

Chapter 6 FUZZY LATTICE HOMOMORPHISM.

§6.1 Fuzzy Isotone Map:

Definition: "Let P and Q be any two fuzzy partial order set. $f: P \to Q$ is a fuzzy isotone map if $R(x, y) > 0 \Rightarrow R(f(x), f(y)) > 0$."

§6.2 Fuzzy Lattice Homomorphism:

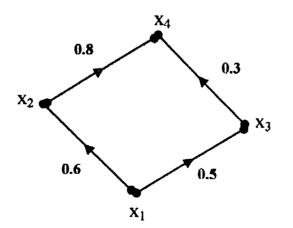
Definition: "Let (X, Λ, V) and $(X', \overline{\Lambda}, \overline{\vee})$ be any two fuzzy lattices.

A mapping $f: X \to X'$ is a fuzzy lattice homomorphism if, $\forall x, y \in X, f(x \land y) = f(x) \overleftarrow{} f(y)$ and

$$f(\mathbf{x} \vee \mathbf{y}) = f(\mathbf{x}) \nabla f(\mathbf{y})$$
."

Example: Consider, $X = \{x_1, x_2, x_3, x_4\}$

The Hasse diagram is,



Here the ordered pair X is a fuzzy lattice.

Let X' = [a, a + n] where $a, n \in IR$ and n > 0.

Let R = "almost less than or equal to" be a fuzzy relation defined on X as a function $R: X \times X \rightarrow [0,1]$ defined by,

$$R(x, y) = 1 if x = y = (y - x) / n if x < y = 0 else.$$

Here (X', R) is a fuzzy lattice.

Define $f: X \to X'$ by $f(x_1) = f(x_3) = a$, $f(x_2) = f(x_4) = a + n$. Then f is a fuzzy lattice homomorphism.

> Theorem 6.1:

Every fuzzy lattice homomorphism is a fuzzy isotone map.

Proof: Let $f: X_1 \rightarrow X_2$ be fuzzy lattice homomorphism.

Let R(x, y) > 0 where $x, y \in X_1$.

Now, $R(x, y) > 0 \Rightarrow x \land y = x$ (by theorem 2.5)

Now, $f(x) = f(x \land y) = f(x) \land f(y)$

(since f is fuzzy lattice homomorphism).

Thus, $f(x) = f(x) \overline{\land} f(y)$ $\therefore R(f(x), f(y)) \ge 0$ (by theorem 2.5)

 \therefore f is a fuzzy isotone map. \Box

§6.3 Kernel of fuzzy lattice homomorphism:

Definition: Let X_1 and X_2 be any two fuzzy lattices.

Let $f: X_1 \rightarrow X_2$ be fuzzy lattice homomorphism.

Define ker $f = \{x \in X_1 / f(x) = 0, \text{ fuzzy zero of } X_2\}$

A Study Of Fuzzy Lattices

> Theorem 6.2: Let X_1 and X_2 be any two fuzzy lattices. Let $f: X_1 \to X_2$ be fuzzy lattice homomorphism. Let 0 be the fuzzy zero of X_1 and 0' be the fuzzy zero of X_2 . Then ker f is a fuzzy ideal. Now, f(0) = 0 always. Hence $0 \in \ker f$. Hence $\ker f \neq \emptyset$. **Proof:** Let x, $y \in \ker f$. To Prove: $x \lor y \in \ker f$ $x \in \ker f \Rightarrow f(x) = 0$ (by definition of ker f) $y \in \ker f \Rightarrow f(y) = 0$ (by definition of ker f) As f is fuzzy lattice homomorphism, $\therefore f(\mathbf{x} \vee \mathbf{y}) = f(\mathbf{x}) \nabla f(\mathbf{y}) = \mathbf{0} \nabla \mathbf{0} = \mathbf{0}$ Thus, $f(\mathbf{x} \mathbf{V} \mathbf{y}) = \mathbf{0}$ \therefore x V y \in ker f (by definition of ker f) Thus x, y \in ker $f \Rightarrow$ x V y \in ker fLet R(x, y) > 0, $x \in X_1$, $y \in \ker f$ To Prove: $x \in \ker f$. $y \in \ker f \Rightarrow f(y) = 0$ (by definition of ker f) As f is fuzzy lattice homomorphism, \therefore f is a fuzzy isotone map. $\therefore R(\mathbf{x}, \mathbf{y}) \ge 0 \implies R(f(\mathbf{x}), f(\mathbf{y})) \ge 0 \implies R(f(\mathbf{x}), \mathbf{0}) \ge 0$ Also, $R(0^{,} f(x)) > 0$ (by definition of fuzzy zero) Thus, R(f(x), 0) > 0 and R(0, f(x)) > 0 $\Rightarrow f(\mathbf{x}) = \mathbf{0}$ (by theorem 2.7) $\therefore x \in \ker f$ (by definition of ker f) Thus, R(x, y) > 0, $x \in X_1$, $y \in \ker f \Rightarrow x \in \ker f$. Thus, ker f is a fuzzy ideal.

