

Chapter 5

FUZZY IDEALS AND FUZZY DUAL IDEALS

§5.1 Fuzzy Ideals: -

Let (X, Λ, V) be a Fuzzy lattice. A nonempty nonfuzzy subset S of X is a fuzzy ideal of X if,

- i) (S, Λ, V) is a fuzzy sub lattice.
- ii) $x \in X, a \in S \Rightarrow x \land a \in S$.

> Theorem 5.1: -

Let (X, R) be a fuzzy lattice. Let S be nonempty crisp subset of X. Now S is a fuzzy ideal of X iff,

- i) $x, y \in S \Rightarrow \dot{x} \lor y \in S$
- ii) $x \wedge a = x$ and $x \vee a = a$, $x \in X$, $a \in S \Rightarrow x \in S$

OR

 $R(x, a) > 0, x \in X, a \in S \implies x \in S$

Proof: - Necessary Part:

Let S be a fuzzy ideal of X.

To Prove: i) $x, y \in S \Rightarrow x \lor y \in S$

ii) $x \land a = x \text{ and } x \lor a = a, x \in X, a \in S \Rightarrow x \in S$

QR

$$R(x, a) > 0, x \in X, a \in S \implies x \in S$$

Now, by definition of fuzzy ideal, S is a fuzzy sub lattice.

 $\therefore x, y \in S \implies x \lor y \in S \quad (i \text{ condition proved})$ Let $x \land a = x \text{ and } x \lor a = a, x \in X, a \in S.$ To Prove: $x \in S$ Now, $x \in X, a \in S \Longrightarrow x \land a \in S.$ (As S is a fuzzy ideal) $\implies x \in S \qquad (As x \land a = x)$

Submitted by Sachin H. Dhanani

Page 35 of 65

OR equivalently, Let $R(x, a) > 0, x \in X, a \in S$. To Prove: $x \in S$ (As S is a fuzzy ideal) Now, $x \in X$, $a \in S \implies x \land a \in S$. \therefore Fuzzy greatest lower bound of a subset A = {x, a} of X is in S. Let $x \wedge a = m \in S$. (*) Now by definition of Fuzzy Lower Bound, L(R, A) (m) > 0 and R(z, m) > 0 for all z that supports L(R, A). $\therefore (\mathbf{R} \leq [\mathbf{x}] \cap \mathbf{R} \leq [\mathbf{a}]) (\mathbf{m}) > 0$ $\therefore \min \{R \le [x] (m), R \le [a] (m)\} > 0 \qquad (By fuzzy intersection)$ \therefore R \leq [x] (m) > 0 and R \leq [a] (m) > 0 \therefore R(m, x) > 0 and R(m, a) > 0 (1) (By definition of R \leq) Now, R(x, a) > 0 (given) and R(x, x) > 0 (By fuzzy reflexivity) $\therefore R \leq [a](x) > 0 \text{ and } R \leq x > 0 \qquad (By \text{ definition of } R \leq)$ $\therefore \min \{R \le [a](x), R \le x\} > 0$ $\therefore (R \leq [a] \cap R \leq [x]) (x) > 0$ \therefore L(R, A) (x) > 0 \therefore x supports L(R, A). \therefore R(x, m) > 0. (2) (By *) Let, if possible, $x \neq m$. From (1) and (2) we get, R(m, x) > 0 and R(x, m) > 0 which will give a contradiction to fuzzy perfectly antisymmetric property.

- $\therefore \mathbf{x} = \mathbf{m}.$
- \therefore x is a Fuzzy greatest lower bound of a subset A that is in S.
- $\therefore x \in S.$

