CHAPTER-IV FUZZY ROUGH FUZZY SETS

CHAPTER IV

FUZZY ROUGH FUZZY SETS

IV:1 INTRODUCTION

In previous chapter we canvassed the notion of rough fuzzy sets introduced by Dubois and Prade [D1,D2]. Dubois and Prade [D₁,D₂] have approached the problem of combining the concept of roughness and fuzziness in a different way also; which we are going to discuss here. The new concept so emerged is described by him as a fuzzy rough set. However, as we shall see in the following discussion it is not merely a fuzzification of a rough set, but an entirely new concept. Here, they consider fuzzy equivalence relations; fuzzy partition and obtain rough set corresponding to a fuzzy set. This rough set may be more appropriately called fuzzy rough fuzzy set. However, Dubois and Prade designate it as a fuzzy rough set. Since the term fuzzy rough set is already used in Chapter II for a different concept we shall use the term fuzzy rough fuzzy set.

We begin with some basic notions.

IV:2 FUZZY RELATION; FUZZY PARTATION

Definition (IV:2:1) [D3;M]

A <u>fuzzy relation</u> R on U is a fuzzy set $R: UXU \longrightarrow [0,1].$

Note (IV:2:2)

Throughout this chapter we consider a bianary operation * on [0,1] with the following properties :

- (i) a * (b * c) = (a * b) * c (Assocativity)
- (ii) a * b = b * a
 (Commutativity)
- (iv) a * 1 = a
 (Existence of identity)
 where, a,b,c are elements of [0,1].

Definition IV:2:3 [D₁;D₂;D₃]

A fuzzy relation R on U is a $\underline{*}$ similarity relation on U if

- (i) R(x,x) = 1 (Reflexivity)
- (ii) R(x,y) = R(y,x)(Commutativity)
- (iii) $R(x,y) \ge R(x,z) * R(z,y)$ (*-transitivity)

If * = min, then the above relation is called a similarity relation on U [Z₁].

Example (IV:2:4) [B]

Let $\alpha_1,\alpha_2,\ldots,\alpha_n$ be equivalence relations on U. Let $\alpha_1,\alpha_2,\ldots\alpha_n$ be real number's such that $\alpha_i>0$ and Σ α_i =1. Define

$$R(x,y) = \sum_{i=1}^{n} \alpha_i \qquad R_i(x,y).$$

Clearly R is a fuzzy relation on U. Let T_{m} be a bianary operation on [0,1], defined by

$$a T_m b = max \{ 0, a+b-1 \}.$$

Since each R_i is an equivalence relation and $\Sigma \alpha_i = 1$, R is reflexive and symmetric relation.

We claim that R is T_m - transitive relation.

To justify the claim we are to show that $\forall x,z \in U$,

$$R(x,z) \ge R(x,y) T_m R(y,z), \forall y \in U$$
 (i)

If $R(x,y) + R(y,z)-1 \le 0$, then $R(x,y) T_m R(y,z) = 0$ and the equality (i) holds trivially.

Therefore, consider R(x,y) + R(y,z)-1 > 0.

By definition, we have

$$R(x,y) + R(y,z)-1 = \sum \alpha_i(R_i(x,y) + R_i(y,z)-1)$$
 (ii)

Obviousely, coefficient of $\alpha_{\bf i}$ in the above equation is either +1 or -1 or 0.

Let without the loss of generality it be +1 for i = 1, 2, ..., K only.

But then for i = 1, 2, ..., K;

Ri(x,y) = 1 and Ri(y,z) = 1 and hence Ri(x,z) = 1.

Therefore,

$$R(x,z) = \sum_{i=1}^{n} \alpha_{i} R_{i}(x,z)$$

$$\geq \sum_{i=1}^{K} \alpha_{i}$$

$$\geq \sum_{i=1}^{n} \alpha_{i}$$

$$\geq \sum_{i=1}^{n} \alpha_{i} R_{i}(x,y) + R_{i}(y,z)-1$$

$$= R(x,y) + R(y,z)-1$$

$$= R(x,y) T_{m} R(y,z).$$

Hence R is T_m similarity relation on U.

Definition (IV:2:5) [D₁,H]

Let U be a universe and R be a *-similarity relation on U. Then for any x ϵ U, a <u>fuzzy class [x]R</u> is a fuzzy set [x]R : U ---> [0,1] defined as

$$[x]_R(y) = R(x,y), \forall y \in U.$$

Remark (IV:2:6)

If R is the crisp equivalence relation, then fuzzy class is an equivalence class induced by R.

