$\underline{CHAPTER - 0}$

DEFINITIONS

AND

RESULTS

CHAPTER 0

"DEFINITIONS AND RESULTS"

This chapter is devoted to the definitions and results which will be used in the subsequent chapters.

♦ 0.1 Definitions:-

§ 0.1.1 Partially ordered set or Poset: ([6], Page 2) Let P be a nonvoid set. Define a relation ' \leq ' on P satisfying the following.

(1) $a \le a$ (Reflexivity)(2) If $a \le b$ and $b \le a$ then a = b(Antisymmetry)(3) If $a \le b$ and $b \le c$ then $a \le c$ (Transitivity)

for all a, b, c, ϵ P,

then the ordered pair $\langle P, \leq \rangle$ is called Poset or a Partially ordered set.

A Poset $\langle P, \leq \rangle$ is called chain (or totally ordered set or linearly ordered set) if it satisfies following condition,

(4) $a \le b \text{ or } b \le a$, for all $a, b, c \in P$ (Linearity)

Let $\langle P, \leq \rangle$ be a Poset and $H \subseteq P$, a ϵ P is an upper bound of H if h \leq a for all h ϵ H. An upper bound a of H is the least upper bound of H or supremum of H (join) if for any upper bound b of H, we have a \leq b.0

We shall write a = Sup H or $a = \lor H$.

The concept of lower bound or infimum is similarly defined.

The latter is denoted by Inf H or \wedge H

§ 0.1.2 Zero element in a Poset ([6], Page 56) Let $\langle P, \leq \rangle$ be a Poset.

If there exist 0 in P such that $0 \le x$, for all x in P, then 0 is called Zero element in Poset P.

§ 0.1.3 Unit element In a Poset ([6] Page 56) Let $\langle P, \leq \rangle$ be a Poset. If there exist 1 in P such that $1 \geq x$, for all x in P, then is called

Unit element in poset P.

§ 0.1.4 Bounded Poset ([6] Page 56)
A Poset with Zero element and the Unit element is called bounded
Poset.

 $\$ 0.1.5 Lattice (as a Poset) ([6] Page 43) A poset <L, \leq > is called lattice if sup {a,b} and inf {a,b} exists for all a and b in L.

§ 0.1.6 Lattice (as an algebra) ([6] Page 5) Let L be any nonempty set. If ' \wedge ' and ' \vee ' are binary operations defined on L then < L, \wedge , \vee > is called Lattice if the following conditions hold for all a, b, c in L.

(1)
$$a \wedge b = b \wedge a$$
 (commutativity)
 $a \vee b = b \vee a$
(2) $a \wedge (b \wedge c) = (a \wedge b) \wedge c$ (Associativity)
 $a \vee (b \vee c) = (a \vee b) \vee c$
(3) $a \wedge a = a$ (Idempotency)
 $a \vee a = a$
(4) $a \wedge (a \vee b) = a$ (Absorption law)
 $a \vee (a \wedge b) = a$ (Absorption law)
 $a \vee (a \wedge b) = a$ (Iel Page 21)

A nonempty subset I of a lattice L is called an ideal (1) If $x \in I$, $y \in I$, then $x \lor y \in I$ (2) If $x \le y$, $x \in L$, $y \in I$ then $x \in I$

§ 0.1.8 Proper ideal in a lattice. ([6] Page 21)An ideal I which is different from Lattice L is called proper ideal.

§ 0.1.9 Prime ideal in a lattice. ([6] Page 21)

A proper ideal I in a lattice L is called a prime ideal if for all x and y in L, $x \land y \in I$ implies that $x \in I$ or $y \in I$. § 0.1.10 Principal ideal in a lattice. ([6] Page 21) Given an element a in L, the ideal generated by {a} denoted by (a]; where (a] = {x ϵ L / x \leq a } is called Principal ideal of Lattice L.

§ 0.1.11 Maximal ideal in a lattice. ([1] Page 28) A proper ideal M in a lattice L is called maximal ideal in L if there do not exist any proper ideal J in L such that $M \subset J \subset L$.

§ 0.1.12 Minimal prime ideal in a lattice. ([6] Page 169)A minimal element in the set of all prime ideals in L is a minimal prime ideal in a lattice.

