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ABSTRACT

This chapter contains some definitions and statement* 

of the results, which we need in the course of investigation. 

The relevant references are given at the end of the chapter.
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In this first chapter we present some definitions 

concerning with univalent functions and some terminology 

which we are going to use in this context. Here we shall 

state some statements of the known results.

Definitions- A co^nlex valued function f(z) is said to be 

holomorphic in a domain D in the complex plane, if it has 

a uniquely determined derivative at each point of D. 

gquivalently it can also be defined in the following way.

A holomorphic function is a meromorphic function without 

poles~£ 6 t pp. 51 - 52 J

Definition Let E = £ z : z is a complex number and|zj<1

Definition A holomorphic functiotk f(z) in some domain

D is said to be univalent in D if f(j^) = f(z2) implies

that z< = Zo for all z., z in D.
1 ^ 1 2

Remark The terms " Conformal mapping," " injective 

meromorphic function",and " univalent holomorphic

(meromorphic) function " all have the same meaning. Sometimes
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we follow time honored practice and say "Univalent” instead

Definition : Let S denote the class of all normalised 

univalent functions defined on E and having the Taylor 

series expansion of the form,

z in E,
n=2

By normalised conditions on f(z) we mean that f(C) = 0 and 

f’(0) a 1.

Definition A domain containing the origin is Starlike 

with respect to the origin if it is intersected by any 

straight line through the origin in a linear segment. We 

note that starlike with respect to the origin will be

referred to as simnly starlike,

*
Definition Let S denote the subclass of S, whose 

members transform* every disc J » 0< £. < 1, onto

a starlike domain
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The analytic description ©f starlike functions is 

given by the following statement.

Statement : Let f be holomornhic in the domain D d (E 

( (T denoting the complex plane), with f(0)=0 = f'(0) - 1.

Then f 6 S if and only"if z f'(z)/f(z) e P, P denoting 

the class of all functions y/ » which are holomorphic and 

having positive real part in D, with 'p(O) = 1.

Definition Let f(z) be holomorphic at z 0 and satisfying 

the conditions of normalisations. Then we define the radius 

of univalence to be the largest value of r such that f(z) 

is holomorohic and univalent for |z|<r*

Definition Let f(z) be normalised holomorphic function 

at z = 0, let% be a real number such that 0^ < 1. We

define the radius of starlikeness of order » denoted by 

, to be the largest value of r such that f(z) is 

holomorphic and ,
z f (z)

Re > » for | z| < r.
f(z)
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Definition Let K .denote the subclass of S who#* members 

map every disc | z ^ , 0<^< 1, onto a convex domain.

Convex functions can be defined in the following way: 

Definition The set E is said to be convex if it is 

starlike with respect to each of its points, that is, if 

the linear segment joining any two points of E lies 

entirely in E. Hence a convert function is one which maps 

the unit disc conformally onto a convex domain.

The convex function can be described in the following way : 

Statement Let f be holomorphic in the domain D, with 

the conditions of normalisations. Then f 6 K, if and 

only if (l+zf”(z)/f*(z)) 6 P, P having the same significance

as defined in case of starlike functions.

A close analytic connection between convex and 

starlike transformations was first observed by Alexander cil 
in 1915. We shall merely state his observation in the

following theorem



Theorem Let f be holomorphic in D , with f(0}= 0 and

f'(0) = 1, Then f E K if and only if z f'(z) G 5

Definition s- Let f(z) be holomorphic at z = 0 and satisfy

f(0) = 0 and f (0) ^ 0, there,let X be a real number 

satisfying 04^<1* We denote the radius of convexity 

of order ^ by and be defined as the largest value

of r such that f(z) is holomorphic and satisfying

(z - Zy.) be a

polynomial of degree n, where n is a positive integer all 

of whose zeros lie outside or on the unit circle of radius 

R (>1), a. is a constant to be appropriately selected so 

that functions involved turn out to be normalised. 

Definition A function f(z) 6 S is said to be close-to 

convex with resnect to the convex function e^gCz), where 

g(z) 6 K, and 0^ < < 2l\ t if

> o
for z e E. We denote this class by C
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Definition s- Let f(z) be holomorphic at z = 0 and satisfy 

the conditions of normalisations, there. Then the radius of 

Close-to-convexity is defined to be the largest value of 

r such that f(z) is holomorphic and Close-to-convex for,

I z K*.

This class of Close-to-convex functions was introduced 

by Kaplan £5^jin 1952.

In the above definition of Close-to-convex function 

We note that, f is not required a priori to be univalent, 

also we note that the correlated function g need not be 

normalised.

In the context of the above definitions of subclasses 

of univalent functions, we would like to pass the following 

remark.

Remark : Every convex function is obviously Close-to-convex.

More generally, every starlike function is Close-to-convex.

Close-to-convex functions can be stamped by a geometric

condition somewhat similar to the defining properties of
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convex and starlike functions. Let f be holomorphic in D 

and let Cr denote the imn :• of the unit circle j z | = r , 

under the manning f, r lying between 0 and 1. Then roughly 

speaking, f is Close-to-convex if and only if none of the 

curves Cr makes a " reverse hairpin turn". In this 

connection, Kaplan £5j has stated the following definition 

of Close-to-Convex function, which is known as Kaplan's 

Theorem.

Kaplan's Theorem Let f be analytic an^ locally

univalent in D, Then f is Close-to-convex if and only if

/ ©au
He 1 +

Z f (z) 
f * ( Z ) d©N> ■If ’ z ■ r e'i©

for each rt 0 <r <1 and for each pair of real 

numbers and Qz , with ©^ .

Lastly, we assert the following inclusion relations 

to summarise normalised classes of functions, K, S*,C, S, as

K c; 5 <=. C <=S,

We humbly state that the spiral - like fpnctigps, 

Typically real functions, Rajtilvic functions are also the



subclasses of family of Univalent fuctions-S,but More we a*% 

concentrated onlv on starlit convex and close-to-convex 

subfamilies, we are not • rushed to define them also.

few^ndowski ( 195B, 1960) £7} gave a geometric
\

characterization of close - to - convex functions. In this 

geometric form, close-to-convex functions had been studied 

by Riernacki (1939) £, 3 ^ , he used the name " linearly 

accessible *' see diagram.

we note that, the close-to-convex functions, starlike 

functions and convex functions are all univalent functions.





.. 10 ..

REFERENCES

1 • Alexander, J.'V.:

Functions which mao the interior of the unit circle 

upon simnle regions, Ann Math. 17 (1^15) pn. 12-22.

2. Barr, A. F. :

The radius of univalence of Certain Classes of 

analytic functions, Ph. D. dissertation, Univ. of 

Mississioi, (1971).

3. Biernacki, M. s

Bur la representation confome des do'naines 

lineairement accessibles, Prace Mat. Fiz. 44, (1936). 

pp. 293-314.

4. Duren, P.t. :-

Univalent functions, Springer Verlag,(l983)

5. Kanlan, W. : -

Close-to-convex Schlicht functions,Michigan 

Maths. J. 1(1952), pp. 169-185.

6. Lehto-Olli. j-

Univalent functions and Teichmuller spaces,Springer

Verlag, (1987)



11

7• Lewandowskl« Z. :-

II, Ann. tJniv. Marlae - Curie - Sktoriovska 14, 

pp. 19-46.

*•••••*
*****
•••

*