Definition (IV:2:7) [D₁,D₂,H]

A fuzzy set X of U is called <u>fuzzy equivalence</u> class of a *-similarity relation R on U, if,

- (i) There is x ε U such that X(x) = 1(X is normalized)
- (ii) $X(x) * R(x,y) \le X(y)$. (Extensionality condation)
- (iii) $X(x) * X(y) \le R(x,y)$ (Singlton condation)

Proposition (IV:2:8) $[D_1,D_2]$

Every fuzzy class is a fuzzy equivalence class.

Proof

For $x \in U$ and a *-similarity relation R, consider the fuzzy class $[x]_R$.

We claim that $[x]_R$ is fuzzy equivalence class.

- (i) Since R is reflexive, $x \in U$; R(x,x) = 1. Therefore, $[x]_R(x) = 1$ Thus X is normalized.
- (ii) Let y,z ε U

$$[x]_R(z) * R(z,y) = R(x,z) * R(z,y)$$
 $\leq R(x,y)$, since R is *-similarity relation

 $= [x]_{R}(y)$

Hence Extensionality condation holds.

(iii)Let y,z ε U

Therefore,

$$[x]_R(y) * [x]_R(z) = R(x,y) * R(x,z)$$
 $\leq R(y,z)$, since R is *-similarity relation.

Hence Singlton condation holds.

Thus, $[x]_R$ is a fuzzy equivalence class of *-similarity relation R.

Proposition (IV:2:9) [H]

Let X_1 , X_2 be two equivalence classes be such that $X_1(x) = X_2(x) = 1$, for some $x \in U$, Then $X_1 = X_2$.

Proof

Let z & U. Then

$$X_1(z) = X_1(z) * 1$$

$$= X_1(z) * X_1(x) * X_2(x)$$

$$\leq \sup_{Y} \{ X_1(z) * X_1(y) * X_2(y) \}$$

$$\leq X_1(z)$$
Thus, $X_1(z) = \sup_{Y} \{ X_1(z) * X_1(y) * X_2(y) \}$

$$\leq \sup_{Y} \{ R(z,y) * X_2(y) \}$$

$$\leq \sup_{Y} \{ X_2(z) \}$$

$$= X_2(z)$$

Therefore, $X_1(z) \le X_2(z)$

Similarly, we can prove $X_2(z) \le X_1(z)$

Hence, $X_1 = X_2$.

Corollary (IV:2:10)

If X_1 , X_2 are fuzzy equivalence classes such that $X_1 \subseteq X_2$ under the assumption of Prop. (IV:2:9), then $X_1=X_2$.

Proof

 $X_1 \subseteq X_2$ implies $X_1(x) \le X_2(x) \quad \forall x \in U$. But, $\exists x \in U$ such that $X_1(x) = 1$.

Therefore, $X_1(x) = X_2(x) = 1$ Hence the result.

Proposition (IV:2:11) [D₁]

For any x,y ϵ U, x \dagger y and R(x,y) = 1, fuzzy classes [x]_R and [y]_R are equal.

Proof

Let $z \in U$. Then $[x]_R(z) = R(x,z)$ $\geq R(x,y) * R(y,z)$ = R(x,y), since R(x,y) = 1 $= [y]_R(z)$ Thus $[x]_R \geq [y]_R$ Similarly we can prove $[y]_R \geq [x]_R$ Hence $[x]_R = [y]_R$.

Proposition (IV:2:12)[D₂]

Let X be a fuzzy equivalence class with respect to \star -similarity relation R on U. Then $x \in U$ such that

$$X = [x]_R.$$

Proof

Since X is normalized, there exist $x_0 \in U$ such that $X(x_0) = 1$

Consider the fuzzy class [xo]R.

By Prop.(IV:2:8), $[x_0]_R$ is fuzzy equivalence class.

Hence X and $[x_0]_R$ are two fuzzy equivalence classes such that

$$X(x_0) = 1 = [x_0]_R \cdot (x_0)$$

Therefore by proposition (IV:2:9)

$$X = [x_0]$$

Hence the proof.

Proposition (IV:2:8) and (IV:2:9) leads to the following.

