

泟 A Study Of Fuzzy Lattices

Chapter 3

* Fuzzy Lattices *

§3.1 Definition:

"A fuzzy partially ordered set X is called a Fuzzy Lattice if every two elements (i.e., every pair of elements) in X has a fuzzy least upper bound and a fuzzy greatest lower bound."

Let $<X, R>$ be fuzzy partial ordered set. Let $x, y \in X$. If fuzzy least upper bound denoted by $x V y$ and fuzzy greatest lower bound denoted by $x \Lambda y$ exists for all $x, y \in X$ then $\langle X, R\rangle$ is a fuzzy lattice.

Examples:

1) Let $X=[a, a+n]$ where $a, n \in I R$ and $n>0$. Let $R=$ "almost less than or equal to" be a fuzzy relation defined on X as a function $R: X \times X \rightarrow[0,1]$ defined by,

$$
\begin{array}{rlrl}
R(x, y) & =1 & \text { if } \quad x=y \\
& =(y-x) / n \cdot \text { if } \quad x<y \\
& =0 & \text { else. }
\end{array}
$$

Then (X, R) is a fuzzy lattice.
Proof: - First we will prove that (X, R) is a fuzzy poset.
i) Fuzzy Reflexivity:

Now, $R(x, x)=1 \quad \forall x \in X . \quad$ (by definition of R)
$\therefore \mathrm{R}$ is a fuzzy reflexive relation.
ii) Fuzzy Perfectly Antisymmetrivity:

Let $\mathrm{x} \neq \mathrm{y}$ in X and $\mathrm{R}(\mathrm{x}, \mathrm{y})>0$
Now, by definition of $R, R(x, y)=(y-x) / n$
$\therefore \mathrm{x}<\mathrm{y}$
$\therefore \mathrm{R}(\mathrm{y}, \mathrm{x})=0$
(by definition of R)
$\therefore \mathrm{R}$ is a fuzzy perfectly antisymmetric relation.

iii) Fuzzy max-min transitivity:

Let $(\mathrm{x}, \mathrm{z}) \in \mathrm{X}^{2}$.
To prove: $\mathrm{R}(\mathrm{x}, \mathrm{z}) \geq \max \min (\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{y}, \mathrm{z}))$ \qquad

$$
\begin{equation*}
y \in X \tag{1}
\end{equation*}
$$

case a) Let $\mathrm{x}=\mathrm{z}$,

$$
\begin{aligned}
& \therefore R(x, z)=1 \\
& \therefore R(x, z) \geq \max _{y \in X} \min (R(x, y), R(y, z))
\end{aligned}
$$

case b) Let $\mathrm{x}<\mathrm{z}$
for all $\mathrm{y} \in \mathrm{X}$ such that $\mathrm{y}<\mathrm{x}$,

$$
R(x, y)=0 \quad \text { (by definition of } R)
$$

$$
\therefore \min (R(x, y), R(y, z))=0
$$

for all $\mathrm{y} \in \mathrm{X}$ such that $\mathrm{y}=\mathrm{x}$,

$$
\begin{aligned}
& R(x, y)=1 \text { and } R(x, z)=R(y, z) \\
& \therefore \min (R(x, y), R(y, z))=R(y, z) \\
& \therefore \min (R(x, y), R(y, z))=R(x, z)
\end{aligned}
$$

for all $\mathrm{y} \in \mathrm{X}$ such that $\mathrm{x}<\mathrm{y}<\mathrm{z}$,
$R(x, y)<R(x, z)$ and $R(y, z)<R(x, z)$
$\therefore \min (\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{y}, \mathrm{z}))<\mathrm{R}(\mathrm{x}, \mathrm{z})$
for all $y \in X$ such that $y=z$,

$$
R(y, z)=1 \text { and } R(x, z)=R(x, y)
$$

$$
\therefore \min (\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{y}, \mathrm{z}))=\mathrm{R}(\mathrm{x}, \mathrm{y})
$$

$$
\therefore \min (\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{y}, \mathrm{z}))=\mathrm{R}(\mathrm{x}, \mathrm{z})
$$

for all $y \in X$ such that $z<y$,

$$
\begin{gathered}
R(y, z)=0 \quad \text { (by definition of } R) \\
\therefore \min (R(x, y), R(y, z))=0 \\
\text { Thus, } R(x, z) \geq \max _{y \in X} \min (R(x, y), R(y, z))
\end{gathered}
$$