§ 0.1.13 Filter in a lattice. ([6] Page 23) A nonempty subset F of a lattice L is called Filter (1) if $x \in F$ and $y \in F$ then $x \land y \in F$,

(2) if $x \le y$, $y \in L$, $x \in F$ then $y \in F$.

§ 0.1.14 Proper filter in a lattice. ([6] Page 23)A filter F which is different from Lattice L is called proper filter.

§ 0.1.15 Prime filter in a lattice. ([6] Page 23) A proper filter F in a lattice L is called a prime filter if for all x and y in L. $x \lor y \in F$ imply that $x \in F$ or $y \in F$. § 0.1.16 Principal filter in a lattice. ([6] Page 23)

Given an element a in L, the filter generated by $\{a\}$ denoted by [a], where $[a] = \{x \in L | x \ge a\}$ is called principal filter of L.

§ 0.1.17 Maximal filter in a lattice. ([1] Page 28) A proper filter in a lattice L is called maximal filter in L if there do not exist any proper filter J in L such that $M \supset J \supset L$.

§ 0.1.18 Distributive lattice. ([6] Page 36) A lattice < L, \land , \lor > is said to be distributive if ' \land ' is distributive over ' \lor ' or dually. In other words, For all x, y, z in L D1: $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ OR D2: $x \land (y \lor z) = (x \land y) \lor (x \land z)$

§ 0.1.19 0-distributive lattice. ([12]) Let L be a lattice with 0. L is said to be 0- distributive if $a \land b = 0$, $a \land c = 0$ then $a \land (b \lor c) = 0$, for all a, b, $c \in L$.

§ 0.1.20 Complemented lattice. ([11] Page 58) A lattice L with Zero 0 and Unit 1 in which for any element 'a' there is an element 'b' (complement of a) such that $a \lor b = 1$ and $a \land b = 0$ § 0.1.21 Pseudocomplemented lattice. ([6] Page 58) A lattice L with a Zero '0' is called a Pseudocomplemented lattice if for any $a \in L$, there is an element a^* such that $a \wedge x = 0$ if and only if $x \le a^*$.

§ 0.1.22 Quasicomplemented lattice. ([7] Page 41) A lattice L with zero '0' is called a Quasicomplemented lattice if for any $x \in L$ there is an element $y \in L$ such that $x \wedge y = 0$ and $x \vee y$ is a dense element.

OR

A lattice L is Quasicomplemented if for each $x \in L$, $\exists y \in L$ such that $(x]^{**} = (y]^*$.

§ 0.1.23 0- ideal. ([5]Page 1059)

Let J be an ideal of a lattice L, then J is called an 0-ideal if J = O(F), for some filter F, where $O(F) = \{x \in L / x \land f = 0, for some f \in F\}$

§ 0.1.24 \propto - ideal. ([5] Page 1060) An ideal J is an \propto -ideal if and only if x ϵ J implies (x]^{**} \subseteq J. § 0.1.25 Moore family in lattice. ([1] Page 111) Let X be any nonempty set and F ⊆ P (X).
J is said to form a Moore family of subsets of X if
1) X ∈ J.
2) ∩ F_x ∈ F F_x ∈ F
§ 0.1.26 Nondense ideal. ([9] Mane) An ideal I ≠ \$\overline\$ of a lattice L is said to be dense (nondense) if

$$(a]^* = \{0\} ((a]^* \neq \{0\}).$$

♦ 0.2 Results

In the following results we are concerned with bounded lattice L with o

§ 0.2.1: In a lattice L with 0, every proper filter is contained in a maximal filter.

§ 0.2.2: Intersection of any number of filters in L is a filter in L

([6], page 21)

§ 0.2.3: Intersection of any number of ideals in L is a ideal in L

([6], page 21)

§ 0.2.4: Complement of a maximal filter is a minimal prime ideal in a 0-distributive lattice.

(E9], page - 437)

§ 0.2.5: In a lattice L every prime ideal contains minimal prime ideal.

([6], page 79)

§ 0.2.6: In a lattice L a proper filter M in L is maximal if and only if for any element $a \notin M$ ($a \in L$) there exist an element b in M such that. $a \wedge b = 0$.

(Vankatanarsimhan, [13])

 $\{ 0.2.7: \{x\}^* \land \{y\}^* = \{x \lor y\}^*$ $\{x\}^* \lor \{y\}^* = \{x \land y\}^*$ for all x, y $\in L$

([9], page 441)

8

----- ** ** -----