
CHAPTER - III

FJXEV POINTS OP GENERALIZED NONEXPANSJVE HAPPINGS IN GENERALIZED
HILBERT SPACE
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3.1 INTRODUCTION

Precupanu [36-39] studied the H-locally convex linear 

topological spaces (i.e., the locally convex spaces whose 

generating family of seminorms satisfies the parallelogram law). 

Hicks and Huffman [14] haye considered such H-locally convex 

spaces for completeness and termed them as generalized Hilbert 

spaces (GHS) and they extended some fundamental results of 

Browder [3], Browder and Petryshyn [8], Z.Opial [32], et.al. for 

nonexpansive mappings in generalized Hilbert spaces (GHS). Further 

Mukherjee and T.Som [27] have studied generalized nonexpansive 

and contraction mappings in generalized Hilbert spaces and extended 

the result of Hicks and Huffman [14]. In this chapter we have 

proved the results concerned the convexity of fixed point set, 

demiclosedness of a mapping % construction of fixed points by using 

the generalized contraction mappings. The result thus obtained 

generalize those of Browder [3], Browder and Petr.yshyn [8], Z. 

Opial [32], Hicks and Huffman [14], Mukherjee and T.Som [27-28] etal. 

Now we prove the result about convexity of fixed point set as 

follows :

Theorem (3.1.1) Let X be a Hausdorff H-locally convex space 

and T be a generalized contraction selfmapping of a convex subset 

C of X. Let F(T) be the nonempty fixed point set of T. Then 

F(T) is convex.

Proof : Let x,y e F(T) and 0 < t < 1. Suppose z=tx+(l-t)y and 

z i F(T) i.e. Tz ? 2.



in

Now, using the parallelogram law and the property of T (1.442), 

we obtain

P(x-y)= $ { (x-Tz)- (y-Tz))

^ 2(x-Tz) + p2(y-Tz)

= p2(Tx-Tz) + p2(Ty-Tz)

2 2 2^ alP (x-z) + a2 p(Tz-x) + a3p (Tx-z) +

+ a4 2[(I-T)x-(I-T)z] + a^ p2(y-z) +

+ a2 2(Tz-y) + a3 p(Ty-z) +

+ a4p2[(I-T)y-(I-T)z].

2 2 2= a1p (x-z) + a2 p(x-Tz) + agp (x-z) +

+ a4p2[(x-z) - (x-Tz)] + a1p2(y-z) +

2 2 + a2 p(Tz-y) + a3 p (y-z) +

+ a4p2[(y-z) - (y-Tz)j

2 2 2^ alP (x-z) + a2 p(x-Tz) + ag p(x-z) +

+ a4 [ p2(x-z) + p2(x-Tz)] + a1p2(y-z) +

+ a2 p2(y-Tz) + a3 p2(y-z) +

+ a4 [ p2(y-z) + p2(y-Tz) ]

= (a1+a4) [ p2(x—z) + p2(z-y) ] +

+ (a2+a4) [ P2(x-Tz) + p2(Tz-y)] +

+ a3( p (x-z) + p (z-y) ]
2

$ (a1+a4) p (x-z+z-y) +
2

+ (a2+a4) p(x-Tz+Tz-y) +

2,+ a3 p(x-z+z-y)
2

= (a1+a2+a3+2a4) p (x-y)

< p2 (x-y),
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2 2since + a2 + a3 + 2a4 < 1. Thus p (x-y) <p (x-y) and this

contradiction implies that z e F(T) and F(T) is convex. This 

completes the proof.

For the following result we need def inition (1.4.12) and theorem 

(1.6.5) of Hicksand Huffman [14].

The result runs as follows :

Theorem (3.2.1) : Let C be a closed convex subset of a GHS X 

and T be a generalized contraction mapping of C into X. Then 

(I-T) is demiclosed.

Proof : Let {x^} be a sequence in C which is weakly convergent

to an element xq in C and let xQe F(T). Let the sequence {x -Tj^..}

converge to an element ^ in X. Now, as T is generalized

contraction mapping and X isa GHS, we obtain

o2 (Tx -Tx ) < a. n(x -x ) + a_ D2(Tx -x ) + 
b 1 n o ^ 1 n o 2 M v 0 n

* a3p2(Txn-Xo)+ a4 p2((I-T) xn-(I-T)x0)

” <al+a2> P2(Vxo)+a3 »(Txn"Txo) *

* a4 P2<VXo,-lTxn-Txo)

= (Va2> P2(Vxo) + a3 p2(Txn'TxoK

* a4[ p2(xn-xo) * p2(Txn-Txo)-

2 p(x -x -Tx +Tx ) ] H v n o n o

< (ai+a2+a4} P (VV

or

. (a3*a4) p (Txn-Txo)

, (a +a *a ) ,
p2(Txn-Txo, P IVV ........ (3.2.2)
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But from the Definition 1.4 .12) of T,

or

or

a1 + a2 + a3 + 2a4 < 1

al + a2 + a4 < 1 " a3 " a4

(al * a2 * a4}

U -a3 -a4 )
< 1-

Hence the above inequality (3.2.2) reduces to

P2 lT*n -T*o> < P2lxn- V

or

P xo ] > p (Txn ' Txo } ’

Taking the limit inf. of both sides as n we have

lim inf p (x - x ) > lim inf, p(Tx -Tx )
11 0 I*)l 0n -m» n>oo

= lim inf p(x - y -Tx ) pv n Jo o '

Hence by applying Theorem (1.6.5), it follows that (I-T) is 

demiclosed and the proof is complete.

