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CHAPTER IV
FUZZY ROUGH FUZZY SETS

IV:1 INTRODUCTION

In previous chapter we canvassed the notion of
rough fuzzy sets introdﬁced by Dubois and Prade [D;,D2].
Dubois and Prade [D;,D2] have approached the problem of
combining the concept of roughness and fuzziness in a dif-
ferent way also; which we are going to discuss here. The new
concept s0 emerged is described by him as a fuzzy rough set.
However, as we shall see in the following discussion it is
not merely a fuzzification of a rough set, but an entirely
new concept. Here, they consider fuzzy equivalence rela-
tions; fuzzy partition and obtain rough set corresponding to
a fuzzy set. This rough set may be more appropriately
called fuzzy rough fuzzy set. However, Dubois and Prade
designate it as a fuzzy rough set. Since the term fuzzy
rough set is already used in Chapter II for a different

concept we shall use thé term fuzzy rough fuzzy set.
We begin with some basic notions.

IV:2 FUZZY RELATION; FUZZY PARTATION
Definition (IV:2:1) [D3;M]

A fuzzy relation R on U is a fuzzy set

R : UXU —> [0,1].
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Note (IV:2:2)
| Throughout this chapter we consider a bianary
operation * on [(0,1] with the following properties
(i) a * (b*c¢c) = (a*Db) *c
(Assocativity)
(ii) a *b =>b * a
(Commutativity)
(iii) a < b implies a*cs<b=*c
(Monotonicity)
(iv) a * 1 = a
(Existence of identity)

where, a,b,c are elements of [(0,1].

Definition 1IV:2:3 [Dj;D2;D3]

A fuzzy relation R on U is a * similarity relation

on U if
(i) R(x,x) =1
| (Reflexivity)
(i1) R(x,y) = R(y,x)
(Commutativity)
(iii) R(x,y) 2 R(x,z) * R(z,Yy)

(*-transitivity)

If * = min, then the above relation is called a

similarity relation on U [2;].



Example (IV:2:4) [B]

Let Rj,Rz,...,Rp be equivalence relations on U.
Let @j,a2,...an be real number's such that ;>0 and I aj =1.
Define
n
Rix,y) = I

aj Ri(x,y).

i=1

Clearly R 1is a fuzzy relation on U. Let T, be a bianary
opération on {0,1], defined by

aThyb = max { 0, a+b-1 }.

Since each Rj is an equivalence relation and Zaj = 1,
R is reflexive and symmetric relation.

We claim that R is Ty, - transitive relation.

To justify the claim we are to show that ¥V x,z ¢ U,

R(x,2) 2 R(x,Y) T R(y,2), VyeU (1)

If R(x,y) + R(y,2)-1 < 0, then Ri(x,y) Ty R(y,z) = 0 and the

equality (i) holds trivially.

Therefore, consider R(x,y) +‘R(y,z)-1 > 0.
By definition, we have

R{x,y) + R(y,2)-1 = T aj( pij(x,¥) + gily.,2z)-1) (i)

Obviousely, coefficient of a; in the above equation |is

either +1 or -1 or 0.

02



o3

Let without the loss of generality it be +1
for i = 1,2, ... , K 6nly.
But then for i = 102) * . 4 IK;

Ri{x,¥) = 1 and Rj(y,z) = 1 and hence Ry(x,2) = 1.

Therefore,

R(x,2)

L}
neMs
2]

[
o]
e
E
N

v

Zajl Rpif(x,¥y) + gily,2)-1)

R(x,y) + R(y,z)~-1

R(x,y) Ty Riy,2).

Hence R is Tp similarity relation on U.

Definition (IV:2:5) [D;,H]

Let U be a universe and R be a *-similarity rela-

tion on U. Then for any x ¢ U, a fuzzy class [x]Jg is a fuzzy

set [xJg : U —> [0,1] defined as
[x]Jg(y) = Ri{x,y), ¥y ¢ U.

Remark (IV:2:6)

If R is the crisp equivalence relation, then fuzzy

class is an equivalence class induced by R.
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Definition (IV:2:7) [D;.,D2,H]

A fuzzy set X of U is called fuzzy egqujivalence
clagsg of a *~-similarity relation R on U, |if,

(i) There is x &€ U such that X(x) =1
(X is normalized)
(ii) X(x) * R(x,y) s X(y) .
(Extensionality condation)
(11i) X(x) * X(y) < R(x,y)

(singlton condation)

Proposition (IV:2:8) [D;,Dj3]

Every fuzzy class is a fuzzy equivalence class.