Thus, R(x, a) > 0, $x \in X$, $a \in S \implies x \in S$

Sufficient Part:

i) $x, y \in S \implies x \lor y \in S$ Let. $x \land a = x \text{ and } x \lor a = a, x \in X, a \in S \implies x \in S$ ii) OR $R(x, a) > 0, x \in X, a \in S \Rightarrow x \in S$ To Prove: S is a fuzzy ideal of X. First we will prove that S is a fuzzy sub lattice of X. 1) x, y \in S \Rightarrow x V y \in S i.e., To Prove: 2) x, y \in S \Rightarrow x \land y \in S Now, $x, y \in S \Rightarrow x \lor y \in S$ (by i) Let x, y \in S. To prove: x \land y \in S Now, $(x \wedge y) \wedge x = x \wedge (y \wedge x)$ (by Associativity) $= x \Lambda (x \Lambda y)$ (by Commutativity) $= (x \land x) \land y$ (by Associativity) $= x \Lambda y$ (by Idempotent Law) Also, $(x \land y) \lor x = x$ (by Absorption Law) Thus, $(x \land y) \land x = x \land y$, $(x \land y) \lor x = x$, $x \land y \in X$ and $x \in S$ $\Rightarrow x \land y \in S$ (by ii) Thus x, $y \in S \Rightarrow x \land y \in S$ Thus S is a fuzzy sub lattice of X. Now, To Prove: $x \in X$, $a \in S \Rightarrow x \land a \in S$. Let $x \in X$ and $a \in S$ Now, $(x \wedge a) \wedge a = x \wedge (a \wedge a)$ (by Associativity) $= x \Lambda a$ (by Idempotent Law) And $(x \wedge a) \vee a = a$ (by Absorption Law) Thus, $(x \wedge a) \wedge a = x \wedge a$, $(x \wedge a) \vee a = a$, $x \land a \in X \text{ and } a \in S \Rightarrow x \land a \in S$ (by ii) Thus, $x \in X$, $a \in S \Rightarrow x \land a \in S$. Thus, S is a fuzzy ideal of X.

***** Examples of Fuzzy Ideals:

 Let X = [a, a + n] where a, n ∈ IR and n > 0. Let R = "almost less than or equal to" be a fuzzy relation defined on X as a function R: X x X → [0,1] defined by,

R(x, y) = 1 if
$$x = y$$

= $(y - x) / n$ if $x < y$
= 0 else.

Here (X, R) is a fuzzy lattice.

Let S = [a, p] where $p \in IR$ and a .

Then S is a fuzzy ideal of X.

Proof: - Let
$$S = [a, p]$$
 where $p \in IR$ and $a .$

Thus, S is a non-empty non-fuzzy subset of X. Now, to prove:

i) $x, y \in S \Rightarrow x \lor y \in S$

ii) $R(x, y) > 0, x \in X, y \in S \Rightarrow x \in S$

So, Consider x, $y \in S$. To prove: $x \lor y \in S$

Now, x V y exists and is unique (Since X is fuzzy lattice)

Let x V y = m and A = $\{x, y\}$

i.e., To prove: $m \in S$

Now, $x \in S \Rightarrow x \le p \Rightarrow R(x, p) > 0$ (By definition of R)

 $y \in S \Rightarrow y \le p \Rightarrow R(y, p) > 0$ (By definition of R)

 \therefore R(x V y, p) > 0(by theorem 2.2) \therefore R(m, p) > 0(Since x V y = m) \therefore m \leq p(By definition of R) \therefore m \in S(By definition of S) \therefore x V y \in S(Since x V y = m)Thus x, y \in S \Rightarrow x V y \in S.

 $\operatorname{Ind} X, y \in \mathcal{G} \implies X \lor y \in$

Submitted by Sachin H. Dhanani

:

Let $R(x, y) > 0, x \in X, y \in S$. To Prove: $x \in S$ Now, $R(x, y) > 0 \Rightarrow x \le y$ and also $y \in S \Rightarrow y \le p$ $\therefore x \le p$ (Since $x \le y$ and $y \le p$) $\therefore x \in S$ Thus, $R(x, y) > 0, x \in X, y \in S \Rightarrow x \in S$. Thus, S is a fuzzy ideal.

2)

 $X=\{x_1, x_2, x_3, x_4, x_5\}$ and

R(X,X) is given by membership matrix as follows:

	\mathbf{x}_1	x ₂	X ₃	X.4	X 5
$\mathbf{x}_{\mathbf{i}}$	1	0.8	0.2	0.6	0.6
X ₂	0	1	0	0	0.6
X ₃	Ō	0	1	0	0.5
X 4	0	0	0	1	0.6
X5	0	0	0	0	1

The Hasse diagram is,

Here the ordered pair (X, R) is a fuzzy lattice.