Proposition (IV:2:13)[D2]

The set of fuzzy equivalence classes is the set $\{ [x]_R \mid x \in U \}$, for any *-similarity relation R.

Definition (IV:2:14)

Let $\Phi = \{ X_1, X_2, \dots, X_n \}$ be a family of normal fuzzy sets and n < |U|. Then Φ is said to be <u>fuzzy partition</u> on U, if

(i)
$$\inf_{\mathbf{x}} \left[\max_{i=1,n} X_i(\mathbf{x}) \right] > 0$$

(Φ covers U)

(ii) $\min\{X_i(x), X_j(x)\} < 1, \forall i,j; 1 \neq j$ (i.e. all X_i 's are disjoint)

Note (IV:2:15)

In $[D_1,D_2]$ fuzzy partition is defined as follows.

(i)
$$\inf_{\mathbf{x}} \left[\max_{\mathbf{i}=1,n} X_{\mathbf{i}}(\mathbf{x}) \right] > 0$$

(ii)
$$\sup_{\mathbf{x}} \{ \min(\mathbf{X}_{\mathbf{i}}(\mathbf{x}), \mathbf{X}_{\mathbf{j}}(\mathbf{x})) \} \forall i,j; i \neq j$$

However, we shall use Def. (IV: 2:14) which is moregeneral.

Proposition (IV:2:16)

Let U be the universe. Then a *-similarity relation R on U induces a fuzzy partition on U.

Proof

Let
$$\Phi = \{ [x]_R \mid x \in U \}$$

Our claim is that Φ is fuzzy partition on U.

min { $[x]_R(z)$, $[y]_R(z)$ } = 1

Therefore, $[x]_R(z) = [y]_R(z) = 1$ But then by Prop.(IV:2:9), $[x]_R = [y]_R$ This is a contradiction

Hence min{ $[x]_R(z)$, $[y]_R(z)$ } < 1. Thus Φ be a fuzzy partitioning of U.

IV:3 FUZZY ROUGH FUZZY SETS Definition (IV:3:1)[D₁,D₂]

Let U be the universe, $\Phi = \{ X_1, \dots, X_n \}$, n < |U| be a fuzzy partition of U. Let X be a fuzzy set of U. The lower approximation of X with respect to Φ , is the fuzzy set

 $\underline{P}X : \Phi \longrightarrow [0,1] \text{ defined as follows} :$ $\underline{P}X(X_i) = \inf \{ \max(1-X_i(x); X(x)) \}$

Definition $(IV:3:2)[D_1,D_2]$

Let U be the universe. $\Phi = \{X_1, \ldots, X_n\}$, n < |U| be a fuzzy partition of U. Let X be a fuzzy set of U. The <u>upper approximation</u> of X with respect to Φ , is the fuzzy set $\overline{P}X : \Phi \longrightarrow [0,1]$ defined as,

$$\overline{P}X(X_i) = \sup_{x} \{ \min_{x} (X_i(x) X(x)) \}$$

Definition (IV:3:3) $[D_1,D_2]$

Let U be the universe, $\Phi = \{ X_1, X_2, ..., X_n \}, n < |U|$ be a partition of U. A <u>fuzzy rough fuzzy set</u> is a pair $(PX, \bar{P}X)$.

Definition (IV: 3:4) [D₁,D₂]

Let R be a *-similarity relation on U and let $U/R = \{ [x]_R \mid x \in U \} = \Phi$ be a fuzzy partitioning of U. The <u>lower approximation</u> of X with respect to R is the fuzzy set

$$w(\underline{P}X) : U \longrightarrow [0,1]$$
 defined as follows
$$w(\overline{P}X)(x) = \inf_{x} \{ \max(X(y), 1-R(x,y)) \} \quad \forall x \in U.$$

where w is a mapping from U/R to U defined as

$$w([x]_R) = \{ y \mid [x]_R = [y]_R \} = \{ y \mid y \in [x]_R \}.$$

Definition (IV:3:5) $[D_1,D_2]$

Let $U/R = \{ [x]_R | x \in U \} = \Phi$, be a partitioning of U and X be a fuzzy set of U. The <u>upper approximation</u> of X with respect to R is the fuzzy set,

$$w(\overline{P}X) : U \longrightarrow [0,1]$$
 defined as,
 $w(\overline{P}X) (x) = \sup_{X} \{ \min(X(y), R(x,y)) \}$

Definition (IV:3:6) $[D_1,D_2]$

A fuzzy rough fuzzy set is a pair (w(PX), w(PX)).

