

CHAPTER 1

FUZZY SETS AND FUZZY RELATIONS.

* Introduction: [1]

Throughout this work X stands for the universal set.
Let X be classical set of object called the universe, whose generic elements are denoted by x. Membership in a classical subset A of X is often viewed as a characteristic function $f: X \rightarrow\{0,1\}$ defined by,

$$
\begin{aligned}
f(x) & =1, \text { iff } x \in A \\
& =0, \text { iff } x \notin A
\end{aligned}
$$

Here $\{0,1\}$ is called as a valuation set.
If the valuation set is allowed to be the real interval $[0,1]$ then the set A is called a fuzzy set. $f(x)$ is the grade membership of x in A. Thus closer the value of $f(x)$ is to 1 , the more x belongs to A. Clearly, Set A is a subset of X that has no sharp boundary.

- Preliminary Definitions: -

§1.1 Fuzzy Set: -

Definition: "Let X be the universal set. A Fuzzy set ' A ' in X is a function $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$."

Set A is completely characterized by the set of pairs $A=\{(x$. $A(x)) / x \in X\}$. Lofti A. Zadeh proposed a convenient notation. When X is a finite set $\left\{x 1, x 2, x 3 \ldots . x_{n}\right\}$, a fuzzy set on X is expressed as,

$$
A=\frac{A\left(x_{1}\right)}{x_{1}}+\frac{A\left(x_{2}\right)}{x_{2}}+\frac{A\left(x_{3}\right)}{x_{3}}+\cdots+\frac{A\left(x_{n}\right)}{x_{n}}
$$

$$
A=\sum_{i=1}^{n} \frac{A\left(x_{i}\right)}{x_{i}}
$$

Whereas X is not finite, we write $A=\int \frac{A(x)}{x}$
Note: \quad The set of all fuzzy sets in X is denoted by $F(X)$.

§1.2.1 Fuzzy Subsets: [1]

Definition: "Let A and B be the two fuzzy sets in X . A is said to be subset of B , denoted by $\mathrm{A} \subseteq \mathrm{B}$, if $\mathrm{A}(\mathrm{x}) \leq \mathrm{B}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{X}$."

§1.2.2 Fuzzy Proper Subsets:

Definition: "Let A and B be the two fuzzy sets in X. A is said to be proper subset of B , denoted by $\mathrm{A} \subset \mathrm{B}$, if $\mathrm{A}(\mathrm{x})<\mathrm{B}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{X}$."

Remark: From definition of fuzzy subset it follows that, Two fuzzy sets A and B are said to be equal iff

$$
\mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{X}
$$

§1.3 Union and Intersection of Fuzzy sets: - [1]

Let A and B be two fuzzy sets in X.
Then Fuzzy Union, denoted as A U B, is defined as,

$$
\mathrm{A} \cup \mathrm{~B}(\mathrm{x})=\max (\mathrm{A}(\mathrm{x}), \mathrm{B}(\mathrm{x})) \quad \forall \mathrm{x} \in \mathrm{X}
$$

Fuzzy Intersection, denoted as $A \cap B$, is defined as,

$$
\mathrm{A} \cap \mathrm{~B}(\mathrm{x})=\min (\mathrm{A}(\mathrm{x}), \mathrm{B}(\mathrm{x})) \quad \forall \mathrm{x} \in \mathrm{X}
$$

Note: Clearly, if A and B are two fuzzy sets in X then $A \subseteq A \cup B$ and $B \subseteq A U B$. Also, $A \cap B \subseteq A$ and $A \cap B \subseteq B$.

§1.4 Complement of a fuzzy set: - [1]

Definition: "Let A be fuzzy set in X. The complement of A is a fuzzy set \AA defined as, $\quad \AA(x)=1-A(x) \quad \forall x \in X . "$

§1.5 Fuzzy Relations: - [1]

Definition: "Let $X_{1}, X_{2} \ldots . X_{n}$ be n universes. An n-ary fuzzy relation R in $X_{1} \times X_{2} \times X_{3} \times \ldots \times X_{n}$ is a fuzzy set R in $X_{1} \times X_{2} \times X_{3}$ $\mathrm{x} \ldots \mathrm{x} \mathrm{X}_{\mathrm{n}}$."

