

X,

۲.

Chapter 4 FUZZY SUBLATTICES

§4.1 Definition:

"Let (X, Λ , V) be a fuzzy lattice. Let S be non-empty subset of X. If (S, Λ , V) is a fuzzy lattice then we call S as a fuzzy sublattice of fuzzy lattice X."

Example:

 $X = \{ x_1, x_2, x_3, x_4 \}$

R(X,X) is given by membership matrix as follows:

	\mathbf{x}_1	x ₂	X ₃	X4
x ₁	1	0.6	0.5	0.6
X2	0	1	0	0.8
X ₃	0	0	1	0.3
X4	0	0	0	1

The Hasse diagram is,

Here the ordered pair (X, R) is a fuzzy lattice.

Consider $S_1 = \{x_1, x_2\}$

 $x_1 \wedge x_2 = x_1 \in S_1$ and $x_1 \vee x_2 = x_2 \in S_1$

Hence S_1 is a fuzzy sublattice of X.

Submitted by Sachin H. Dhanani

Consider, $S_2 = \{x_1, x_2, x_3\}$ $x_2 \vee x_3 = x_4 \notin S_2$ Hence S_2 is not fuzzy sublattice of X.

- **Remark:** Every non-empty non-fuzzy subset of fuzzy lattice need not be a fuzzy sublattice.
- **Definition:** Let (X, Λ, V) be a fuzzy lattice. For any $x, y \in X$, Let R be fuzzy partial order define on X Define, $[x, y] = \{z \in X / R(x, z) > 0 \text{ and } R(z, y) > 0\}$ $[x, y) = \{z \in X / R(x, z) > 0, R(z, y) > 0 \text{ and } y \neq z\}$ $(x, y] = \{z \in X / R(x, z) > 0, R(z, y) > 0 \text{ and } x \neq z\}$ $(x, y) = \{z \in X / R(x, z) > 0, R(z, y) > 0, y \neq z \text{ and } x \neq z\}$

> Theorem 4.1

Let (X, Λ, V) be a fuzzy lattice and R be the fuzzy partial order define on X. Let $x, y \in X$. Let R(x, y) > 0. Show that [x, y], [x, y), (x, y], (x, y) are fuzzy sublattices of X.

Proof:

Let $z_1, z_2 \in [x, y]$. To prove: $z_1 \land z_2 \in [x, y]$ and $z_1 \lor z_2 \in [x, y]$ Now, $z_1 \in [x, y] \implies R(x, z_1) > 0$ and $R(z_1, y) > 0$ $z_2 \in [x, y] \implies R(x, z_2) > 0$ and $R(z_2, y) > 0$ $\therefore \quad R(x, z_1 \land z_2) > 0$ and $R(z_1 \land z_2, y) > 0$ (by theorem 2.1) $\therefore \quad z_1 \land z_2 \in [x, y]$. (by definition of [x, y]) Also, $R(x, z_1 \lor z_2) > 0$ and $x, y \in X$ (by theorem 2.2) $\therefore \quad z_1 \lor z_2 \in [x, y]$. (by definition of [x, y]) Hence [x, y] is fuzzy sublattice of X. Similarly, [x, y), (x, y], (x, y) are fuzzy sublattices of X. \Box

§4.2 Fuzzy Convex Sublattices:

"A fuzzy sublattice S of a fuzzy lattice (X, R) is said to be fuzzy convex sublattice if for x, $y \in X$ there exists $t \in X$ such that R(x, t) > 0, R(t, y) > 0, $x \neq t$ and $y \neq t$ then $t \in S$."

Example: $X = \{x_1, x_2, x_3, x_4, x_5\}$ and

R(X, X) is given by grade membership matrix as follows:

	$\mathbf{x_1}$	X2	X ₃	X4	X5
$\mathbf{x}_{\mathbf{l}}$	1	0.8	0.2	0.6	0.6
X 2	0	1	0	0	0.6
X 3	0	0	1	0	0.5
X4	0	0	0	1	0.6
X5	0	0	0	0	1

The Hasse diagram is,

Here the ordered pair (X, R) is a fuzzy lattice.

Consider, $S_1 = \{x_1, x_2, x_5\} \subseteq X$.

Here S_1 is a fuzzy convex sublattice.

Consider, $S_2 = \{x_1, x_5\} \subseteq X$.

Now $R(x_1, x_3) > 0$, $R(x_3, x_5) > 0$ and $x_3 \notin S_2$

Hence S_2 is not a fuzzy convex sublattice.

Submitted by Sachin H. Dhanani

Page 33 of 65

Remark: Every fuzzy sublattice need not be fuzzy convex sublattice.

> Theorem 4.2

Let (X, R) be a fuzzy lattice. Let $x, y \in X$. Let R(x, y) > 0. Show that [x, y], [x, y), (x, y], (x, y) are fuzzy convex sublattices.

Remark:

- Crisp intersection of any number of fuzzy sublattices of a fuzzy lattice is a fuzzy sublattice.
- Crisp union of any two fuzzy sublattices need not be a fuzzy sublattice.

Counter example: $X = \{x_1, x_2, x_3, x_4\}$

The Hasse diagram is,

Here X is a fuzzy lattice.

Here $S_1 = \{x_1, x_2\}$, $S_2 = \{x_1, x_3\}$ are fuzzy sublattices of X.

Consider $S_1 \cup S_2 = \{x_1, x_2, x_3\} \subseteq X$.

Now, $x_2 \vee x_3 = x_4 \notin S_1 \cup S_2$.

- Thus, $S_1 U S_2$ is not a fuzzy sublattice of X.