§6.4 Fuzzy Isomorphism:

- **Definition:** "A fuzzy lattice homomorphism $f: X_1 \rightarrow X_2$ which is oneone and onto mapping is said to be fuzzy lattice isomorphism."
- Note: "Two fuzzy lattices X_1 and X_2 are said to be fuzzy lattice isomorphic if there is an fuzzy lattice isomorphism $f: X_1 \rightarrow X_2$."

§6.5 Fuzzy Congruence Relation:

"Let (X, R) be a fuzzy lattice. A Similarity Relation ' R_0 ' defined on a fuzzy lattice X is called a fuzzy congruence relation, if $x_1 \equiv y_1 (R_0), x_2 \equiv y_2 (R_0)$

 \Rightarrow x₁ \land x₂ \equiv y₁ \land y₂ (R₀) and x₁ \lor x₂ \equiv y₁ \lor y₂ (R₀)."

Example: Let (X, R) be fuzzy lattice. Define a fuzzy relation ' R_{θ} ' as, R_{θ} : X x X \rightarrow [0,1] defined by,

 $R_{\theta}(x, y) = 1 \quad \text{if} \quad x = y$ $= 0 \quad \text{else}$ Then R_{θ}' is Fuzzy Congruence Relation.
Solution: We will first prove that R_{θ}' is a Similarity Relation.

1) Fuzzy Reflexive Relation:

Now, by definition of R_{e}

 $\mathbf{R}_{\boldsymbol{\theta}}(\mathbf{x},\,\mathbf{x}) = \mathbf{1} \qquad \forall \, \mathbf{x} \in \mathbf{X}.$

 \therefore R_{θ} is a fuzzy reflexive relation.

2) Fuzzy Symmetric Relation:

Let $x, y \in X$ If $x = y, R_{\theta}(x, y) = 1, R_{\theta}(y, x) = 1 \implies R_{\theta}(x, y) = R_{\theta}(y, x)$ If $x \neq y, R_{\theta}(x, y) = 0, R_{\theta}(y, x) = 0 \implies R_{\theta}(x, y) = R_{\theta}(y, x)$ Thus, $\forall x, y \in X, R_{\theta}(x, y) = R_{\theta}(y, x)$ $\Rightarrow R_{\theta}(y, x) = 0 \implies R_{\theta}(y, x) = 0$

 \therefore R_{θ} is a fuzzy symmetric relation.

Fuzzy Max-Min Transitive Relation: Let $(x, z) \in X^2$ ١. To prove: $R_{\theta}(x, z) \ge \max \min (R_{\theta}(x, y), R_{\theta}(y, z))$ y ∈ X (by definition of R_{θ}) If x = z then $R_{\theta}(x, z) = 1$ \therefore R_{θ}(x, z) \geq max min (R_{θ}(x, y), R_{θ}(y, z)) v e X If $x \neq z$ then $R_{\theta}(x, z) = 0$ Now, for all $y \in X$ such that y = x and $y \neq z$ $R_{\theta}(x, y) = 1$ and $R_{\theta}(y, z) = 0$ \therefore min(R_{θ}(x, y), R_{θ}(y, z)) = R_{θ}(y, z) = 0 Now, for all $y \in X$ such that y = z and $y \neq x$ $R_{\theta}(x, y) = 0$ and $R_{\theta}(y, z) = 1$ $\therefore \min(R_0(x, y), R_0(y, z)) = R_0(x, y) = 0$ Now, for all $y \in X$ such that $y \neq x$ and $y \neq z$ $R_{\theta}(x, y) = 0$ and $R_{\theta}(y, z) = 0$ \therefore min(R_{θ}(x, y), R_{θ}(y, z)) = 0 Thus, $\forall y \in X$, min($R_{\theta}(x, y)$, $R_{\theta}(y, z)$) = 0 Thus, $R_{\theta}(x, z) \ge \max \min (R_{\theta}(x, y), R_{\theta}(y, z))$ y ∈ X Thus, in all cases, $R_{\theta}(x, z) \ge \max \min (R_{\theta}(x, y), R_{\theta}(y, z))$ y∈X Thus, R_{θ} is a fuzzy max-min transitive relation.

