

•

Chapter 3

* Fuzzy Lattices *

§3.1 Definition:

"A fuzzy partially ordered set X is called a Fuzzy Lattice if every two elements (i.e., every pair of elements) in X has a fuzzy least upper bound and a fuzzy greatest lower bound."

Let $\langle X, R \rangle$ be fuzzy partial ordered set. Let $x, y \in X$. If fuzzy least upper bound denoted by $x \vee y$ and fuzzy greatest lower bound denoted by $x \wedge y$ exists for all $x, y \in X$ then $\langle X, R \rangle$ is a fuzzy lattice.

Examples:

 Let X = [a, a + n] where a, n ∈ IR and n > 0. Let R = "almost less than or equal to" be a fuzzy relation defined on X as a function R: X x X → [0,1] defined by,

$$R(x, y) = 1 \quad \text{if} \quad x = y$$
$$= (y - x) / n \cdot \text{if} \quad x < y$$
$$= 0 \quad \text{else.}$$

Then (X, R) is a fuzzy lattice.

Proof: - First we will prove that (X, R) is a fuzzy poset.

i) Fuzzy Reflexivity:

Now, R(x, x) = 1 $\forall x \in X$. (by definition of R)

 \therefore R is a fuzzy reflexive relation.

ii) Fuzzy Perfectly Antisymmetrivity:

Let $x \neq y$ in X and R(x, y) > 0

Now, by definition of R, R(x, y) = (y - x)/n

∴ x < y

 \therefore R(y, x) = 0 (by definition of R)

: R is a fuzzy perfectly antisymmetric relation.

iii)	Fuzzy max-min transitivity:				
	Let $(x, z) \in X^2$.				
	To prove:	$R(x, z) \ge \max \min (R(x, y), R(y, z))$ (1)			
		y ∈ X			
	case a) Let $x = z$,				
		$\therefore R(x, z) = 1$			
		$\therefore R(x, z) \ge \max \min (R(x, y), R(y, z))$			
		y ∈ X			
	case b)	Let $x < z$			
		for all $y \in X$ such that $y < x$,			
		R(x, y) = 0 (by definition of R)			
		$\therefore \min (\mathbf{R}(\mathbf{x}, \mathbf{y}), \mathbf{R}(\mathbf{y}, \mathbf{z})) = 0$			
		for all $y \in X$ such that $y = x$,			
		R(x, y) = 1 and $R(x, z) = R(y, z)$			
	$\therefore \min (R(x, y), R(y, z)) = R(y, z)$				
		$\therefore \min (\mathbf{R}(\mathbf{x}, \mathbf{y}), \mathbf{R}(\mathbf{y}, \mathbf{z})) = \mathbf{R}(\mathbf{x}, \mathbf{z})$			
		for all $y \in X$ such that $x < y < z$,			
		R(x, y) < R(x, z) and $R(y, z) < R(x, z)$			
		$\therefore \min (\mathbf{R}(\mathbf{x}, \mathbf{y}), \mathbf{R}(\mathbf{y}, \mathbf{z})) < \mathbf{R}(\mathbf{x}, \mathbf{z})$			
		for all $y \in X$ such that $y = z$,			
		R(y, z) = 1 and $R(x, z) = R(x, y)$			
		$\therefore \min (R(x, y), R(y, z)) = R(x, y)$			
	$\therefore \min (R(x, y), R(y, z)) = R(x, z)$ for all $y \in X$ such that $z < y$, R(y, z) = 0 (by definition of i				
		$\therefore \min (\mathbf{R}(\mathbf{x}, \mathbf{y}), \mathbf{R}(\mathbf{y}, \mathbf{z})) = 0$			
		Thus, $R(x, z) \ge \max \min (R(x, y), R(y, z))$			
	y ∈ X				

case c) Let x > z \therefore R(x, z) = 0 Thus to prove: max min (R(x, y), R(y, z)) = 0y ∈ X i.e., To prove, $\min(R(x,y), R(y,z)) = 0 \quad \forall y \in X$ for all y such that $y \le z$, Hence y < x \therefore R(x, y) = 0 \therefore min (R(x, y), R(y, z)) = 0 for all y such that z < y < x, \therefore R(x, y) = 0 and R(y, z) = 0 \therefore min (R(x, y), R(y, z)) = 0 for all y such that $z < x \le y$, \therefore R(y, z) = 0 \therefore min (R(x, y), R(y, z)) = 0 $\therefore \min (R(x, y), R(y, z)) = 0 \quad \forall y$ Thus from case (a), (b) and (c), equation in (1) holds true. Thus R is fuzzy max – min transitive relation. Hence (X, R) is fuzzy partial order set.