Proposition (IV:3:7)

Let R be a crisp equivalence relation, then the fuzzy rough fuzzy set defined by Def.(IV:3:3) agrees with the rough fuzzy set defined by Def.(III:2:3).

Proof

Let $\Phi_1 = \{ [x]_R | x \in U \}$ be a (crisp) partitioning of U, then by Def.(III:2:3) (RX, RX) be a rough fuzzy set where,

$$\underline{R}X([x]_{R}) = \inf_{X} \{ X(y) | [x]_{R} = [y]_{R} \}$$
 (i)

and

$$\overline{R}X([x]_{R}) = \sup_{X} \{X(y) | [x]_{R} = [y]_{R} \}$$
 (ii)

Let, $\Phi_2 = \{X_{[x]_R} | x \in U \}$ be a fuzzy partitioning induced by (characteristics function of) R, then by Def.(IV:3:3) $(\underline{P}X, \overline{P}X)$ be a fuzzy rough fuzzy set where

$$\underline{P}_{X}(\chi_{[x]}) = \inf_{X} \{ \max_{Y} (X(Y), 1-\chi_{[x]}(Y) \} \}$$
 (iii)

and

$$\bar{p}_{X}(X_{[x]}) = \sup_{R} \{ \min_{Y} \{ \min_{X(Y)}, X_{[x]} \} \}$$
 (iv)

Our claim is that,

$$\underline{P}X(X_{[x]_R}) = \underline{R}X([x]_R) \quad \text{and} \quad \\ \bar{P}X(X_{[x]_R}) = RX([x]_R)$$

Consider,
$$\underline{P}X(\mathcal{X}_{[x]}_{R}) = \inf_{\mathbf{Y}} \{\max(X(\mathbf{Y}), 1-\mathcal{X}_{[x]}_{R}(\mathbf{Y}))\}$$
, by (III)
$$= \inf_{\mathbf{Y}} \{X(\mathbf{Y}) \mid \mathbf{Y} \in [X]_{R}\}$$

$$= \inf_{\mathbf{Y}} \{X(\mathbf{Y}) \mid [x]_{R} = [\mathbf{Y}]_{R}\}$$

$$= \underline{R}X([x]_{R}), \quad \text{by (I)}$$

Similarly,

$$\bar{P}X(X_{[X]}) = \sup_{Y} \{\min(X(Y), X_{[X]}(Y)) \}, \text{ by (IV)}$$

$$= \sup_{Y} \{X(Y) \mid Y \in [X]_{R} \}$$

$$= \sup_{Y} \{X(Y) \mid [X]_{R} = [Y]_{R} \}$$

$$= \bar{R}X ([X]_{R})$$

Proposition (IV:3:7)

Let Φ be a fuzzy partition of U be such that Φ = U/R, where R be a similarly relation on U. Let x ϵ U be such that $[x]_R = X_i \epsilon$ U. Then

$$w(\underline{P}X)(x) = \underline{P}X ([x]_{R})$$
 and $w(\overline{P}X)(x) = \overline{P}X ([x]_{R})$

Proof

$$w(\underline{P}X)(x) = \inf \{ \max(X(y), 1-R(x,y)) \}$$
 y

$$= \inf \{ \max(X(y), 1-[x]_{R}(y)) \}$$
 y

$$= \inf \{ \max(X(y), 1-X_{i}(y)) \}$$

$$= \underline{P}X (X_{i})$$

$$= \underline{P}X ([x]_{R})$$

Similarly,

$$w(\bar{P}X)(x) = \bar{P}X([x]_{R})$$

Proposition (IV:3:8)

Let R be a similarity relation on U be such that $U/R = \Phi$; fuzzy partitioning of U. Then followings are holds.