Here $S = \{x_1, x_2\} \subseteq X$ is a fuzzy ideal by theorem 5.1.

Submitted by Sachin H. Dhanani

Page 39 of 65

Note: Every fuzzy ideal is a fuzzy sub lattices. But converse need not be true. Counter Example: Consider above example (i.e. example 2 of Fuzzy ideal) In that consider $S = \{x_3, x_5\} \subseteq X$. Clearly, S is a fuzzy sub lattice. (Since $x_3 \vee x_5 = x_5 \in S$ and $x_3 \wedge x_5 = x_3 \in S$) But S is not a fuzzy ideal as $R(x_1, x_3) > 0, x_1 \in X, x_3 \in S \Rightarrow x_1 \in S$.

> Theorem 5.2:

Let S be any non-empty non fuzzy subset of fuzzy lattice X. S be a fuzzy ideal of X iff a V $b \in S \Leftrightarrow a, b \in S$

Proof: Necessary Part:

Let S be a fuzzy ideal of X.

To prove: a V b \in S \Leftrightarrow a, b \in S

Let a V b \in S. To prove: a, b \in S

By definition of Fuzzy ideal,

 $a \in X, a \vee b \in S \implies a \wedge (a \vee b) \in S$

 $\Rightarrow a \in S$ (by Absorption Law)

Similarly,

 $b \in X, a \lor b \in S \implies b \land (a \lor b) \in S$ $\implies b \land (b \lor a) \in S \text{ (Commutative Law)}$ $\implies b \in S \qquad (by \text{ Absorption Law)}$ Thus, $a \lor b \in S \implies a, b \in S$ Conversely, Let $a, b \in S$. To prove: $a \lor b \in S$ Now, S is a fuzzy ideal of X. Hence $a \lor b \in S$.

Thus, $a, b \in S \Rightarrow a \lor b \in S$ Thus, $a \lor b \in S \Leftrightarrow a, b \in S$

Sufficient Part:

Let $a \lor b \in S \Leftrightarrow a, b \in S$ To Prove: S is a fuzzy ideal of X. Now, $a, b \in S \Rightarrow a \lor b \in S$ (given data) Let $x \land a = x$ and $x \lor a = a, x \in X, a \in S$ To prove: $x \in S$ Now, $x \lor a = a$ and $a \in S \Rightarrow x \lor a \in S$ $\Rightarrow x, a \in S$ (given data) Thus, $x \in S$:

Thus S is a fuzzy ideal of X.

§5.2 Fuzzy Dual Ideal:

"Let (X, R) be a fuzzy lattice. Let D be any non-empty non-fuzzy subset of X. D is a fuzzy dual ideal of X if,

- i) D is a fuzzy sub lattice of X.
- ii) For $x \in X$, $a \in D \Rightarrow x \lor a \in D$.

> Theorem 5.3:

Let (X, R) be a fuzzy lattice. Let D be any non-empty nonfuzzy subset of X. D is a fuzzy dual ideal of X iff

- i) $a, b \in D \Rightarrow a \land b \in D$.
- ii) $a \land x = a$ and $a \lor x = x, x \in X, a \in D \Rightarrow x \in D$

OR

$$R(a, x) > 0, x \in X, a \in D \Rightarrow x \in D$$

Submitted by Sachin H. Dhanani

Page 41 of 65

> Theorem 5.4:

Let D be any non-empty non-fuzzy subset of a fuzzy lattice (X, R). D is a fuzzy dual ideal of X iff a $\land b \in D \Leftrightarrow a, b \in D$.

Examples of Fuzzy Dual Ideal:

1) Let X = [a, a + n] where $a, n \in IR$ and n > 0.

Let R = "almost less than or equal to" be a fuzzy relation defined on X as a function R: $X \times X \rightarrow [0,1]$ defined by,

$$R(x, y) = 1 if x = y = (y - x) / n if x < y = 0 else.$$

Here (X, R) is a fuzzy lattice.

Let D = [m, a + n] where $m \in IR$ and $a \le m < a + n$. Then D is a fuzzy dual ideal of X.