case c) Let $\mathrm{x}>\mathrm{z}$
$\therefore \mathrm{R}(\mathrm{x}, \mathrm{z})=0$
Thus to prove: $\max \min (\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{y}, \mathrm{z}))=0$ $y \in X$
i.e., To prove, $\min (R(x, y), R(y, z))=0 \forall y \in X$ for all y such that $y \leq z$, Hence $y<x$
$\therefore \mathrm{R}(\mathrm{x}, \mathrm{y})=0$
$\therefore \min (R(x, y), R(y, z))=0$
for all y such that $z<y<x$,
$\therefore \mathrm{R}(\mathrm{x}, \mathrm{y})=0$ and $\mathrm{R}(\mathrm{y}, \mathrm{z})=0$
$\therefore \min (R(x, y), R(y, z))=0$
for all y such that $z<x \leq y$,
$\therefore \mathrm{R}(\mathrm{y}, \mathrm{z})=0$
$\therefore \min (\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{y}, \mathrm{z}))=0$
$\therefore \min (\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{y}, \mathrm{z}))=0 \forall \mathrm{y}$
Thus from case (a), (b) and (c), equation in (1) holds true.
Thus R is fuzzy max - min transitive relation.
Hence (X, R) is fuzzy partial order set.

Now we will prove that any two-elements set in X has fuzzy least upper bound and fuzzy greatest lower bound.
So let $A=\{x, y\} \subseteq X$ where $x \neq y$
Now $\mathrm{x}, \mathrm{y} \in \mathrm{X} \subseteq \mathbb{R}$
\therefore Either $\mathrm{x}<\mathrm{y}$ or $\mathrm{y}<\mathrm{x}$
Let without loss of generality, $\mathrm{x}<\mathrm{y}$
$\therefore \mathrm{R}(\mathrm{x}, \mathrm{y})=(\mathrm{y}-\mathrm{x}) / \mathrm{n}$ and
$\therefore \mathrm{R}(\mathrm{y}, \mathrm{x})=0$
(By definition of R)
Now by Definition of R_{2}, We have

$$
\text { Now, } U(R, A)=R \geq[x] \cap R \geq[y]
$$

$$
\therefore U(R, A)=\left\{\frac{(y-x) / n}{y}+\frac{(m-y) / n}{m} / m>y\right\}
$$

Now, Clearly ' y ' is a fuzzy least upper bound of a set A. Similarly, ' x ' is a fuzzy greatest lower bound of a set A.
Thus the set A has fuzzy least upper bound and fuzzy greatest lower bound.
Hence every two element non-fuzzy subset of X has a fuzzy least upper bound and fuzzy greatest lower bound.

Hence, $<X, R>$ is a fuzzy lattice.
Consider $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and
$R(X, X)$ is given by membership matrix as follows:

	x_{1}	X_{2}	X_{3}	x_{4}	x_{5}	x_{6}
x_{1}	1	0	0	0	0	0
x_{2}	0.6	1	0	0	0.8	0
x_{3}	0.6	0.9	1	0.1	0.8	0.4
x_{4}	0	0	0	1	0.3	0
x_{5}	0	0	0	0	1	0
x_{6}	0	0	0	0	1	1

$$
\begin{aligned}
& \therefore R \geq[x]=\left\{\frac{0}{u_{1}}+\frac{1}{u_{2}}+\frac{\left(u_{3}-x\right) / n / n}{u_{3}} / \begin{array}{l}
u_{1}<x, u_{2}=x, u_{3}>x \\
u_{1}, u_{2}, u_{3} \in X
\end{array}\right\} \\
& \therefore R \geq[y]=\left\{\frac{0}{v_{1}}+\frac{1}{v_{2}}+\frac{\left(v_{3}-y\right) / n}{v_{3}} / \begin{array}{c}
v_{1}<y, v_{2}=y, v_{3}>y \\
v_{1}, v_{2}, v_{3} \in X
\end{array}\right\}
\end{aligned}
$$

The Case diagram is,

Here the ordered pair (X,R) is a fuzzy lattice.

Note: Every fuzzy lattice is a fuzzy partial order set
But converse need not be true.
Counter Example: Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ and $R(X, X)$ is given by membership matrix as follows:

	x_{1}	X_{2}	x_{3}	x_{4}	x_{5}
x_{1}	1	0.8	0.2	0.6	0.6
x_{2}	0	1	0	0	0.6
x_{3}	0	0	1	0	0.5
x_{4}	0	0	0	1	0.6
x_{5}	0	0	0	0	1

The Case diagram is,

Here (X, R) is a partially order set.
Consider $\mathrm{A}=\left\{\mathrm{x}_{1}, \mathrm{x}_{5}\right\}$
Now, $R \geq\left[x_{1}\right]=\left\{1 / x_{1}\right\}$ and $R \geq\left[x_{s}\right]=\left\{1 / x_{s}\right\}$
Now, $\mathrm{U}(\mathrm{R}, \mathrm{A})=\mathrm{R} \geq\left[\mathrm{x}_{1}\right] \cap \mathrm{R} \geq\left[\mathrm{x}_{5}\right]$
(Refer §2.4.1)
$\therefore \mathrm{U}(\mathrm{R}, \mathrm{A})=\varnothing$
ie. fuzzy least upper bound of A does not exists.
\therefore The ordered pair (X, R) is not a fuzzy lattice.

