< 0 (Tvk--\;k)+a1 p(vk uo)+azp (Tu0 vk)+
+ a 2(Tv -u_)+a 2(Tv -v. }+a Z(Tu -u )
3PV’ P k k74P Y 0 0
= z(Tv ~v_ )+a 2(v -0 _J)+a 2(Tu -v, )+
= P k k7L P02 PN K
2 2
+ 33 plvy-u )-(v, ~Tv, J)+a, ((Tv, -V, )+
20y V(v -
+ a4p((vk uo) (Vk TUO))

2 2 2
p (Tvy Vk)+c’:11 p (v uo)»ea,2 o (Tug vk)+

N

2 2 2
+ ag p (v mu)+ay o (v =TV, )+a, o' (T, =V, )+
2 2
+ 3y Py )y o (v T, ),
Equivalently
(1-a,-a,) pz(v -Tu )< (1+a,+a,) 2(Tv ~-v, }+(a,+a.+a ) 2(v -u_}
27 K o' 3797 PUMVRTYIITYETETe P WYy

or
(a,+a +a,) 2

2 (1+a,+a,) 2 - _1 3 4 oy -
(1- az- a4) 2

veer.3.3.7)



But from definition (1.4.13), it follows that

- Qr

(31+ a3+ a4) < 1
(1 -a, - a4) S )

2
Hence (3.3.7) takes the form

2 2
PV~ Tug) = p(ve-u) €

Now , suppose that u, # Tuo . Then there exists ¢ € A
such that

Pylu, - Tu, )> 0,

By theorem (1.6.1), we have

2 2 2
- - - - = - >
113;m [ Da(vk Tuo} pa (vk uo) ] OQ (Tu0 uo) 0
Hence there exists j such that k -2 j implies

2 2
DO[Vk =Ty, ) - e v -u)s 0
or

[ vy = Tug )= Pylve=u)l. [pG(vk ~Tug J+p (v-u)l> 0

Thus, for k j , from (3.3.8) we obtain

2 (1+a +a4)
(vk—Tuo) -Pq (vk-uo) \C Tica.-a.

2

2

0 <p
o 2 a4)

2
P (Tvk-vk)
—» 0 as k- oo ,

Hence

2 2 2
$ - - - = - £
0 < ltm [Da(vk Tuo) po(vk uo) pG {Tu0 uo)\ 0



which is a contradiction. Hence we must have Tu0 = uo and the

assertion of the theorem :is:proved.
Remark (3.3.9) : Several results may be seen to follow as
immediate corollaries to theorem (3.3.3). Some of ‘them are as
follows :

Theorem (1.6.2) of Hicks and Huffman {14], Theorem (1.5.1)
of Brdwder and Petrysh'yn; [8], Theorem (1.6.3) of Mukherjee and

T.Som {27-28].



