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CHAPTER III
ROUGH FUZZY SETS

III:1 INTRODUCTION

Pawlak [P;] defined rough set as an ordered pair
of lower and upper approximations of a subset of a universal
set. |

Dubois and Prade [Dj,D3] replaced the term
"a subset" by "a fuzzy subset" of the universal set and
introduced the concept of rough fuzzy set, as an ordered

pair of lower and upper approximations of the fuzzy set.

In this chapter we shall discuss the properties of

rough fuzzy set.

III : 2 ROUGH FUZZY SETS
Let K = (U, E) be an approximation space, where
E ={E %' A E&EANA L} is the partition of U. Let R be the

equivalence relation induced by.E.

Definition (III:2:1) ([Dj, D3l
For each fuzzy set X of U, the lower approximation
of X with respect to R, is the fuzzy set RX : £ ---> [0,1]

defined as RX (Ej) = inf{ X (x)|w (Ej) = [x]lg }; where w |is

a mapping form £ to U defined as w (Ej) ={x &U |Ei [xlg }.
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Definition (III:2:2) [Dj, D3]

For each fuzzy set X of U, the upper approximation
of X with respect to R is the fuzzy set RX : £ ~---> [0,1]
defined as ‘

RX (Ej) = sup { X(x)|w(Ej) = [xlg }.

Definition (IIX:2:3) [Dj, D3]

Let (RX, RX) be a rough fuzzy set corrosponding
to a fuzzy set X of U. The fuzzy extensjon w(RX) and w(RX)
of RX and RX respectively are fuzzy sets of U, defined as

follows

W(RX) : U ----> [0, 1] by
w(RX) (X) = RX (Ej), if x ¢ w(Ej) and
w(RX) : U ----> [0,1] by
w(RX) (x)

RX (Ej), if x ¢ w(Ej).

Proposition (III:2:5) [Dyl
A fuzzy set X of U is equal to its lower and upper
approximations, if and only if X is constant on equivalence

classes of R.

Proof :
Suppose that the fuzzy set X of U is constant on
equivalence classes of R.

Let x ¢ E
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Therefore, w(RX) (x) RX (Ej)

inf { X(x)|w(Ej) = [xlg }

inf { X(x) }
X £ Ej

X(x)

Thus, Ww(RX) (x) = X(x).

Similarly w(RX)(x) = X(x)

Hence fuzzy set X is equal to its lower and upper approxima-
tions.

Conversely, suppose that X is equal to its lower and wupper
approximations.

i.e. w(RX)(x) = w(RX)(x) = X(x)

i.e. inf X(x) = Sup X(x) = X(x)
x & Ei x & Ei

This shows that X is constant on equivalence classes of R.

Proposition (III:2:6) ([D;]

Let K = (U, E) be an approximation space. R is an
equivalence relation on U, induced by E. X and Y are fuzzy
sets of U, then following holds.

i) w(RX) € X C w(RX)
i1) w(R(X U Y) = w(RX) U w(RY)
iti) w(R(X n Y)) C w(RX) n w(RY)

iv) w(R(X n Y)) = w(RX) N w(RY)

L

v) w(R(X U Y)) w(RX) n w(RY)

vi) w(-RX) = w(R(-X))
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vii) w{(-RX) = w(R(~-X)})

viii) w(R(W(RX)))

w(R(W(RX))) w(RX)

ix) w(R(w(RX)))

w(R(wW(RX))) w(RX)

Proof : Let x £ U be such that x ¢ Ej £ E.
(i) w(RX)(x)

RX(Ej)

L}

inf { X{y)|w(Ej) = [ylg }

inf X(y)
y ¢ Ej

N

X{x)

N

Sup  X(y) ~
y € Ej

RX(E;)
w(RX) (x)

Thus, W(RX) C X C w(RX).

(1i) w(R(X U ¥))(x) R(X U Y)(E})

SUP  {(X U Y)(x)}
X & Ej

SUP {max{ X(x), y(x) }1}
X € Ej :

max 8UD  x(x), Sup  y(x)
X&Ei X&’.Ei

max {RX(Ej), RY(Ej)}

max {w(RX)(x), w(RY)(x)}

(Ww(RX) U w(RY)) (x)

Thus, Ww(R(X U Y)) w(RX) U w(RY).