§3.2 PROPERTIES OF FUZZY LATTICES:

Idempotent Law: $\quad \mathrm{x} V \mathrm{x}=\mathrm{x}$ and $\mathrm{x} \Lambda \mathrm{x}=\mathrm{x}$
Commutative Law: $\quad x V y=y V x$ and $x \Lambda y=y \Lambda x$
Associative Law: $\quad x V(y V z)=(x \vee y) V z$
and $x \Lambda(y \Lambda z)=(x \Lambda y) \Lambda z$
Absorption Law: $\quad x \vee(x \Lambda y)=x$ and $x \Lambda(x \vee y)=x$

Theorem 3.1:

If X is a non-empty non-fuzzy set in which two fuzzy binary operations Λ, V are defined and satisfy the above stated properties, then a fuzzy partial order can be defined on set X such that X becomes a fuzzy lattice in which $\mathrm{x} V \mathrm{y}$ and $\mathrm{x} \Lambda \mathrm{y}$ are fuzzy least upper bound and fuzzy greatest lower bound of non-fuzzy subset $\{\mathrm{x}, \mathrm{y}$) of X respectively.

Proof:

Let X be a nonempty and non-fuzzy set in which two fuzzy binary operations Λ, V are defined and satisfy the above stated properties.

Define a fuzzy relation $\mathrm{R}: \mathrm{X} \times \mathrm{X} \rightarrow[0,1]$ as,

$$
\forall x, y \in X \text { and } n \in(0,1)
$$

$$
\begin{aligned}
R(x, y) & =1 & & \text { if } x=y \\
& =n & & \text { if } x V y=y \text { and } x \wedge y=x \\
& =0 & & \text { else }
\end{aligned}
$$

To prove: $-(X, R)$ is a fuzzy partial order set.
i) Fuzzy Reflexivity:

Now, by definition of R,

$$
R(x, x)=1 \quad \forall x \in X
$$

$\therefore R$ is a fuzzy reflexive relation.
ii) Fuzzy Perfectly Antisymmetrivity:

Let $x \neq y$ and $R(x, y)>0$
$\therefore \mathrm{R}(\mathrm{x}, \mathrm{y})=\mathrm{n}$
$\therefore x \vee y=y$ and $x \Lambda y=x$
By commutative property,
$y \vee x=x \vee y=y \neq x$ and $y \Lambda x=x \Lambda y=x \neq y$
Thus $y \vee x \neq x$ and $y \Lambda x \neq y$
$\therefore \mathrm{R}(\mathrm{y}, \mathrm{x})=0$
(by definition of R)
Thus $x \neq y$ and $R(x, y)>0 \Rightarrow R(y, x)=0$
$\therefore \mathrm{R}$ is a fuzzy perfectly antisymmetric relation.
iii) Fuzzy Max-Min Transitivity:

Let $(x, z) \in X^{2}$
To prove: $\quad R(x, z) \geq \max \min (R(x, y), R(y, z))$ $y \in X$

If $x=z$ then $R(x, z)=1 \quad$ (by definition of R)
$\therefore \mathrm{R}(\mathrm{x}, \mathrm{z}) \geq \max \min (\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{R}(\mathrm{y}, \mathrm{z}))$
If $x \neq z$ then either $R(x, z)=n$ or $R(x, z)=0$
case a) Let $R(x, z)=n$
$\therefore \mathrm{xVz}=\mathrm{z}$ and $\mathrm{x} \Lambda \mathrm{z}=\mathrm{x}$ (by definition of R)
Now, for all $y \in X$ such that $y=x$ and $y \neq z$

$$
R(x, y)=1 \text { and } R(y, z)=n \text { or } 0
$$

$\therefore \min (R(x, y), R(y, z))=R(y, z)$

$$
=R(x, z)(A s, y=x)
$$

Now, for all $y \in X$ such that $y=z$ and $y \neq x$

$$
R(x, y)=n \quad \text { or } 0 \text { and } R(y, z)=1
$$

$\therefore \min (R(x, y), R(y, z))=R(x, y)=R(x, z)$
Now, for all $y \in X$ such that $y \neq x$ and $y \neq z$

