

۰.

CHAPTER 2 FUZZY PARTIAL ORDERED SETS.

§2.1 FUZZY PARTIAL ORDERINGS: - [1]

Definition: "A Fuzzy Relation R in X is a Fuzzy Partial Ordering iff it is Reflexive, Perfectly Antisymmetric and (Max-Min) Transitive."

When X is finite, it is possible to represent R as a triangular matrix or a Hasse diagram. A fuzzy Hasse diagram is a valued oriented graph whose nodes are the elements of X. The link $x \rightarrow y$ exists iff R(x, y) > 0. Each link is valued by R(x, y). Owing to fuzzy perfect antisymmetrivity and fuzzy max-min transitivity the graph has no cycle.

§2.2 FUZZY PARTIAL ORDERED SET: -

Definition: "Let X be non-empty non-fuzzy set. If R is fuzzy partial order defined on X. Then ordered pair (X, R) is called as Fuzzy Partial Ordered Set."

Note: In Short, A Fuzzy Partial ordered set is known as Fuzzy poset.

Examples: 1) $X=\{x_1, x_2, x_3, x_4, x_5, x_6\}$ and R(X, X) is given by grade membership matrix as,

	$\mathbf{x_1}$	x ₂	X 3	X 4	X5	X 6
Xı	1	0.8	0.2	0.6	0.6	0.4
X ₂	0	1	0	0	0.6	0
X ₃	0	0	1	0	0.5	0
X4	0	0	0	1	0.6	0.4
X5	6	0	0	0	1	0
X ₆	0	0	0	0	0	1

Submitted by Sachin H. Dhanani

. . .

🛱 A Study Of Fuzzy Lattices 🛱

Here the ordered pair (X, R) is fuzzy partial ordered set.

The Hasse diagram is,

Note: The Hasse diagram is read as $R(x_1, x_2) = 0.8$ but $R(x_2, x_1) = 0$

2) $X=\{x_1, x_2, x_3, x_4, x_5, x_6\}$ and

R(X,X) is given by membership matrix as follows:

	\mathbf{x}_1	x ₂	X ₃	\mathbf{x}_4	X 5	x ₆
x _i	1	0	0	0	0	0
x ₂	0.6	1	0	0	0.8	0
X 3	0.6	0.9	1	0.1	0.8	0.4
X 4	0	0	0	1	0.3	0
X5	0	0	0	0	1	0
X 6	0	0	0	0	1	1

Here the ordered pair (X, R) is fuzzy partial ordered set.

Submitted by Sachin H. Dhanani

Page 7 of 65

3) Let
$$X = [a, a + n]$$
 where $a, n \in IR, n > 0$.

R = "almost less than or equal to" be fuzzy relation on X defined by the function R : $X \times X \rightarrow [0, 1]$ as, $\forall x, y \in X$

$$R(x, y) = 1 if x = y = (y-x) / n if x < y = 0 else.$$

Here the ordered pair (X, R) is a fuzzy partial ordered set.

§2.3 Dominating and Dominated class: - [2]

Let a fuzzy partial ordering R is defined on a non-empty non-fuzzy set X, Two fuzzy sets are associated with an element x in X.

1) Dominating class: -

Let $x \in X$. Then Dominating class of x is a fuzzy set, denoted by $R \ge [x]$ and is defined by,

 $R_{\geq}[x](y) = R(x, y) \qquad \forall \ y \in X.$

2) Dominated class: -

Let $x \in X$. Then Dominated class of x is a fuzzy set, denoted by $R \le [x]$ and is defined by,

 $R \leq [x] (y) = R (y, x) \qquad \forall y \in X.$

§2.4.1 Fuzzy Upper Bound: [2]

For a crisp subset A of a set X on which a fuzzy partial ordering R is defined, the fuzzy upper bound for A is the fuzzy set, denoted by U(R, A), defined by,

$$U(R, A) = \bigcap_{x \in A} R \ge [x]$$

Where \cap denotes appropriate fuzzy intersection.

Submitted by Sachin H. Dhanani

Page 8 of 65

§2.4.2 Fuzzy Lower Bound:

For a crisp subset A of a set X on which a fuzzy partial ordering R is defined, the fuzzy lower bound for A is the fuzzy set, denoted by L(R, A), defined by,

$$L(R, A) = \bigcap_{x \in A} R \leq [x]$$

Where \cap denotes appropriate fuzzy intersection.

§2.5 Support of a Fuzzy set:

Definition: "The support of a fuzzy set A within a universal set X is the crisp set that contains all the elements of X that have nonzero membership grades in A." It is denoted as supp $A = \{x \in X / A(x) > 0\}$.

§2.6.1 Fuzzy Least Upper Bound: [2]

"For a nonempty nonfuzzy subset A of a set X on which a fuzzy partial ordering R is defined, the fuzzy least upper bound of A, if exists, is the unique element x in U(R, A) such that U(R, A)(x) > 0 and R(x, y) > 0 for all elements y in the support of U(R, A)."