 $X = \{x_1, x_2, x_3, x_4, x_5\}$ and

2)

R(X,X) is given by grade membership matrix as follows:

	$\mathbf{x_1}$	X ₂	X ₃	\mathbf{x}_4	X5
$\mathbf{x}_{\mathbf{i}}$	1	0.8	0.2	0.6	0.6
X ₂	0	1	0	0	0.6
X 3	0	0	1	0	0.5
X4	0	0	0	1	0.6
X5	0	0	0	0	1

Here the ordered pair (X, R) is a fuzzy lattice. Here $D = \{x_2, x_5\} \subseteq X$ is a fuzzy dual ideal of X. Note:Every fuzzy dual ideal is a fuzzy sub lattice.But converse need not be true.Counter Example:Consider above example (i.e. example 2 of fuzzy dual ideal)In that consider $D = \{x_1, x_3\} \subseteq X$ Clearly, S is a fuzzy sub lattice.But S is not a fuzzy dual ideal as

 $R(x_1, x_5) > 0, x_1 \in D, x_5 \in X \not\Rightarrow x_5 \in D.$

§5.3 Definition: Fuzzy ideal generated by crisp subset

"Let (X, R) be a fuzzy lattice. Let H be any non-empty non-fuzzy subset of X. Then the smallest fuzzy ideal of X containing H is called fuzzy ideal generated by H and it is denoted by (H]." i.e., (H] = $\cap \{I \subseteq X / I \text{ is a fuzzy ideal and } H \subseteq I\}$

§5.4 Definition: Fuzzy dual ideal generated by crisp subset

"Let (X, R) be a fuzzy lattice. Let H be any non-empty non-fuzzy subset of X. Then the smallest fuzzy dual ideal of X containing H is called fuzzy dual ideal generated by H and it is denoted by [H)." i.e., $[H] = \bigcap \{D \subseteq X / D \text{ is a fuzzy dual ideal and } H \subseteq D\}$

> Theorem 5.5:

Let (X, R) be a fuzzy lattice. Let H be any non-empty non-fuzzy subset of X. Then,

(H] = { $x \in X / R(x, h_1 V h_2 V ... V h_n) > 0, h_i \in H, n \text{ is finite} }$

Proof:

Let $P=\{x \in X / R(x, h_1 \vee h_2 \vee \dots \vee h_n) > 0, h_i \in H, n \text{ is finite}\}$ To Prove: (H] = P Now, H is non-empty, Let $h \in H$.

A Study Of Fuzzy Lattices

Then R(h, h V h₁) > 0, \forall h₁ \in H (by theorem 2.1) \therefore h \in P \therefore H \subseteq P \therefore P $\neq \emptyset$

Thus, P is a nonempty nonfuzzy subset of X containing H.

Let x, y \in P. Hence, R(x, h₁V h₂V....V h_n) > 0, h_i \in H, n is finite and similarly, R(y, k₁V k₂V....V k_m) > 0, k_j \in H, m is finite. \therefore R(x V y, h₁V h₂V....V h_nVk₁V k₂V....V k_m) > 0, where h_i, k_j \in H, n + m is finite (by theorem 2.2) \therefore x V y \in P. (By Definition of P) Thus, x, y \in P \Rightarrow x V y \in P.

Let $R(x, a) > 0, x \in X, a \in P$ To Prove: $x \in P$ Now, $a \in P \Rightarrow R(a, h_1 \vee h_2 \vee \dots \vee h_n) > 0, h_i \in H, n$ is finite $\therefore R(x, h_1 \vee h_2 \vee \dots \vee h_n) > 0, h_i \in H, n$ is finite (by theorem 2.4) $\therefore x \in P$ (by definition of P) Thus, $R(x, a) > 0, x \in X, a \in P \Rightarrow x \in P$

Thus, P is a fuzzy ideal of X containing H.