Thus, R_{θ} is a Similarity Relation.

3)

Let
$$x_1 \equiv y_1 (R_\theta)$$
 and $x_2 \equiv y_2 (R_\theta)$ where $x_1, x_2, y_1, y_2 \in X$.
 $\therefore R_\theta(x_1, y_1) > 0$ and $R_\theta(x_2, y_2) > 0$
 $\therefore R_\theta(x_1, y_1) = 1$ and $R_\theta(x_2, y_2) = 1$
 $\therefore x_1 = y_1$ and $x_2 = y_2$
 $\therefore x_1 \Lambda x_2 = y_1 \Lambda y_2$ and $x_1 V x_2 = y_1 V y_2$
 $\therefore R_\theta(x_1 \Lambda x_2, y_1 \Lambda y_2) = 1$ and $R_\theta(x_1 V x_2, y_1 V y_2) = 1$
 $\therefore x_1 \Lambda x_2 = y_1 \Lambda y_2 (R_\theta)$ and $x_1 V x_2 = y_1 V y_2 (R_\theta)$
Thus, R_θ is a Fuzzy Congruence Relation.

§6.6 Fuzzy Congruence Class:

Definition: "Let '
$$R_{\theta}$$
' be a fuzzy congruence relation defined on a fuzzy
lattice (X, R). Define, [a] $^{R_{\theta}} = \{x \in X / x \equiv a (R_{\theta})\}, a \in X$.
Then [a] $^{R_{\theta}}$ is called a fuzzy congruence class containing a."

§6.7 Fuzzy Quotient Lattice:

"Let 'R₀' be a fuzzy congruence relation defined on a fuzzy lattice (X, R). Define, $\frac{X}{R_{\Theta}} = \{ [a]^{R_{\Theta}} / a \in X \}$ Define, \overline{x} and $\underline{\vee}$ on X / R₀ by, $[a]^{R_{\Theta}} \overline{x} [b]^{R_{\Theta}} = [a \wedge b]^{R_{\Theta}}$ $[a]^{R_{\Theta}} \underline{\vee} [b]^{R_{\Theta}} = [a \vee b]^{R_{\Theta}}$ Then, $\frac{X}{R_{\Theta}}$, \overline{x} , $\underline{\vee} >$ is a fuzzy lattice.

This fuzzy lattice is called as fuzzy quotient lattice of X by fuzzy congruence relation R_{θ} .

> Fundamental Theorem of Fuzzy Lattice Homomorphism:

Every fuzzy homomorphic image of a fuzzy lattice X is fuzzy lattice isomorphic with its suitable fuzzy quotient lattice

OR

if f: $X \rightarrow X_1$ is an onto fuzzy homomorphism then

$$X_1 \cong \frac{X}{R_0}$$
 for some fuzzy congruence relation R_0 .

Proof:Let X and X1 be two fuzzy lattices.Let f: X \rightarrow X1 is an onto fuzzy homomorphism.Define a fuzzy relation 'R0' on X, denoted by $x \equiv y (R_0)$ forx, y \in X, by function as, R0: X x X \rightarrow [0,1] defined by, $R_0(x, y) = 1$ if f(x) = f(y)

 $R_{\theta}(\mathbf{x}, \mathbf{y}) = 1$ If $f(\mathbf{x}) = f(\mathbf{y})$ = 0 else

We will first prove that ' R_{θ} ' is a Similarity Relation.

1) Fuzzy Reflexive Relation:

Now, f(x) = f(x) $\forall x \in X$. (Since f is a function)

Now, by definition of R_{θ} ,

 $\therefore R_{\theta}(x, x) = 1 \qquad \forall x \in X.$

 \therefore R_{θ} is a fuzzy reflexive relation.