An ordinary crisp relation is a particular case of fuzzy relation.
Let us consider an example of fuzzy relation,
Let $X_{1}=X_{2}=I R^{+}-\{0\}$ and
$\mathrm{R}=$ "much greater than" defined by a function $\mathrm{R}: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow[0,1]$

$$
\text { as, } \quad \begin{aligned}
R(x, y) & =0 & & \text { iff } x \leq y \\
& =\min (1,(x-y) / 9 y) & & \text { iff } x \geq y \\
& =1 & & \text { iff } x \geq 10 y
\end{aligned}
$$

Clearly R is a fuzzy relation on $\mathrm{X}_{1} \times \mathrm{X}_{2}$.

§1.6 Binary Fuzzy Relations: -

Definition: "Let X and Y be two universes.
A function $R: X \times Y \rightarrow[0,1]$ is called a fuzzy binary relation or fuzzy relation from X to Y."

Its domain is a fuzzy set in X, domain of R, defined as,

$$
\operatorname{dom} R(x)=\max _{y \in Y} R(x, y) \quad \forall x \in X
$$

Its range is a fuzzy set in Y, range of R, defined as,

$$
\operatorname{ran} R(y)=\max _{x \in X} R(x, y) \quad \forall y \in Y
$$

The inverse of a fuzzy relation $R(x, y)$ which is denoted by

$$
\begin{aligned}
& \mathrm{R}^{-1}(\mathrm{y}, \mathrm{x}) \text { is a fuzzy relation on } \mathrm{Y} x \mathrm{X} \text { defined by, } \\
& \mathrm{R}^{-1}(\mathrm{y}, \mathrm{x})=\mathrm{R}(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x} \in \mathrm{X} \text { and } \forall \mathrm{y} \in \mathrm{Y}
\end{aligned}
$$

A membership matrix $R^{-1}=\left[r^{-1} y x\right]$ representing $R^{-1}(Y, X)$ is the transpose of the matrix R for $R(X, Y)$, which means that the rows of R^{-1} equal to the columns and the columns of R^{-1} equal to the rows of R. Clearly $\left(R^{-1}\right)^{-1}=R$ for any Binary Fuzzy Relation R. Binary Fuzzy Relation on single set is denoted by $R(X, X)$.

§1.7 Fuzzy Reflexive Relations: -

Definition: "A fuzzy relation R on X is said to be Reflexive

$$
\text { if } R(x, x)=1 \quad \forall x \in X . "
$$

§1.8 Fuzzy Symmetric Relations: -

Definition: "A fuzzy relation R on X is said to be Symmetric

$$
\text { if } R(x, y)=R(y, x) \quad \forall x \in X \text { and } \forall y \in X . "
$$

§1.9 Fuzzy Perfect Antisymmetric Relations: -[1]

Two definitions of antisymmetry can be found in the literature.
They are,

Perfect Antisymmetry (Zadeh 1971):

"A fuzzy relation R in X is perfectly antisymmetric
if $x \neq y$ and $R(x, y)>0 \Rightarrow R(y, x)=0 \quad \forall(x, y) \in X^{2}$

Antisymmetry (Kaufmann 1975):

"A fuzzy relation R in X is antisymmetric

$$
\text { if } x \neq y \text { either } R(x, y) \neq R(y, x) \text { or } R(x, y)=R(y, x)=0
$$

Note: Perfect antisymmetric implies antisymmetry.

§1.10 Fuzzy Max-Min Transitivity Relations: -

Definition: "A fuzzy relation R on X is said to be Max-Min Transitive

$$
\text { if } R(x, z) \geq \max _{y \in X} \min \{R(x, y), R(y, z)\} \quad \forall(x, z) \in X^{2}
$$

§1.11 Similarity Relations / Fuzzy Equivalence Relations: - [2]

"A Binary fuzzy relation R which is reflexive, symmetric and max-min transitive is known as a Fuzzy Equivalence Relation or Similarity Relation."
e.g. $X=\{A, B, C, D, E, F, G\}$ and
$R(X, X)$ is given by grade membership matrix as follows:

	A	B	C	D	E	F	G
A	1	0.8	0	0.4	0	0	0
B	0.8	1	0	0.4	0	0	0
C	0	0	1	0	1	0.9	0.5
D	0.4	0.4	0	1	0	0	0
E	0	0	1	.0	1	0.9	0.5
F	0	0	0.9	0	0.9	1	0.5
G	0	0	0.5	0	0.5	0.5	1

Here $R(X, X)$ is a Similarity Relation on X.

Note: The above grade membership matrix which is also known as triangular matrix can be read as, $R(A, D)=0.4$ where A is a row element and D is a column element.