Proof
For x ¢ U and a *-similarity relation R, consider
the fuzzy class [xI]R.
We claim that (x]lr is fuzzy equivalence class.
(i) Since R is reflexive, Xx & U; R(x,x) = 1.
Therefore, [xlg (x) =1
Thus X is normalized.

(ii) Let v,z ¢ U

[xlg(z) * R(z,y) Rix, @ * R(z,v)

A

R(x,y), since R is *-similarity

relation

(xIgly)

Hence Extensionality condation holds.
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(iii)Let y,2 ¢ U
Therefore,
[xlg(y) * [x]lgr(2z) = R(x,y) * R(x,2)
< R(y,2), since R is *-similarity
relation.
Hence Singlton condation holds.

Thus, ([x]Jgp 1is a fuzzy equivalence class of *-similarity

relation R.

Proposition (IV:2:9) [H]

Let X3, X2 be two equivalence classes be such that

Xy(x) = Xp(x) 1, for some x ¢ U, Then X; = X3.
Proof
Let 2z ¢ U. Then

Xi(2)

Xj(z) * 1

X1(2z) * X1(x) * Xa(x)
< syp { X1(2) * X1(y) * X2(y) 1}

A

Xq(z)
syp { X1(z) * X1(y) * X2(y) }

Thus, X1(2z)

7Y

syp { R(z,y) * X2(y) 1}

A

syp { X2(z) 1}

X2(2)
Therefore, Xi(z) < Xjy(z2)
Similarly, we can prove X3(z) s Xj(2)

Hence, X1 = X3.



ob

Corollary (IV:2:10)

If X1, X; are fuzzy equivalence classes such that

X1 € X2 under the assumption of Prop. (IV:2:9), then X;=X3.

Proof
X3 € Xy implies Xj(x) s X2(x) V¥V x & U.
But, 3x ¢ U such that Xl(x) = 1.

Therefore, Xj(x) = X2(x) =1

Hence the result.
Proposition (IV:2:11) ([D;]

For any x,y ¢ U, x ¥ y and R(x,y) = 1, fuzzy

classes [x]lg and (ylr are equal.

Proof

Let z ¢ U. Then

R(x,2)

[xIg(z)

[\%

R(x,y) * R(y,z2)

R(x,y), since R(x,y) =1

(ylg(z)
Thus (x]gr 2 [vIR
Similarly we can prove [y]R 2 [x]gp

Hence [x]lg = [ylR.
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Proposition (IV:2:12)ID31}

Let X be a fuzzy equivalence class with respect to
*-gimilarity relation R on U. Then x &€ U such that

X = [xlg.

Proof

Since X 1is normalized, there exist x5 ¢ U such

that X(xg) = 1
Consider the fuzzy class [xgplR.

By Prop.(IV:2:8), [xglg is fuzzy equivalence class.

Hence X and [xplr are two fuzzy equivalence classes such

that
X(XO) =] = [XO}R’(XO)

Therefore by proposition (IV:2:9)
X = [xO}

Hence the proof.
Proposition (IV:2:8) and (IV:2:9) leads to the following.
Proposition (IV:2:13)I[D3]

The set of fuzzy equivalence classes is the set

{ {x}R | x e U}, for any *-similarity relation R.
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Definition (IV:2:14)

Let & = { X1,X2,...,Xp } be a family of normal
fuzzy sets and n < |U|. Then ¢ is said to be fuzzy partition

on U, if

(1) inf | max X;(x)| 5
X i=1l,n |-

($ covers U)
(11) min{ X;(x), Xj(x) } <1, ¥ 1i,3; 1% ]

(i.e. all X{'s are disjoint)

Note (IV:2:15)

In [Dy,Dy] fuzzy partition is defined as follows.

(1)  inf ( max  X;(x) ] > 0
X L i=l,n J

(11) sup { min(X;(x), X3(x)) } ¥ i,3; 1 ¥}
X

However, we shall use Def.(IV:2:14) which is moregeneral.

Proposition (IV:2:16)

Let U be the universe. Then a *-gimilarity rela-

tion R on U induces a fuzzy partition on U.

Proof
Let ¢ = |{ [x]R | x e U}

Qur claim is that ¢ is fuzzy partition on U.
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(i) We have for any y ¢ U

U{ [x]Jg | x ¢ U }ly) = sup { [xlgly) } =1 >0
X

Therefore,
inf { mix{ [xlgly) | x e U }} > 0.
(11) Let [xlp % [ylg

suppose that for some z ¢ U
min { {x]R(Q), [ylr(2) } =1

Therefore, |
[xIg(2) = [ylgr(2) =1

But then by Prop.(IV:2:9),
[xlg = [ylgr

This is a contradiction

Hence min{ [xlgr(z), [vlgr(2) } < 1.