Now we will prove that any two-elements set in X has fuzzy least upper bound and fuzzy greatest lower bound. So let $A = \{x, y\} \subseteq X$ where $x \neq y$ Now $x, y \in X \subseteq IR$ \therefore Either x < y or y < xLet without loss of generality, x < y $\therefore R(x, y) = (y - x) / n$ and $\therefore R(y, x) = 0$ (By definition of R) Now by Definition of R_≥, We have

Submitted by Sachin H. Dhanani

Page 20 of 65

$$\therefore \mathbb{R}_{\geq}[x] = \left\{ \frac{0}{u_{1}} + \frac{1}{u_{2}} + \frac{(u_{3} - x)/n}{u_{3}} \middle| \begin{array}{l} u_{1} < x, u_{2} = x, u_{3} > x \\ u_{1}, u_{2}, u_{3} \in X \end{array} \right\}$$
$$\therefore \mathbb{R}_{\geq}[y] = \left\{ \frac{0}{v_{1}} + \frac{1}{v_{2}} + \frac{(v_{3} - y)/n}{v_{3}} \middle| \begin{array}{l} v_{1} < y, v_{2} = y, v_{3} > y \\ v_{1}, v_{2}, v_{3} \in X \end{array} \right\}$$

Now, U(R, A) = $R \ge [x] \cap R \ge [y]$

$$\therefore U(R, A) = \left\{ \frac{(y-x)/n}{y} + \frac{(m-y)/n}{m} \right/ m > y \right\}$$

Now, Clearly 'y' is a fuzzy least upper bound of a set A. Similarly, 'x' is a fuzzy greatest lower bound of a set A. Thus the set A has fuzzy least upper bound and fuzzy greatest lower bound.

Hence every two element non-fuzzy subset of X has a fuzzy least upper bound and fuzzy greatest lower bound.

Hence, < X, R > is a fuzzy lattice. \Box

2)

Consider $X=\{x_1, x_2, x_3, x_4, x_5\}$ and

R(X,X) is given by membership matrix as follows:

	\mathbf{X}_{1}	X_2	X ₃	X4	X5	X ₆
\mathbf{x}_1	1	0	0	0	0	0
x ₂	0.6	1	0	0	0.8	0
X ₃	0.6	0.9	1	0.1	0.8	0.4
X4	0	0	0	1	0.3	0
X5	0	0	0	0	1	0
X 6	0	0	0	0	1	1

Here the ordered pair (X, R) is a fuzzy lattice.

Note: Every fuzzy lattice is a fuzzy partial order set

But converse need not be true.

Counter Example: Let $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ and R(X,X) is given by membership matrix as follows:

	$\mathbf{x_{i}}$	X_2	X ₃	X 4	X5
x ₁	1	0.8	0.2	0.6	0.6
x ₂	0	1	. 0	0	0.6
X ₃	0	0	1	0.	0.5
X4	0	0	0	1	0.6
X5	0	0	0	0	1

The Hasse diagram is,

Here (X, R) is a partially order set. Consider A = {x₁, x₅} Now, R ≥ [x₁] = { 1 / x₁ } and R ≥ [x₅] = { 1 / x₅ } Now, U(R, A) = R ≥ [x₁] \cap R ≥ [x₅] (Refer §2.4.1) \therefore U (R, A) = Ø i.e. fuzzy least upper bound of A does not exists.

 \therefore The ordered pair (X, R) is not a fuzzy lattice. \Box

§3.2 PROPERTIES OF FUZZY LATTICES:

Idempotent Law:	$x V x = x$ and $x \Lambda x = x$
Commutative Law:	$x V y = y V x$ and $x \Lambda y = y \Lambda x$
Associative Law:	x V (y V z) = (x V y) V z
and	$x \wedge (y \wedge z) = (x \wedge y) \wedge z$
Absorption Law:	$x V (x \Lambda y) = x \text{ and } x \Lambda (x V y) = x$

> Theorem 3.1:

If X is a non-empty non-fuzzy set in which two fuzzy binary operations Λ , V are defined and satisfy the above stated properties, then a fuzzy partial order can be defined on set X such that X becomes a fuzzy lattice in which x V y and x Λ y are fuzzy least upper bound and fuzzy greatest lower bound of non-fuzzy subset {x, y} of X respectively.

Proof:

£

Let X be a non-empty and non-fuzzy set in which two fuzzy binary operations Λ , V are defined and satisfy the above stated properties.