2) Fuzzy Symmetric Relation:

Let x, y $\in X$ If $f(x) = f(y) \Rightarrow f(y) = f(x)$ $\therefore R_{\theta}(x, y) = 1, R_{\theta}(y, x) = 1 \Rightarrow R_{\theta}(x, y) = R_{\theta}(y, x)$ If $f(x) \neq f(y) \Rightarrow f(y) \neq f(x)$ $\therefore R_{\theta}(x, y) = 0, R_{\theta}(y, x) = 0 \Rightarrow R_{\theta}(x, y) = R_{\theta}(y, x)$ Thus, $\forall x, y \in X, R_{\theta}(x, y) = R_{\theta}(y, x)$ $\therefore R_{\theta}$ is a fuzzy symmetric relation.

Submitted by Sachin H. Dhanani

3) **Fuzzy Max-Min Transitive Relation:** Let $(x, z) \in X^2$ To prove: $R_{\theta}(x, z) \ge \max \min (R_{\theta}(x, y), R_{\theta}(y, z))$ y ∈ X If f(x) = f(z) then $R_{\theta}(x, z) = 1$ (by definition of R_{θ}) \therefore R₀(x, z) \geq max min (R₀(x, y), R₀(y, z)) v e X If $f(x) \neq f(z)$ then $R_0(x, z) = 0$ for all $y \in X$ such that f(y) = f(x) and $f(y) \neq f(z)$ $R_{\theta}(x, y) = 1$ and $R_{\theta}(y, z) = 0$ $\therefore \min(R_{\theta}(\mathbf{x}, \mathbf{y}), R_{\theta}(\mathbf{y}, \mathbf{z})) = R_{\theta}(\mathbf{y}, \mathbf{z}) = 0$ for all $y \in X$ such that f(y) = f(z) and $f(y) \neq f(x)$ $R_{\theta}(x, y) = 0$ and $R_{\theta}(y, z) = 1$ $\therefore \min(R_0(x, y), R_0(y, z)) = R_0(x, y) = 0$ for all $y \in X$ such that $f(y) \neq f(x)$ and $f(y) \neq f(z)$ $R_{\theta}(x, y) = 0$ and $R_{\theta}(y, z) = 0$ $\therefore \min(R_{\theta}(x, y), R_{\theta}(y, z)) = 0$ Thus, $\forall y \in X$, min($R_{\theta}(x, y)$, $R_{\theta}(y, z)$) = 0 Thus, $R_{\theta}(x, z) \ge \max \min (R_{\theta}(x, y), R_{\theta}(y, z))$ y ∈ X Thus, in all cases, $R_{\theta}(x, z) \ge \max \min (R_{\theta}(x, y), R_{\theta}(y, z))$ y∈X

Thus, R_{θ} is a fuzzy max-min transitive relation. Thus, R_{θ} is a Similarity Relation. Let $x_1 \equiv y_1 (R_{\theta})$ and $x_2 \equiv y_2 (R_{\theta})$ where $x_1, x_2, y_1, y_2 \in X$. $\therefore R_{\theta}(x_1, y_1) > 0$ and $R_{\theta}(x_2, y_2) > 0$ $\therefore R_{\theta}(x_1, y_1) = 1$ and $R_{\theta}(x_2, y_2) = 1$ $\therefore f(x_1) = f(y_1)$ and $f(x_2) = f(y_2)$ Now, f is a fuzzy lattice homomorphism, $\therefore f(x_1 \land x_2) = f(x_1) \land f(x_2) = f(y_1) \land f(y_2) = f(y_1 \land y_2)$ Thus, $f(x_1 \land x_2) = f(y_1 \land y_2)$ $\therefore R_{\theta}(x_1 \land x_2, y_1 \land y_2) = 1$ $\therefore x_1 \land x_2 \equiv y_1 \land y_2 (R_{\theta})$ Also, $f(x_1 \lor x_2) = f(y_1 \lor y_2)$ $\therefore R_{\theta}(x_1 \lor x_2, y_1 \lor y_2) = 1$ $\therefore x_1 \lor x_2 = y_1 \lor y_2 (R_{\theta})$ Thus, $f(x_1 \lor x_2, y_1 \lor y_2) = 1$ $\therefore x_1 \lor x_2 \equiv y_1 \lor y_2 (R_{\theta})$ Thus, R_{θ} is a Fuzzy Congruence Relation.

