CHAPTER-1

DEFINITIONS AND TERMINOLOGY

ABSTRACT

This chapter contains some definitions and statements

of the results, which we need in the course of investigation.

The relevant references are given at the end of the chapter.
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DEFINITIONS /M D TERMINOLOSGY

In this first chapter we present some definitions
concerning with univalent functions and some terminology
which we are going to use in +this context. Here we shall

state some statements of the known results.

Definitioni= A comnlex valued function £(z) is said to be
holomorphic in a éoﬁain D in the complex plane, if it has
a uniqdely determined derivative at each point of D.
Equivalently it can also be defined in the following way.
A holomorphic function is a meromorphic function without

polesj[é, pp. 51 = 52 ]

Definition :- Let E = {’z : z is a complex numkter and|z|<1}

NDefinition :- A holomorphic functioh f(z) in scme domain

D 1is said to be univalent in D 1if f(%e = f(z,5) implies

that z1 = Z

N

for all zy9 22 in D. -
Remark :~ The terms " Conformal mapping," " injectiwe
meromorbhic function",and " yinivalent holomorphic

{meromorphic) function " all have the same meaning. Sometimes
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we follow time honnred practic» and say "!nivalent" instead
of "Univglent holomorphic" { G, pp 51-52 ]

Definition : Let S denote the class of all normalised
univalent functions defined en E and having the Taylor

series expansion of the form,

f(z) =12z + i an 2", z in E,

n=2

By normalised conditions on f(z) we mean that £{C) = 0 and

f'(O) = 1‘

Definition :~ A domain contaiﬁing the origin is Starlike

with resmect to the origin if it 1s intersected by any
straight line through the origin in a linear segment. We
note that starlike with resvect to the origin will be
referred to as simonly starlike.

*
Definition :~ Let S denote the subclass of S, whose

members ttransform' every disc ,z]é e , 0L e < 1, onto

a starlike domain.
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The analytic description of starlike functions is
given by the following statevnum-;.

Statement : Let f be holomormhic in the domain D < €

( € denoting the complex plane), with f(0)=0 = f'(()) - 1.

* . ' |

Then £ € S if and only if z f (2)/f(z) € P, P denoting
the class of all functions Y , which are holomorphic and

having positive real part in D, with YW(0) = 1.

Definition :- Let f(z) be holomorphic at z = 0 and satisfying
the conditlions of normalisations. Then we define the radius

of univalence to be the largest value of 1r such that f(z)

is holomorrhic and univalent for |z|< r.

Definition :- Let f(z) be normalised holomorphic function
at z =0, let’X\ be a real number such that 0{ A< 1. Wwe
define the radius of starlikeness of order “)\ , denoted by

S,}\ sy to be the largest value of r such that f(z) is

holomorrhic and )
z £ (z)

Re e ot >>>\ y for lzl¢: T.
f(z)



ee D as

\

Nefinition :- Let K .denote the subclass of S whose members

map every disc |z ¢, 0<8< 1, onto a convex domain.

Convex functions can be defined in the following way:

Definition :- The set E 1is said to be convex 1if it is
starl@ké‘with respect to each of its points, that is, if
the linear segment jolining any two points of E lies
entirely in E. Hence a convexX function is one which maps
the unit disc conformally onto a convex domain.
The convex function can be described in the following way :
"Statement :-» Let f be holomorphic 1; the domair D, with
the conditions of normalisations. Then f € K, if and
only if (3+zf"(z)/f'(zi) € P, P having the same significance
as defined in case of starlike functions.

A close analytic connection betweenlconvex and

starlike transformations . was first observed by Alexander [17]

in 1915. "We shall merely state his observation in the

following theprem,



Theorem :~ Let f be holomorphic in D , with f(0)= 0 and
»
£'(0) =1, Then £ & K 4f and only if z £'(z) & 5 .

Definition :- Let f(z) be holomorphic at z = 0 anc satisfy

~£(0) = 0 and £ (0) # 0, there,let \be a real number

satisfying 0{ A <1. We denote the radius of convexity
of order A by }<% and be defined as the largest value

of r such that f(z) is holomorphic and satisfying

zf"(z)

Re 1 + : >,A ’
£ (2) for |z]<r.

Nefinition :- Let P(z) = a, i?' (z - zk) be a

=1
polynomial of degree n, where n is a positive integer all
of whose zeros lie outside or on the unif circle of yadius

R (271), ab is a constant to be appropriately selected so

that  functions involved turn out to be normalised.

nefinitioh := A funection f(z) € S 1is said to be close-to-
convei Qith resqect to the ‘'convex function eixg(z), where
g(z) € IK, and 0L oL L 2N, if

£'(z)

Re >0

i 4
€ g (2)

for z ‘ﬁ E. We denote this class by C.
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Definition :- Let f(z) be holomorphic at z = 0 and satisfy
the conditions of normalisatinns, there, Then the radius of
Close-to-convexity is defined to be the largest value of
‘ ;”“;;éh that f(z) is holomorphic and Close-to-convex for,
|z <.

This class of Close-to-convex functions was introduced
by Kaplan [5]in 1952,

In the above definition of Close-to-~convex function
We note that, f is not required a priori to be univalent,
also we note that the correlated function g need not be
normalised,

In the context of the above définitions of subclasses

of univalent functions, we would like to pass the following

remark.

Remark : Every convex function is obviously Close-to-convex.

'

More generally, évery starlike function is Close-to-convex.
[ 4 y PP 47]
Close-to-convex functions can be stamped by a geometric

condition somewhat similar to the defining properties of
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convex and starlike functions., Let f be holomorphic in D
and let C, denoie the imai: of the unit clrcle lz I: T,
under the manmping f, r lying between 0 and 1. Then roughly
speaking, f is Close~-to-convex if and only\if none of the
curves’Cr makes:a " reverse hairpin turn". In this
connection, kaplan [5] has stated the following definition

of Close-~to-€onvex function, which is known as kaplan's
Theorem.

Kaplaii's Tneorem :— Let f be analytic and lncally

univalent in D, Then f is Close-to-convex if and only if

92_ "
z f (z) ie
Re 1 4+ — de L o

for each r, 0 €r <1 and for each pair of raeal

nunbers @ and 6, with © L O, .

Lastly, we assert the following inclusion rrnlations

to summérise normalised classes of functions, K, S*,C, S, as

K < § = Ce5,
We humbly state that the spiral - like functigps,

Typically real functions, Razilvic functions are also the

{ LIGRARY
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subclasses of family of Univalent fuctions-s,bﬁt tinre we ar®
concentrated onlv on starlit», convex &nd close-to-convex
subfamilies, we: are not ‘' rushed to defins them also.

Tawandaweks ( 1958, 1960) [ 7] gave a geometric
characterization of close - to - convex functions. In this
geometric form, close-to-convex functions had been studied
by Biernacki (1939) [_3] s he used the name " linzarly
accessible " see diagram.

- We note that, the close-to-~convex functions, starlike

functions and convex functions are all univalent functions.



' CLASS OF CLOSE-TO- CONVEX FUNCTIONS

//

Source : CHR. POMMERENKE § UNIVALENT FUNCTIONS™
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