Thus ¢ be a fuzzy partitioning of U.

IV:3 FUZZY ROUGH FUZZY SETS
Definition (IV:3:1)I[D;,D2]

Let U be the universe, ¢ = { Xl""'xn }, n < |U|

be a fuzzy partition of U. Let X be a fuzzy set of U. The

lower approximation of X with respect to ¢, is the fuzzy set

PX : & ——> [0,1] defined as follows

PX(Xj) = ipf { max(1l-Xj(x); X(x)) }
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Definition (IV:3:2)([D;,.D3]
Let U be the universe. & = {X;,...,Xp}, n < |U| be
a fuzzy partition of U. Let X be a fuzzy set of U. The upper

approximation of X with respect to ¢, is the fuzzy set PX :
¢ —> [0,1] defined as,

BPX(X4) = sup { min (Xj(x) X{(x)) }
X

Definition (IV:3:3) ([D;,D3]
Let U be the universe, ¢ = { X;,X3,...X, },n < |U|

be a partition of U. A fuzzy rough fuzzy set is a pair
(PX, PX).

Definition (IV:3:4) (Dj,D3]

Let R be a *-similarity relation on U and let
U/R =1{ [xlg | x e U} = ¢ be a fuzzy partitioning of U.
The lower approximation of X with respect to R is the fuzzy

sat
wW(PX) : U —> 1[0,1] defined as follows

wiPX)(x) = i:f { max(X(y), 1-R{x,¥)) } ¥ x ¢ U.

where w is a mapping from U/R to U defined as

W([X]R) = { vy ‘ [X]R = [Y]R }

{ly | vye Ixlg }.

Definition (IV:3:5) [Dj,D;]

Let U/R = { [x]g|x & U } ¢, be a partitioninq of

U and X be a fuzzy set of U. The upper approximation of X

with respect to R is the fuzzy set,



w(PX) : U —> [0,1] defined as,
wi(PX) (x) = B:P { min(X(y), R(x,y)) }

Definition (IV:3:6) [D;,D3l]

A fuzzy rough fuzzy set is a pair (w(PX), w(PX)).

Proposition (IV:3:7)
Let R be a crisp equivalence relation, then the
fuzzy rough fuzzy set defined by Def.(IV:3:3) agrees with

the rough fuzzy set defined by Def.(III:2:3).

Proof
Let @1 = { £xJR1x € U} be a (crisp) partitioning

of U, then by Def.(III:2:3) (RX, RX) be a rough fuzzy set

where,

EX(Ix]R) = iif{ X(y)}[x]R = {y}R } (i)
and

RX([x].) = s:p{ X(y) | [xlp = [yl 1} (ii)

Let, @2 = ﬁxhd |x € U} be a fuzzy partitioning induced by
R

(characteristics function of) R, then by Def.(IV:3:3)

{PX, PX) be a fuzzy rough fuzzy set where

PX(¥(x] ) = inf { max (X(y), 1-X[g] (y) } (iii)
R Yy R
and
§X(x1x] ) = sup { min (X(y), ?([x] (y) 1} (iv)
R y R

61
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Qur claim is that,

PX(X (4] ) = RX(Ix]g ) and
R

PX( Xpgy ) = RX(Ix]g )
R

Consider, gx(?t[x3R)= inf{ max(X(y).1- X4 (v))}, by (III)
Yy R

inf{ X(y) | v & [Xlg }

y

= inf{ X(y) | [xlg = [ylg }
y

= RX([xIR), by (I)

Similarly,

BX(Xix1) = supl min(X(y), X (g] (v)) }, by (IV)
R b4 R

sup { X(y) | v & [xlp }

Yy

= sup { X(y) | [xlg = [ylg }
Y

= RX ([xIR)

Proposition (IV:3:7)
Let ® be a fuzzy partition of U be such that
¢ = U/R, where R be a similarly relation on U. Let x ¢ U be

such that [xlg

Xi € U. Then

wi(PX)(x)

PX ([x]R) and

w{PX) (x)

PX (Ix]R)
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Proof _
w(PX)(x) = igf { max(X(y), 1-R(x,y)) 1}
= inf { max(X(y), 1-[x]g(y)) 1}
b4

= inf { max(X(y), 1-Xj(y)) 1}
= PX (Xjy)
= PX ([xlg)

Similarly,

w(BX)(x) = PX([x]g)