Remark (3.2.3) :

As immediate corollaries to our result (3.2.1) we have the Theorem 

(1.6.6) of Hicks and Huffm^i(14], Theorem ( 1.5.9) of Z.0pial[32]s . 

3.3 . . :

A result concerning the construction of fixed points for generalized 

nonexpansive mappings (1.4.13) :

According to the definition (1.4.13), T is called generalized 

nonexpansive mapping if
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p2 (Tx-Ty)^ alP2(x-y)+a2 p2(Ty-x)+a3 p2{Tx-y) +

+ a4p2[(I-T)x- (I-T)y] ........ (3.3.1)

For all x,y£ C and a^ 0 , i=l,2,3,4 with a^ + a2 +a3 + 2a441. 

The above inequality (3.3.1) can be written as follows :

p2 (Tx-Ty)^ a1P2(x-y)+a2 p2(Ty-x)+a3 p2(Tx-y) +

+a4 f?(Tx-x) + a4P2(Ty-y) ........ (3.3.2)

The prerequisites for our result are Theorem (1.6.1) of Hicks and 

Huffman [14] and (3.3.2)

Theorem (3.3.3) Let C be a closed, bounded, convex and weakly 

sequentially compact subset of a Hausdorff generalized Hilbert space 

X. Suppose {Tj} be a sequence of generalized nonexpansive 

selfmappings of C with

p(TjX-Tx)-*- 0 as j •>0° for all x £ C, ........ (3.3.4)

where T is a generalized nonexpansive selfmapping of X. Then T 

has atleast one fixed point.

Proof : For 0 < j < 1, let

T (x) = j T(x) + (1-j) Vq ,

where Vq is a fixed point of C. Then the existence of a fixed

point Uj for the generalized nonexpansive mapping Tj can easily

be proved by following the proof of Theorem (1.6.2) of Hicks and

Huffman [14]. Since C is weakly sequentially compact, the sequence

{u.} has a subsequence {u.} such that |Uj } converges weakly

to a point uQ in C , i.e. u, + uQ weakly as k-*-® . Hence from
Jk

(3.3.4) it follows that
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p(Tvk "TkVk- * p(Tvk ' Vk ^ 0 as k -«> .

where v. = u.
K Jk

Now , T is. generalized nonexpansive mapping, from (3.3.2) we 

have

p2(Tvk -Tuo> < alp2 tvk - uo> * a2plT’Jo -Vk> +

* a3P2(Tvk-Uo)ta4 p2(Tvk'Vk,*a4 pIV.1-

........ (3.3.5)

Also

p’lV^i-p’iW'Vk"

<p2(Tvk-TuQ)+ p2(Tvk-vk). ....(3.3.6)

substituting (3.3.5) in (3.3.6), we obtain

p2(vk-Tu0K pCTvk-vk)+ai p(vk-u0).a2P2(Tu0-vk)t

. a3 plTvk-u0).a4p2(Tvk-vk).a4P2(Iuo-uo)

= p2lTvk-vk>*al P ('Vuo’*a2 p(TVvk>*

* a3 PlVUo)-(Vk-TVk))+a4 P(TVVk) +

- p4p2<?vk-uo)-(vk‘Tuon

< p2lTVvk)*ai plvk-V*a2 P2'TVvk>*

* a3 p2(VUo)ta3 p2|vk-TVa4 p (Tvk-Vk) +

* a4 P(vk'uo!*a4 ?<V!V.

Equivalently
(l-a2-a4) p2(vk-TuQ)< (l+a3+a4) p (Tv^v^+Uj+ag+a^ p2(vR-uo)

or

p2(vk-TuQ) « (l+a3+a4) 
(1- a2- a4)

(a.+a +a ) 2
2 (Tv -v )+ —-—-—r— 0 (v. - u ) 

P 1 lvk kJ (l-a2-a4) k o'

3.3.7)
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But from definition (1.4.13), it follows that

al + a2 + a3 + 2a4 ^ 1

or

(ai+ a3+ a4)
4 1(1 -a2 - a4) v 

Hence (3.3.7) takes the form

pVk-Tuo)
2, . , . (1+Va4>

p lVV ^ (l-a2-a4)
=2‘Tvk-vk)

..(3.3.8)

Now , suppose that uQ 4 Tuq . Then there exists a £ A 

such that

Po<“o - Tuo )" 0 •

By theorem (1.6.1), we have

lim [ P^v - Tu ) - P2(v - u ) 1=Pq2(Tu - u ) > 0 

k
Hence there exists j such that k - ^ j implies

P <vk - Tuo 1 - p0(vk-“o)> 0

or

[ Pn(v. - Tu )- Pn(V. ~ U )]. [p (V. -Tu )+p (V. -U )]> 1 k o' ^ k o/J 1 k o ' Ha k o
Thus, for k 5, j , from (3.3.8) we obtain 

0 <p„ivk-Tuo) -PoiW£ ur
(1*Va4> 2

P(Tvk-vk>

-* 0 as k-» a> .

0 < lim 
K

Hence
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which is a contradiction. Hence we must have Tu = u„ and theo o
assertion of the theorem: ds: proved.

Remark (3.3.9) : Several results may be seen to follow as

immediate corollaries to theorem (3.3.3). Some of :them are as 

follows :

Theorem (1.6.2) of Hicks and Huffman [14], Theorem (1.5.1) 

of Browder and Petryshyni [8], Theorem (1.6.3) of Mukherjee and 

T.Som [27-28].