Thus only to prove:

P is the smallest fuzzy ideal of X containing H. Let, J be a fuzzy ideal of X containing H. To Prove: $P \subseteq J$. Let $x \in P$ $\therefore R(x, h_1 \vee h_2 \vee \dots \vee h_n) > 0, h_i \in H, n \text{ is finite}$ Now, $H \subseteq J$. Thus $h_i \in J$ and n is finite. $\therefore h_1 \vee h_2 \vee \dots \vee h_n \in J$ (Since J is a fuzzy ideal of X)

Now, J is a fuzzy ideal of X, $h_1 \vee h_2 \vee \dots \vee h_n \in J$ and $R(x, h_1 \vee h_2 \vee \dots \vee h_n) > 0$, n is finite $\therefore x \in J$ (by definition of fuzzy ideal) Thus, $x \in P \Rightarrow x \in J$ Thus, $P \subseteq J$. Thus, P is the smallest fuzzy ideal of X containing H. Thus, P = (H].

> Theorem 5.6:

Let (X, R) be a fuzzy lattice. Let H be any non-empty nonfuzzy subset of X. Then,

 $[H] = \{x \in X / R(h_1 V h_2 V ... V h_n, x) > 0, h_i \in H, n \text{ is finite} \}$

§5.5 Definition: Let (X, R) be a fuzzy lattice. Let $a \in X$.

Define (a] = $\{x \in X / R(x, a) > 0\}$.

Then (a] is said to be fuzzy principal ideal generated by 'a'.

> Theorem 5.7:

If I is a fuzzy ideal of a fuzzy lattice (X, R). Let $a \in X$. Then I V (a] = { $x \in X / R(x, m \lor a) > 0$, for some $m \in I$ } is a fuzzy ideal of X. Proof: Now, I V (a] = { $x \in X / R(x, m \lor a) > 0$, for some $m \in I$ } As, I $\neq \emptyset$. Let $z \in I$. Now, R(z, $z \lor a) > 0$. (by theorem 2.1) Thus $z \in I \lor (a]$. (by definition of I $\lor (a]$) Hence I $\lor (a] \neq \emptyset$. Thus, I $\lor (a]$ is a non-empty non-fuzzy subset of X. Let x, y \in I V (a]. To prove: x V y \in I V (a] Now, By definition of I V (a] x \in I V (a] \Rightarrow R(x, m₁ V a) > 0, for some m₁ \in I. y \in I V (a] \Rightarrow R(y, m₂ V a) > 0, for some m₂ \in I. Now, m₁, m₂ \in I \Rightarrow (m₁ V m₂) \in I (Since I is a fuzzy ideal) \therefore R(x V y, (m₁ V m₂) V a) > 0 (by theorem 2.2) \therefore x V y \in I V (a]. (by definition of I V (a]) Thus, x, y \in I V (a] \Rightarrow x V y \in I V (a]

Let $R(x, p) > 0, x \in X, p \in I \vee (a]$ To prove: $x \in I \vee (a]$. $p \in I \vee (a] \Rightarrow R(p, m \vee a) > 0$, for some $m \in I$. $\therefore R(x, m \vee a) > 0$, where $m \in I$ (by theorem 2.4) $\therefore x \in I \vee (a]$. (by definition of $I \vee (a]$) Thus, $R(x, p) > 0, x \in X, p \in I \vee (a] \Rightarrow x \in I \vee (a]$. Thus, $I \vee (a]$ is a fuzzy ideal of X. \Box

Note: Crisp union of two fuzzy ideals of a fuzzy lattice (X, R) need not be fuzzy ideal. Counter Example:-

 $X = \{ x_1, x_2, x_3, x_4 \}$

R(X,X) is given by grade membership matrix as follows:

	\mathbf{x}_1	X ₂	X ₃	X4
x ₁	1	0.6	0.5	0.6
X2	0	1	0	0.8
X ₃	0	0	1	0.3
X4	0	0	0	1

A Study Of Fuzzy Lattices 🋱

The Hasse diagram is,

Here the ordered pair (X, R) is a fuzzy lattice. $\{x_1, x_3\}$ and $\{x_1, x_2\}$ are fuzzy ideals of X. But $\{x_1, x_3\}$. U $\{x_1, x_2\} = \{x_1, x_2, x_3\}$ is not a fuzzy ideal of X (Since $x_2 \vee x_3 = x_4 \notin \{x_1, x_2, x_3\}$).