Proposition (IV:3:8)

Let R be a similarity relation on U be such that

U/R = &; fuzzy partitioning of U. Then followings are holds.

i) w(P(xuy wiPX) U w(PY)

ii) w(P(X n Y)) C wi(PX) n w(PY)

iii) w(RP(X n Y)) w(PX) n w(RY)

iv) w(P(X U Y)) 2 w(PX) U w(PY)

v) w(P(-X))

~-w{PX)

vi) wW(P(-X)) = -w(PX)

vii) wi{px) C X C w{PX)

viii) w(PPX) 2 w(PX) and w(PPX) C w(PX)



Proof

(i)

| Thus,

(ii) w(P(X n Y))(x)

Thus,

Let X &

Consider

wiP(X U Y))(x)

wiP(x U YY)

w(B(X n Y))

U

64

sup{ min{(X U Y)(y); Ri(x,vy) }

sup{ min{max(X(y),Y(y)); R(x,y)) 1}

sup{ max(min(X(y) ,R(x,y));

max({Y¥{(y), Ri{x,y))) 1}

max({sup{ min(X(y),R(x,vy)) };
Y

sup{ min(Y(y), R(x,y)) })
Y

max(w(PX)(x), w(PY)(x))
(w(PX) U wi(PY)) (x)

= w(Px) v w(FY)

sup{ min((X n Y)(y); R(x,y) }
b4

sup{ min(min(X(y),Y(y)); R(x,y)) 1}
b4

= gup{ min{min(X(y),R(x,v));
Yy

min(Y¥(y), R(x,vy))) 1}

n

min(sup{ min(X(y),R(x,y)) };
Y

sup{ min(Y(y), R(x,y}) })
b4

min(w(PX)(x), w(PY)(x))

(w(PX) n wi(PY)) (x)

¢ wi(PX) n w(PY)



(iii) w(RP(X n Y))(x)=

Thus,

w(P(X n Y))

(iv) w(P(X U Y))(x)

w

i

Thus,

w(P(X U Y)) =

inf{ max((X n Y)(y); 1-R(x,y) 1}
Y

inf{ max(min(X(y),Y(y)}); 1-Ri{x,y)) 1}
Yy

inf{ min(max(X(y),1-Ri(x,y));
Y

max(Y{y), 1-R(x,y))) 1}

min(inf{ max(X(y),1~-R(x,y)) };
y N

inf{ max(Y(y), 1-R(x,y)) })
Y

min(w(PX)(x), w(PY)(x))"
(Ww(PX) n w(PY)) (x)

w(PX) n w(PY)

inf{ max((X U Y)(y); 1-R(x,y) }
b4

inf{ max(max(X(y),¥(y})); 1-R{x,y)) }
Yy

inf{ max(max(X(y),1-R(x,v));
b4

max(Y(y), 1-R(x.,y))) 1}

max (inf{ max(X(y),1-R(x,y)) };
Yy

inf{ max(Y(y), 1-R(x,y)) 1)
b4

max(w(PX) (x), w(PY)(x}))

(w(PX) U w(PY)) (X)

w{PX}) U w(PY)

65
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(v) w (B(-X))(x) sup{ min(-X(y), R(x,y) }

Yy

sup{ l-max(X(y), 1-R(x,y)) 1}
Yy

= 1-inf{ max(X(y), 1-R(x,y)) }
Y

i}

1- w(BPX) (x)

- wiPX) (x)
Thus,

wi(P(-X)) = -w(PX)

(vi} Similarly we can prove

w{P(-X)) = -w(PX)

(vii) Consider w(PX)(x) = sup{ min(X(y), R(x,y)) }
y .

max{ X{(x), sup {X(y), R(x,y) }1}
b 3 3

[\"4

X(x)

Thus w(PX) = X (1)
We have,

-X ¢ w(P(-X)), Since by (V)

= -w(PX)

Hence,

w(PX) C X (I1)

By (I) and (II)

w(PX) C X C w(PX)

(viii) We have,
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w(PPX) = w(P(w(PX))) and .
w{PPX) = w(P(w(PX)))

To prove (viii), replace X by w(pPX) and w(PX) respectively

in inequality (vii).

IV:4 SUMMARY

We have shown in this chapter that the fuzzy rough
set defined by Dubois and Prade [Dj,D3] is nothing but the
fuzzy rough fuzzy set. Dubois and Prade used fuzzy rela-
tion; fuzzy partition, in the defination of rough set and

obtain fuzzy rough fuzzy set corresponding to a given fuzzy

set.