$$
R(x, y)=n \text { or } 0 \text { and } R(y, z)=n \text { or } 0
$$

$\therefore \min (R(x, y), R(y, z))=n$ or 0

$$
\leq R(x, z)
$$

Thus, $R(x, z) \geq \max \min (R(x, y), R(y, z))$

$$
y \in X
$$

Case b) \quad Let $R(x, z)=0$
$\therefore \mathrm{x} V \mathrm{z} \neq \mathrm{z}$ or $\mathrm{x} \wedge \mathrm{z} \neq \mathrm{x}$ (by definition of R)
To prove: $\quad R(x, z) \geq \max \min (R(x, y), R(y, z))$ $y \in X$

OR $\quad 0 \geq \max \min (R(x, y), R(y, z))$

$$
y \in X \quad(\text { since } R(x, z)=0)
$$

OR $\quad \max \min (R(x, y), R(y, z))=0$ $y \in X$

OR $\quad \min (R(x, y), R(y, z))=0 \quad \forall y \in X$
OR $\quad R(x, y)=0$ or $R(y, z)=0 \quad \forall y \in X$
OR equivalently for $y \in X$,
Prove: $\quad R(x, y)=0$ or $R(y, z)=0$

Let, if possible, $R(x, y)>0, R(y, z)>0$
i.e., $R(x, y) \geq n$ and $R(y, z) \geq n$
$\therefore x V y=y, x \wedge y=x, y V z=z, y \Lambda z=y$
Now, $(x \vee y) \vee z=y \vee z=z$ and
$(x \vee y) V z=x V(y \vee z)=x \vee z$
$\therefore \mathrm{xVz}=\mathrm{z}$
Also, $(x \wedge y) \wedge z=x \wedge z$ and
$(x \wedge y) \wedge z=x \Lambda(y \wedge z)=x \wedge y=x$
$\therefore \mathrm{x} \wedge \mathrm{z}=\mathrm{x}$
Thus we get $x \vee z=z$ and $x \wedge z=x$
Which is a contradiction to given data.

$$
\therefore \mathrm{R}(\mathrm{x}, \mathrm{y})=0 \text { or } \mathrm{R}(\mathrm{y}, \mathrm{z})=0
$$

Thus R is fuzzy max-min transitive relation.
Thus R is fuzzy partial order.
Thus (X, R) is a fuzzy partial order set.
Now, To prove : (X, R) is a fuzzy lattice.
Let, $A=\{x, y\} \subseteq X$
Thus, To prove: Fuzzy least upper bound and fuzzy greatest lower bound of a non-empty non-fuzzy subset A of X exists and $x \vee y$ and $x \wedge z$ are the fuzzy least upper bound and fuzzy greatest lower bound of A respectively.
Now, Λ and V are binary operations defined on X.
Hence $x \vee y$ and $x \Lambda y$ exists in X.
Let $x \vee y=z_{1}$ and $x \Lambda y=z_{2}$
Thus, to prove: $\quad z_{1}$ and z_{2} are the fuzzy least upper bound and fuzzy greatest lower bound of A respectively.
Consider, $\quad x \wedge z_{1}=x \wedge(x \vee y)=x$ and

$$
x \vee z_{1}=x \vee(x \vee y)=x \vee y=z_{1}
$$

Thus, $x \wedge z_{1}=x$ and $x \vee z_{1}=z_{1}$
Thus, $\mathrm{R}\left(\mathrm{x}, \mathrm{z}_{1}\right)>0$
Similarly, $\quad R\left(y, z_{1}\right)>0$
$\therefore \min \left(R\left(x, z_{1}\right), R\left(y, z_{1}\right)\right)>0$
$\therefore \min \left(R \geq[x]\left(z_{1}\right), R \geq[y]\left(z_{1}\right)\right)>0 \quad$ (By definition of $R \geq$ class)
$\therefore\left(R_{2}[x] \cap R_{z}[y]\right)\left(z_{1}\right)>0$ (By definition of Fuzzy intersection.)
$\therefore \mathrm{U}(\mathrm{R}, \mathrm{A})\left(\mathrm{z}_{1}\right)>0$ \qquad (1)(By definition of fuzzy upper bound)