> Theorem 5.8:

Let (X, R) be a fuzzy lattice. Let C be a chain of fuzzy ideals

of X. Then $P = \bigcup_{c \in C} c$ is a fuzzy ideal of X.

Proof:

Now, $P \neq \emptyset$ (Since $c \in C \Rightarrow c \neq \emptyset$)Let $x, y \in P$.To Prove: $x \lor y \in P$. $x \in P \Rightarrow x \in c_1$, for some $c_1 \in C$. $y \in P \Rightarrow x \in c_2$, for some $c_2 \in C$.Now, either $c_1 \subseteq c_2$ or $c_2 \subseteq c_1$ (Since C is a chain)Without loss of generality, let $c_1 \subseteq c_2$ $\therefore x, y \in c_2$. $\therefore x \lor y \in C_2$. $\therefore x \lor y \in P$ (Since $c_2 \equiv P$)

Let $R(x, y) > 0, x \in X, y \in P$ To Prove: $x \in P$. $y \in P \Rightarrow y \in c$, for some $c \in C$. Now $R(x, y) > 0, y \in c$ and $x \in X$ $\Rightarrow x \in c$ (Since c is a fuzzy ideal) $\therefore x \in P$ Thus, $R(x, y) > 0, x \in X, y \in P \Rightarrow x \in P$. Thus, P is a fuzzy ideal of X. \Box

Remark: Let (X, R) be a fuzzy lattice. Let S be a fuzzy ideal. Then $a \in S$ or $b \in S \Rightarrow a \land b \in S$ (by definition of fuzzy ideal) But converse need not be true.

i.e., $a \land b \in S \neq a \in S \text{ or } b \in S$.

Consider the following example:

 $X = \{x_1, x_2, x_3, x_4, x_5\}$ and

R(X,X) is given by grade membership matrix as follows:

	$\mathbf{x_1}$	X ₂	X ₃	X4	X5
\mathbf{x}_1	1	0.8	0.2	0.6	0.6
x ₂	0	1	0	0	0.6
X 3	0	0	1	0	0.5
X 4	0	0	0	1	0.6
X5	0	0	0	0	1

🗱 A Study Of Fuzzy Lattices 🛱

The Hasse diagram is,

Here the ordered pair (X, R) is a fuzzy lattice.

Consider, $S = \{x_1, x_2\}.$

Clearly S is a fuzzy ideal.

Consider $x_3 \land x_4 = x_1 \in S$. whereas, $x_3 \notin S$ and $x_4 \notin S$.

§5.6 Fuzzy Prime Ideals:

Definition "A proper fuzzy ideal S of a fuzzy lattice X is said to be fuzzy prime ideal of X, if $a \land b \in S \Rightarrow a \in S$ or $b \in S$."

***** Examples of fuzzy prime ideals:

1) Let X = [a, a + n] where $a, n \in IR$ and n > 0.

Let R = "almost less than or equal to" be a fuzzy relation defined on X as a function $R: X \times X \rightarrow [0,1]$ defined by,

$$R(x, y) = 1 if x = y = (y - x) / n if x < y = 0 else.$$

Here (X, R) is a fuzzy lattice.

Let S = [a, p] where a

Then S is a fuzzy prime ideal.

\$

A Study Of Fuzzy Lattices

Solution: Now, S is a proper fuzzy ideal of X. (See example 1of fuzzy ideal) To Prove: S is a fuzzy prime ideal. Let $x \land y \in S$. To Prove: $x \in S$ or $y \in S$. Let $m = x \wedge y$. \therefore m \in S Now L(R, $\{x, y\}$) (m) > 0 and R(q, m) > 0 for all q that supports $L(R, \{x, y\})$. Now, $m \in S \implies m \leq p$ (by definition of S) \therefore R(m, p) > 0 (by definition of R) By fuzzy perfectly antisymmetric property, R(p, m) = 0 \therefore p do not support L(R, {x, y}) (1) Let, if possible, $x \notin S$ and $y \notin S$. \therefore x > p and y > p. (by definition of S) \therefore R(p, x) > 0 and R(p, y) > 0 (by definition of R) \therefore R \leq [x] (p) > 0 and R \leq [y] (p) > 0 (by definition of $R \leq$) $\therefore \min \{ R \le [x] (p), R \le [y] (p) \} > 0$ $\therefore (\mathsf{R} \leq [x] \cap \mathsf{R} \leq [y]) (p) > 0$ \therefore L(R, {x, y}) (p) > 0 \therefore p supports L(R, {x, y}) which is contradiction to statement (1). Hence our assumption $x \notin S$ and $y \notin S$ is wrong. $\therefore x \in S \text{ or } y \in S.$ Thus, $x \land y \in S \Rightarrow x \in S$ or $y \in S$ Thus, S is a fuzzy prime ideal.