Define a fuzzy relation $R : X \times X \rightarrow [0, 1]$ as,

 $\forall x, y \in X \text{ and } n \in (0, 1),$

To prove: - (X, R) is a fuzzy partial order set.

i) Fuzzy Reflexivity:

Now, by definition of R,

 $R(x, x) = 1 \qquad \forall x \in X.$

 \therefore R is a fuzzy reflexive relation.

ii) Fuzzy Perfectly Antisymmetrivity:

Let $x \neq y$ and R(x, y) > 0

 $\therefore R(x, y) = n \qquad (by \text{ definition of } R)$ $\therefore x \lor y = y \text{ and } x \land y = x \qquad (by \text{ definition of } R)$ By commutative property, $y \lor x = x \lor y = y \neq x \text{ and } y \land x = x \land y = x \neq y$ Thus $y \lor x \neq x \text{ and } y \land x \neq y$ $\therefore R(y, x) = 0 \qquad (by \text{ definition of } R)$ Thus $x \neq y$ and $R(x, y) > 0 \Rightarrow R(y, x) = 0$

: R is a fuzzy perfectly antisymmetric relation.

iii) Fuzzy Max-Min Transitivity:

Let $(x, z) \in X^2$

To prove: $R(x, z) \ge \max \min (R(x, y), R(y, z))$ $y \in X$

If x = z then R(x, z) = 1 (by definition of R) $\therefore R(x, z) \ge \max \min (R(x, y), R(y, z))$

 $y \in X$ If $x \neq z$ then either R(x, z) = n or R(x, z) = 0

case a) Let R(x, z) = n \therefore x V z = z and x \land z = x (by definition of R) Now, for all $y \in X$ such that y = x and $y \neq z$ R(x, y) = 1 and R(y, z) = n or 0 $\therefore \min(R(x, y), R(y, z)) = R(y, z)$ = R(x, z) (As, y = x)Now, for all $y \in X$ such that y = z and $y \neq x$ R(x, y) = n or 0 and R(y, z) = 1 $\therefore \min(R(x, y), R(y, z)) = R(x, y) = R(x, z)$ Now, for all $y \in X$ such that $y \neq x$ and $y \neq z$ R(x, y) = n or 0 and R(y, z) = n or 0 $\therefore \min(R(x, y), R(y, z)) = n \text{ or } 0$ $\leq R(x, z)$ Thus, $R(x, z) \ge \max \min (R(x, y), R(y, z))$ y ∈ X Case b) Let R(x, z) = 0 \therefore x V z \neq z or x \land z \neq x (by definition of R) $R(x, z) \ge \max \min (R(x, y), R(y, z))$ To prove: y∈X OR $0 \ge \max \min (R(x, y), R(y, z))$ y ∈ X (since R(x, z) = 0) OR max min (R(x, y), R(y, z)) = 0y ∈ X OR $\min (R(x, y), R(y, z)) = 0 \qquad \forall y \in X$ R(x, y) = 0 or R(y, z) = 0OR $\forall v \in X$ OR equivalently for $y \in X$, Prove: R(x, y) = 0 or R(y, z) = 0

Submitted by Sachin H. Dhanani

Page 25 of 65

Let, if possible, R(x, y) > 0, R(y, z) > 0i.e., $R(x, y) \ge n$ and $R(y, z) \ge n$ $\therefore x \forall y=y, x \land y=x, y \forall z=z, y \land z=y$ Now, $(x \lor y) \lor z = y \lor z = z$ and $(x \lor y) \lor z = x \lor (y \lor z) = x \lor z$ $\therefore x \lor z = z$ Also, $(x \land y) \land z = x \land z$ and $(x \land y) \land z = x \land (y \land z) = x \land y = x$ $\therefore x \land z = x$ Thus we get $x \lor z = z$ and $x \land z = x$ Which is a contradiction to given data.

 \therefore R(x, y) = 0 or R(y, z) = 0

Thus R is fuzzy max-min transitive relation.

Thus R is fuzzy partial order.

Thus (X, R) is a fuzzy partial order set.

Now, To prove : (X, R) is a fuzzy lattice.

Let, $A = \{x, y\} \subseteq X$

Thus, To prove: Fuzzy least upper bound and fuzzy greatest lower bound of a non-empty non-fuzzy subset A of X exists and x V y and x Λ z are the fuzzy least upper bound and fuzzy greatest lower bound of A respectively.

Now, Λ and V are binary operations defined on X.

Hence $x \vee y$ and $x \wedge y$ exists in X.

Let x V y = z_1 and x Λ y = z_2

Thus, to prove: z_1 and z_2 are the fuzzy least upper bound and fuzzy greatest lower bound of A respectively.