- i) $w(\overline{P}(X \cup Y)) = w(\overline{P}X) \cup w(\overline{P}Y)$
- ii) $w(\bar{P}(X \cap Y)) \subseteq w(\bar{P}X) \cap w(\bar{P}Y)$
- iii) $w(\underline{P}(X \cap Y)) = w(\underline{P}X) \cap w(\underline{P}Y)$
 - iv) $w(\underline{P}(X \cup Y)) \supseteq w(\underline{P}X) \cup w(\underline{P}Y)$
 - $v) \quad w(\tilde{P}(-X)) = -w(\underline{P}X)$
 - $vi) \quad w(\underline{P}(-X)) = -w(\tilde{P}X)$
- vii) $w(\underline{p}x) \subseteq X \subseteq w(\overline{p}X)$
- viii) $w(\overline{PP}X) \supseteq w(\overline{P}X)$ and $w(\underline{PP}X) \subseteq w(\underline{P}X)$

```
Proof
          Let x ε U
 (i) Consider
      w(\overline{P}(X \cup Y))(x) =
                               \sup \{ \min((X \cup Y)(y); R(x,y) \}
                               \sup \{ \min(\max(X(y),Y(y)); R(x,y)) \}
                               sup{ max(min(X(y),R(x,y));
                                      max(Y(y), R(x,y))) }
                               \max(\sup\{\min(X(y),R(x,y))\};
                                     \sup \{ \min(Y(y), R(x,y)) \} 
                               max(w(PX)(x), w(PY)(x))
                              (w(PX) U w(PY)) (x)
Thus,
       w(\overline{P}(X \cup Y)) = w(\overline{P}X) \cup w(\overline{P}Y)
(ii) w(\overline{P}(X \cap Y))(x) = \sup\{\min((X \cap Y)(y); R(x,y))\}
                                \sup \{ \min(\min(X(y),Y(y)); R(x,y)) \}
                                 Y
                                sup{ min(min(X(y),R(x,y));
                                      min(Y(y), R(x,y))) }
                            s min(sup{ min(X(y),R(x,y)) };
                                     \sup \{ \min(Y(y), R(x,y)) \} 
                                       Y
                                min(w(\overline{P}X)(x), w(\overline{P}Y)(x))
                                (w(\overline{P}X) \cap w(\overline{P}Y)) (x)
Thus,
       w(\overline{P}(X \cap Y)) \subseteq w(\overline{P}X) \cap w(\overline{P}Y)
```

```
(iii) w(\underline{P}(X \cap Y))(x) = \inf\{ \max((X \cap Y)(y); 1-R(x,y) \}
                             = inf{ max(min(X(y),Y(y)); 1-R(x,y)) }
                             = \inf\{\min(\max(X(y), 1-R(x,y));
                                       max(Y(y), 1-R(x,y)))}
                             = min(inf{ max(X(y), 1-R(x,y)) };
                                      \inf\{\max(Y(y), 1-R(x,y))\}
                             = min(w(\underline{P}X)(x), w(\underline{P}Y)(x))
                             = (w(\underline{P}X) \cap w(\underline{P}Y)) (x)
Thus,
       w(\underline{P}(X \cap Y)) = w(\underline{P}X) \cap w(\underline{P}Y)
  (iv) w(\underline{P}(X \cup Y))(x) = \inf\{\max((X \cup Y)(y); 1-R(x,y))\}
                                \inf \{ \max(\max(X(y),Y(y)); 1-R(x,y)) \}
                             = \inf\{\max(\max(X(y), 1-R(x,y));
                                         max(Y(y), 1-R(x,y))) }
                             \geq \max(\inf\{\max(X(y), 1-R(x,y))\};
                                        \inf\{\max(Y(y), 1-R(x,y))\}
                             = \max(w(\underline{P}X)(x), w(\underline{P}Y)(x))
                              = (w(\underline{P}X) \cup w(\underline{P}Y)) (x)
Thus,
       w(\underline{P}(X \cup Y)) \supseteq w(\underline{P}X) \cup w(\underline{P}Y)
```

(viii) We have,

(v) w $(\overline{P}(-X))(x) = \sup\{\min(-X(y), R(x,y))\}$

$$w(\overline{PPX}) = w(\overline{P}(w(\overline{PX})))$$
 and $w(\underline{PPX}) = w(\underline{P}(w(\underline{PX})))$

To prove (viii), replace X by $w(\underline{P}X)$ and w(PX) respectively in inequality (vii).

IV:4 SUMMARY

We have shown in this chapter that the fuzzy rough set defined by Dubois and Prade $\{D_1,D_2\}$ is nothing but the fuzzy rough fuzzy set. Dubois and Prade used fuzzy relation; fuzzy partition, in the defination of rough set and obtain fuzzy rough fuzzy set corresponding to a given fuzzy set.