(iii) w(R(X n Y))(x)

Thus, w(R(X n Y)) C

(iv) w(R(X n Y))(x)

Thus, WwW(R(X N Y)) =

(v w(R(X U Y))(x)

i

R(X n Y)(Ey)

= 8UD { (X n Y)(x) }

X &€ Ej
= 8Up { min{ X(x), y(x) 11}
X &€ Ej
$ min BUp x(x), BUP_ Y(x)
X &€ Eg X & Ey

min { RX(Ej),

min { w(RX)(x),

w(RX) n w(RY).

R(X n Y)(Ej)

X ¢ E

X & Ej

t x & Ej

min { w(RX)(x),

(w(RX) n w(RY))

w(RX) N w(RY).

R(X U Y)(Ej)

inf { (x u v)
X &€ Ej

RY(Ej) }
w(RY) (x) }

(W(RX) n w(RY))(x)

inf ¢ (x n Y)(x) }
i

inf  { min{ X(x), y(x) }}

min [ inf X(x), inf y(x)

Ej

RY(Ej) }
w(RY) (x) 1}
(x)

(x) 1}

|

|
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= inf  { max{ X(x), y(x) 1}
X £ E§

> max inf x(x), inf y(x)
X & Ej X & Ej

= max { RX(E{), RY(Ej) 1}
= max . { w(RX)(x), w(RY)(x) }
= (w(RX) U w(RY))(x)

LY

Thus, Ww(R(X U Y)) w(RX) U w(RY).

(vi) w{(-RX)(x)

-RX(Ej)
= 1-RX(Ej)

= 1- inf x(x)
X ¢ Ej

]

sup { 1-X(x) 1}
X ¢ Ej

= R(1-X) (Ej)

= R(-X) (Ej)

= w(R(-X)) (x)
Thus, w(-RX) = w(R(-X)).

(vii) Similarly we can prove,

w(-RX) = w(R(-X))

(viii) Since w(RX)(x) = RX(E{); w(RX) is a fuzzy set of U
with constant membership on equivalence classes of
and by proposition (III:2:5),
w(RX) is equal to its lower and upper approximations.

i.e. W(R(W(RX))) = w(R(W(EX))) = w(RX).
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(ix) Similarly we can prove,

W(R(W(RX))) = w(R(W(RX))) = w(RX).

The following proposition shows that the concepts

of rough fuzzy set and rough set agree for crisp sets.

Proposition (III:2:7)
Let Z be a non-empty crisp subset of U, then
R(X,) = 7632 and
R(OX, = Xgg.

Proof

Let Z be a non-empty crisp subset of U. Let x ¢ U

be such that x ¢ Ej ¢ E.

consider, w(R(X;))(x) R(X ) (E{)

inf (x)
X & Ej 7‘2

rl, ifxelyedUllylpcz]

l 0, otherwise

[ 1, if x e R Z

0, otherwise

]

ng(x)
Thus, sz =X RZ
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Similarly,

consider, w(R() ;))(x) ROX,) (Ey)

]

<]

=

©
ks

N~

ol

[ 1,if x ¢ {y ¢ U|lylr n Z # ¢}
0, otherwise

1, if x e R zZ

it

0, otherwise

|

Rz (x)
ThuS, -R'xz =X.R'z.

III:3 SUMMARY

In this chapter we discuss the concept of rough
fuzzy set. Dubois and Prade [Dj,D2] used the fuzzy set
instead of subset of U and ﬁroceeded on the lines of Pawlak

[P;] to obtain the rough fuzzy set. They showed that a rough

fuzzy set have similar properties.

As we have shown in proposition (IIX:2:7), the
treatment of Dubois and Prade [Dj,D2] is satisfactory in the
sense that it agrees with that of Pawlak [P;] when a fuzzy

set is a characteristic function of a crisp set.