Consider, $x \wedge z_1 = x \wedge (x \vee y) = x$ and

 $x \vee z_1 = x \vee (x \vee y) = x \vee y = z_1$

Submitted by Sachin H. Dhanani

Page 26 of 65

Thus, $x \wedge z_1 = x$ and $x \vee z_1 = z_1$ Thus, $R(x, z_1) > 0$ Similarly, $R(y, z_1) > 0$ $\therefore \min (R(x, z_1), R(y, z_1)) > 0$ $\therefore \min(R \ge [x](z_1), R \ge [y](z_1)) > 0$ (By definition of $R \ge class$) :. $(R \ge [x] \cap R \ge [y])(z_1) > 0$ (By definition of Fuzzy intersection.) \therefore U(R, A) (z₁) > 0 (1)(By definition of fuzzy upper bound) Let m supports U(R, A). i.e., U(R, A) (m) > 0 : $(R \ge [x] \cap R \ge [y])$ (m) > 0 (By definition of fuzzy upper bound) (Refer §1.2) $\therefore \min(R_{\geq}[x](m), R_{\geq}[y](m)) > 0$ \therefore min (R(x, m), R(y, m)) > 0 (By definition of $R \ge class$) \therefore R(x, m) > 0 and R(y, m) > 0 \therefore R(x V y, m) > 0 (By theorem 2.2) $\therefore R(z_1, m) > 0$ Thus, $R(z_1, m) > 0$ for all m that supports U(R, A) ____ (2)

Thus, from (1) & (2), and by definition of fuzzy least upper bound z_1 is a fuzzy least upper bound of A (Refer §2.5.1) Similarly we can show that z_2 is a fuzzy greatest lower bound of A Thus, any two elements non-fuzzy subset A of X has fuzzy least upper bound and fuzzy greatest lower bound.

i.e., $x \vee y$ and $x \wedge y$ is a fuzzy least upper bound and fuzzy greatest lower bound for any $x, y \in X$.

Hence (X, R) is a fuzzy lattice.

§3.3 Fuzzy Lattice as Algebra:

"If X is a non-empty, non-fuzzy set in which two fuzzy binary operations Λ , V are defined and satisfy the four properties given below: Let x, y, $z \in X$

i)	Idempotent Law:	$x V x = x$ and $x \Lambda x = x$
ii)	Commutative Law:	$x \vee y = y \vee x$ and $x \wedge y = y \wedge x$
iii)	Associative Law:	x V (y V z) = (x V y) V z
	and	$x \Lambda (y \Lambda z) = (x \Lambda y) \Lambda z$
iv)	Absorption Law:	$x V (x \Lambda y) = x$
	and	$x \Lambda (x V y) = x$

Then < X, Λ , V > is called as Fuzzy lattice as Algebra."

§3.4 Fuzzy Complement of an element:

- Definition: Let (X, R) be a fuzzy lattice with 0 and 1. An element a`∈ X, if exists, is a fuzzy complement of an element a ∈ X if a Λ a` = 0 and a V a` = 1 (0 is fuzzy zero and 1 is fuzzy unit element of X)
 - e.g. $X = \{x_1, x_2, x_3, x_4, x_5\}$ and

R(X,X) is given by membership matrix as follows:

	$\mathbf{x}_{\mathbf{I}}$	x ₂	X ₃	X 4	X 5
$\mathbf{x}_{\mathbf{i}}$	1	0.8	0.2	0.6	0.6
x ₂	0	1	0	0	0.6
X 3	0	0	1	0	0.5
X 4	0	0	0	1	0.6
X5	0	0	0	0	1

The Hasse diagram is,

Here the ordered pair (X, R) is a fuzzy lattice.

Also, x_3 is a fuzzy complement of x_2 and vice versa.

 x_4 is a fuzzy complement of x_2 and vice versa.

Note: Fuzzy complement of an element need not be unique.

Properties :

- 1) Fuzzy complement of fuzzy zero is fuzzy unit i.e., 0 = 1
- 2) Fuzzy complement of fuzzy unit is fuzzy zero i.e., 1 = 0

§3.5 Fuzzy Complemented Lattice: -

- Definition: Let (X, R) be a fuzzy lattice with 0 and 1. If a` i.e. fuzzy complement exists for all element a ∈ X then X is said to be Fuzzy Complemented Lattice.
 - e.g.: $X = \{ x_1, x_2, x_3, x_4 \}$

R(X,X) is given by membership matrix as follows:

	x ₁	X ₂	X ₃	X4
$\mathbf{x}_{\mathbf{l}}$	1	0.6	0.5	0.6
X ₂	0	1	0	0.8
X 3	0	0	1	0.3
X 4	0	0	0	1

The Hasse diagram is,

🗱 A Study Of Fuzzy Lattices 🋱

Here the ordered pair (X, R) is a fuzzy lattice.

Now, $x_1' = x_4$, $x_2' = x_3$, $x_3' = x_2$, $x_4' = x_1$

Thus fuzzy complement exists for all elements in X. Hence X is said to be Fuzzy Complemented Lattice.