§5.7 Fuzzy Distributive Lattice:

```
Definition: "Let X be a fuzzy lattice. If a V ( b \wedge c) = (a V b) \wedge (a V c),
\forall a, b, c \in X then X is a fuzzy distributive lattice."
```

> Theorem 5.9: (Stone's Theorem)

Let X be a fuzzy distributive lattice. I be a fuzzy ideal and D be a fuzzy dual ideal of X such that $I \cap D = \emptyset$ then there exists a fuzzy prime ideal P of X such that $I \subseteq P$ and $P \cap D = \emptyset$.

Proof:

Let $F = \{J \subseteq X / J \text{ is a fuzzy ideal of } X \text{ containing } I \text{ and } J \cap D = \emptyset \}$ Now, $I \subseteq X$, I is a fuzzy ideal of X, $I \subseteq I$ and $I \cap D = \emptyset$. $\therefore I \in F \quad \therefore F \neq \emptyset$ Let C be chain in F and $\mathcal{M} = U$ c c∈ C To prove: $\mathcal{M} \in \mathbf{F}$ Now, \mathcal{M} is a fuzzy ideal of X (By theorem 5.8) $c \in C \Rightarrow c \in F \Rightarrow I \subset c$ (by definition of F) Thus, $\forall c \in C$, $I \subseteq c$ $\therefore I \subseteq \bigcup_{c \in C} c \Rightarrow I \subseteq \mathcal{M}$ $c \in \mathcal{C} \Rightarrow c \in \mathbf{F} \Rightarrow c \cap \mathbf{D} = \emptyset \qquad \forall c \in \mathcal{C}$ $\therefore \mathcal{M} \cap D = (U c) \cap D = U (c \cap D) = U \emptyset = \emptyset$ c∈ C c∈ C c∈ C

Thus, \mathcal{M} is a fuzzy ideal of X containing I such that $\mathcal{M} \cap D = \emptyset$. $\therefore \mathcal{M} \in \mathbf{F}$

A Study Of Fuzzy Lattices 🋱

We have, Zorn's Lemma as,

Let $X \neq \emptyset$, $\mathcal{F} \neq \emptyset$, $\mathcal{F} \subseteq \mathcal{P}(X)$, if for any chain \mathcal{C} of \mathcal{F} , $\bigcup c \in \mathcal{F}$ $c \in \mathcal{C}$ then there exists a maximal element in \mathcal{F} .

Thus, by Zorn's lemma, there exists a maximal element, say P, in F To prove: P is a fuzzy prime ideal of X.

Now, $P \in \mathbf{F}$

 \therefore P \subseteq X, P is a fuzzy ideal in X containing I and P \cap D = \emptyset .

As $D \neq \emptyset$, P is a proper subset of X.

Thus P is a proper fuzzy ideal of X.

Let $a \land b \in P$. To prove: $a \in P$ or $b \in P$.

Let, if possible, a \notin P and b \notin P.

As, P is a maximal element in F and by theorem 5.7, we get,

P V (a], P V (b] are fuzzy ideals of X.

Also, $I \subseteq P \subseteq P \vee (a]$ and $I \subseteq P \subseteq P \vee (b]$.

Hence, $(P V (a)) \cap D \neq \emptyset$ and $(P V (b)) \cap D \neq \emptyset$.

Let, $d_1 \in P V (a]$, $d_2 \in P V (b]$ and $d_1, d_2 \in D$.