$$\frac{X}{R_{\theta}} = \{ [a]^{R_{\theta}} / a \in X \}$$

and $< \frac{X}{R_0}$, $\overline{}$, $\underline{\times} >$ is a fuzzy quotient lattice by fuzzy

congruence relation R_{θ} where \overline{A} and $\underline{\vee}$ are defined as

$$\forall a, b \in X,$$

$$[a]^{R_{\theta}} \overline{\wedge} [b]^{R_{\theta}} = [a \wedge b]^{R_{\theta}}$$

$$[a]^{R_{\theta}} \underline{\vee} [b]^{R_{\theta}} = [a \vee b]^{R_{\theta}}$$

Define, $g: \frac{X}{R_{\theta}} \longrightarrow X_1$ by $g([a]^{R_{\theta}}) = f(a) \quad \forall a \in X.$ Now, $[a]^{R_{\theta}} = [b]^{R_{\theta}}$ where $a, b \in X$

Submitted by Sachin H. Dhanani

Now,

Page 63 of 65

Consider,
$$a \in [a]^{R_{\theta}} \implies a \in [b]^{R_{\theta}}$$

 $\implies a \equiv b(R_{\theta})$
 $\implies R_{\theta}(a, b) = 1$
 $\implies f(a) = f(b)$
 $\implies g([a]^{R_{\theta}}) = g([b]^{R_{\theta}})$

Thus, g is well-defined.

To Prove: g is fuzzy lattice homomorphism.

Consider,
$$g([a]^{R_{\theta}} \overline{\wedge} [b]^{R_{\theta}}) = g([a \wedge b]^{R_{\theta}})$$
 (By definition of $\overline{\wedge}$)
= $f(a \wedge b)$ (By definition of g)
= $f(a) \wedge f(b)$

(since f is fuzzy lattice homomorphism.)

 $= g([a]^{R_{\theta}}) \wedge g([b]^{R_{\theta}})$

Thus,
$$g([a]^{R_{\theta}} \overline{\wedge} [b]^{R_{\theta}}) = g([a]^{R_{\theta}}) \wedge g([b]^{R_{\theta}})$$
 (1)

Consider, $g([a]^{R_{\theta}} \leq [b]^{R_{\theta}}) = g([a \lor b]^{R_{\theta}})$ (By definition of \leq) = $f(a \lor b)$ (By definition of g) = $f(a) \lor f(b)$

(since f is fuzzy lattice homomorphism.)

$$= g([a]^{R_{\theta}}) \vee g([b]^{R_{\theta}})$$

Thus, $g([a]^{R_{\theta}} \leq [b]^{R_{\theta}}) = g([a]^{R_{\theta}}) \vee g([b]^{R_{\theta}})$ (2)

From (1) and (2) we get, g is a fuzzy lattice homomorphism.

To prove: g is onto.

Let $z \in X_1$

Now, $f: X \rightarrow X_i$ is an onto fuzzy homomorphism.

 \therefore There exists $p \in X$ such that f(p) = z.

For this p, $g([p]^{R_0}) = f(p) = z$. (By definition of g)

Thus there exists $[p]^{R_{\theta}} \in X / R_{\theta}$ such that $g([p]^{R_{\theta}}) = z$.

Thus, g is onto.

A Study Of Fuzzy Lattices

To Prove: g is one-one.

Let $g([x]^{R_0}) = g([y]^{R_0})$ where $x, y \in X$ $\therefore f(x) = f(y)$ $\therefore R_0(x, y) = 1$ $\therefore x = y (R_0)$ $\therefore [x]^{R_0} = [y]^{R_0}$ Thus, $g([x]^{R_0}) = g([y]^{R_0}) \Rightarrow [x]^{R_0} = [y]^{R_0} \quad \forall x, y \in X.$ Thus, g is one-one. Thus, g is fuzzy lattice homomorphism which is one-one and onto. Thus g is fuzzy isomorphism.

Hence $X_1 \cong \frac{X}{R_0}$ for some fuzzy congruence relation R_0 .

Thus, Every fuzzy homomorphic image of a fuzzy lattice X is fuzzy lattice isomorphic with its suitable fuzzy quotient lattice. \Box