Let m supports $U(R, A)$. i.e., $U(R, A)(m)>0$
$\therefore\left(\mathrm{R}_{2}[\mathrm{x}] \cap \mathrm{R} 2[\mathrm{y}]\right)(\mathrm{m})>0$ (By definition of fuzzy upper bound)
$\therefore \min \left(\mathrm{R}_{2}[\mathrm{x}](\mathrm{m}), \mathrm{R}_{2}[\mathrm{y}](\mathrm{m})\right)>0$
(Refer §1.2)
$\therefore \min (\mathrm{R}(\mathrm{x}, \mathrm{m}), \mathrm{R}(\mathrm{y}, \mathrm{m}))>0$
(By definition of Rzclass)
$\therefore \mathrm{R}(\mathrm{x}, \mathrm{m})>0$ and $\mathrm{R}(\mathrm{y}, \mathrm{m})>0$
$\therefore \mathrm{R}(\mathrm{x} V \mathrm{y}, \mathrm{m})>0$
(By theorem 2.2)
$\therefore \mathrm{R}\left(\mathrm{z}_{1}, \mathrm{~m}\right)>0$
Thus, $R\left(z_{1}, m\right)>0$ for all m that supports $U(R, A)$ \qquad (2)

Thus, from (1) \& (2), and by definition of fuzzy least upper bound z_{1} is a fuzzy least upper bound of A (Refer §2.5.1) Similarly we can show that z_{2} is a fuzzy greatest lower bound of A Thus, any two elements non-fuzzy subset A of X has fuzzy least upper bound and fuzzy greatest lower bound.
i.e., $\mathrm{x} V \mathrm{y}$ and $\mathrm{x} \Lambda \mathrm{y}$ is a fuzzy least upper bound and fuzzy greatest lower bound for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Hence (X, R) is a fuzzy lattice.

A Study Of Fuzzy Lattices

§3.3 Fuzzy Lattice as Algebra:

"If X is a nonempty, non-fuzzy set in which two fuzzy binary operations Λ, V are defined and satisfy the four properties given below: Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
i) Idempotent Law: $\quad \mathrm{x} V \mathrm{x}=\mathrm{x}$ and $\mathrm{x} \Lambda \mathrm{x}=\mathrm{x}$
ii) Commutative Law: $x \vee y=y \vee x$ and $x \Lambda y=y \Lambda x$
iii) Associative Law: $\quad x \vee(y \vee z)=(x \vee y) V z$
and $x \Lambda(y \Lambda z)=(x \Lambda y) \Lambda z$
iv) Absorption Law: $\quad x \vee(x \Lambda y)=x$

$$
\text { and } x \wedge(x \vee y)=x
$$

Then $\langle\mathrm{X}, \Lambda, \mathrm{V}\rangle$ is called as Fuzzy lattice as Algebra."

§3.4 Fuzzy Complement of an element:

Definition: Let (X, R) be a fuzzy lattice with 0 and 1 . An element $\mathrm{a}^{`} \in \mathrm{X}$, if exists, is a fuzzy complement of an element $a \in X$ if a Λ $\mathrm{a}^{\bullet}=\mathbf{0}$ and $\mathrm{a} \mathrm{V} \mathrm{a}^{\wedge}=1$ (0 is fuzzy zero and $\mathbf{1}$ is fuzzy unit element of X)
e.g. $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and $R(X, X)$ is given by membership matrix as follows:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{1}	1	0.8	0.2	0.6	0.6
x_{2}	0	1	0	0	0.6
x_{3}	0	0	1	0	0.5
x_{4}	0	0	0	1	0.6
x_{5}	0	0	0	0	1

The Case diagram is,

Here the ordered pair (X, R) is a fuzzy lattice.
Also, x_{3} is a fuzzy complement of x_{2} and vice versa.
x_{4} is a fuzzy complement of x_{2} and vice versa.
Note: Fuzzy complement of an element need not be unique.

Properties :

1) Fuzzy complement of fuzzy zero is fuzzy unit i.e., $0^{\prime}=1$
2) Fuzzy complement of fuzzy unit is fuzzy zero i.e., $1 `=0$

§3.5 Fuzzy Complemented Lattice: -

Definition: Let (X, R) be a fuzzy lattice with 0 and 1. If a' i.e. fuzzy complement exists for all element $a \in X$ then X is said to be Fuzzy Complemented Lattice.
e.g.: $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
$R(X, X)$ is given by membership matrix as follows:

	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	1	0.6	0.5	0.6
x_{2}	0	1	0	0.8
x_{3}	0	0	1	0.3
x_{4}	0	0	0	1

The Hasse diagram is,

* A Study Of Fuzzy Lattices

Here the ordered pair (X,R) is a fuzzy lattice.
Now, $x_{1}{ }^{\prime}=x_{4}, x_{2}{ }^{\prime}=x_{3}, x_{3}{ }^{\prime}=x_{2}, x_{4}{ }^{\prime}=x_{1}$
Thus fuzzy complement exists for all elements in X .
Hence X is said to be Fuzzy Complemented Lattice.