 $d_{1} \in P V (a] \Rightarrow R(d_{1}, m_{1} V a) > 0 \qquad \text{for some } m_{1} \in P$ $d_{2} \in P V (b] \Rightarrow R(d_{2}, m_{2} V b) > 0 \qquad \text{for some } m_{2} \in P$ $R(d_{1} \wedge d_{2}, (m_{1} V a) \wedge (m_{2} V b)) > 0 \qquad (by \text{ theorem } 2.2)$

 $\therefore R(d_1 \wedge d_2, (m_1 \wedge m_2) \vee (m_1 \wedge b) \vee (a \wedge m_2) \vee (a \wedge b)) > 0$

(Since X is a fuzzy distributive lattice)

Now, $d_1, d_2 \in D \Rightarrow d_1 \wedge d_2 \in D$. (Since D is fuzzy dual ideal) $\therefore (m_1 \wedge m_2) \vee (m_1 \wedge b) \vee (a \wedge m_2) \vee (a \wedge b) \in D$. (1) (Since D is fuzzy dual ideal)

Now, $m_1, m_2 \in P$ and P is a fuzzy ideal $\Rightarrow m_1 \land m_2 \in P$

Also, $R(m_1 \land b, m_1) > 0$, $m_1 \in P$ and P is a fuzzy ideal \Rightarrow m₁ Λ b \in P Also, $R(a \land m_2, m_2) > 0$, $m_2 \in P$ and P is a fuzzy ideal $\Rightarrow a \wedge m_2 \in P$ Also, $a \land b \in P$ (Given data) $\therefore (m_1 \wedge m_2) \vee (m_1 \wedge b) \vee (a \wedge m_2) \vee (a \wedge b) \in P.$ (2) From (1) and (2), we get $P \cap D \neq \emptyset$ which is a contradiction. Hence our assumption that a \notin P and b \notin P is wrong. Thus, $a \in P$ or $b \in P$ whenever $a \land b \in P$. \therefore P is a fuzzy prime ideal. Thus, if $I \cap D = \emptyset$ for any fuzzy ideal I and fuzzy dual ideal D then there exists a fuzzy prime ideal P of X such that $I \subseteq P$ and $P \cap D = \emptyset$.

> Theorem 5.10 :

Let X be a fuzzy distributive lattice and $a \neq b$ in X. Then there exists a fuzzy prime ideal P in X containing exactly one of them.

Proof: Let $a \neq b$ in X.

```
case i) R(a, b) \ge 0 and R(b, a) \ge 0
```

 \therefore (a] \cap [b) = Ø

By Stone's theorem, there exist a fuzzy prime ideal P such that (a) \subseteq P and P \cap [b) = \emptyset .

 \therefore a \in P and b \notin P.

case ii)

$$R(a, b) > 0 \implies R(b, a) = 0$$

(by fuzzy perfectly antisymmetric property)

$$\therefore$$
 (a] \cap [b) = \emptyset

By Stone's theorem, there exist a fuzzy prime ideal P such that (a] \subseteq P and P \cap [b) = \emptyset . \therefore a \in P and b \notin P.

case iii)

 $R(b, a) > 0 \Rightarrow R(a, b) = 0$

(by fuzzy perfectly antisymmetric property)

 \therefore (b] \cap [a) = Ø

By Stone's theorem, there exist a fuzzy prime ideal P such that (b] \subseteq P and P \cap [a) = \emptyset . \therefore b \in P and a \notin P.

From the above three cases, we get, whenever $a \neq b$ there exists a prime ideal P containing exactly one of them.

> Theorem 5.11

Let P be fuzzy prime ideal of fuzzy lattice X then X - P is a fuzzy dual ideal of fuzzy lattice X.

Proof: Let x, y $\in X - P$ $\Rightarrow x, y \notin P$ $\Rightarrow x \land y \notin P$ (Since P is fuzzy prime ideal) $\Rightarrow x \land y \in X - P$ Let x $\land a = a, x \lor a = x, x \in X, a \in X - P$ To prove: $x \in X - P$ Now, $a \in X - P$ $\Rightarrow a \notin P$ $\Rightarrow x \land a \notin P$ (Since x $\land a = a, given$) $\Rightarrow x \notin P$ (Since P is fuzzy ideal) $\Rightarrow x \in X - P$

Thus, X - P is a fuzzy dual ideal of fuzzy lattice X. \Box