It is denoted by, $\bigvee_{y \in A} y = x$

§2.6.2 Fuzzy Greatest Lower Bound:

1

"For a nonempty nonfuzzy subset A of a set X on which a fuzzy partial ordering R is defined, the fuzzy greatest lower bound of A, if exists, is the unique element x in L(R, A) such that L(R, A) (x) > 0 and R(y, x) > 0 for all elements y in the support of L(R, A)."

It is denoted by, $\bigwedge_{y \in A} y = x$

Example: $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ and

R(X,X) is given by membership matrix as follows:

Here the ordered pair (X, R) is fuzzy partial ordered set. Consider, $A = \{x_1, x_2\} \subset X$.

$$R_{\geq}[x_{1}] = \left\{ \frac{1}{x_{1}} + \frac{0.8}{x_{2}} + \frac{0.6}{x_{3}} + \frac{0.6}{x_{5}} + \frac{0.4}{x_{5}} + \frac{0.4}{x_{5}} \right\}$$

$$R_{\geq}[x_{2}] = \left\{ \frac{1}{x_{2}} + \frac{0.6}{x_{5}} \right\}$$
Now, U(R,A) = R_{\geq}[x_{1}] \cap R_{\geq}[x_{2}]
$$U(R, A) = \left\{ \frac{0.8}{x_{2}} + \frac{0.6}{x_{5}} \right\}$$

Submitted by Sachin H. Dhanani

Page 10 of 65

Here, U(R, A) $(x_2) > 0$ and R(x_2 , y) > 0 for all y in support of U(R,A). Hence x_2 is the fuzzy least upper bound of A. Similarly, x_1 is the fuzzy greatest lower bound of A.

> Theorem 2.1: -

Let (X, R) be fuzzy partial order set. Let $a, b \in X$. If $a \vee b$ exists then $R(a, a \vee b) > 0$ and $R(b, a \vee b) > 0$. Also, if $a \wedge b$ exists then $R(a \wedge b, a) > 0$ and $R(a \wedge b, b) > 0$.

Proof:-

Let a V b exists and let a V b = $m \in X$. To prove: R(a, m) > 0 and R(b, m) > 0. By definition of 'V' i.e., Fuzzy least upper bound, $U(R, \{a, b\})(m) > 0$ and (Refer §2.6.1) R(m, y) > 0 for all y that supports $U(R, \{a, b\})$. $\therefore (R \ge [a] \cap R \ge [b]) (m) > 0.$ (**Refer §2.4.1**) (By definition of fuzzy upper bound) $\therefore \min \{R \ge [a] (m), R \ge [b] (m)\} > 0.$ (Refer §1.2) \therefore R \geq [a] (m) > 0 and R \geq [b] (m) > 0. \therefore R(a, m) > 0 and R (b, m) > 0. (By definition of $R \ge class$) \therefore R(a, a V b) > 0 and R(b, a V b) > 0. (Since m = a V b) Thus, if a V b exists then R(a, a V b) > 0 and R(b, a V b) > 0. Similarly, if a Λ b exists then R(a Λ b, a) > 0 and R(a Λ b, b) > 0. \square

➤ Theorem 2.2: -

Let (X, R) be fuzzy poset. Let a, b, c, $d \in X$. If a V c and b V d exists, R(a, b) > 0 and R(c, d) > 0 then R(a V c, b V d) > 0.

A Study Of Fuzzy Lattices 🛠

Proof: -Let a V c and b V d exist, R(a, b) > 0 and R(c, d) > 0. \therefore R(a, a V c) > 0 and R(c, a V c) > 0.(By theorem 2.1) Also, $R(b, b \vee d) > 0$ and $R(d, b \vee d) > 0$. (By theorem 2.1) Let $a \lor c = m$ and $b \lor d = n$. \therefore R(a, n_i) > 0, R(c, m) > 0, R(b, n) > 0 and R(d, n) > 0. Thus R(a, b) > 0 (given data) and R(b, n) > 0(1) \Rightarrow min{ R(a, b), R(b, n) } > 0. To prove: -R(m, n) > 0Let, if possible, R(m, n) = 0Now, m is fuzzy least upper bound of $\{a, c\}$ \therefore U(R, {a, c}) (m) > 0 and (Refer §2.6.1) R(m, y) > 0 for all y that supports $U(R, \{a, c\})$. \therefore n do not support U(R, {a, c}) as R (m, n) = 0. $\therefore U(R, \{a, c\})(n) = 0.$ $\therefore (R \ge [a] \cap R \ge [c]) (n) = 0.$ (Refer §2.4.1) (By definition of fuzzy upper bound) $\therefore \min \{ R \ge [a](n), R \ge [c](n) \} = 0.$ (Refer §1.2) \therefore min { R(a, n), R(c, n) } = 0 (By definition of R \ge class) $\therefore R(a, n) = 0 \text{ or } R(c, n) = 0.$ Let without loss of generality, R(a, n) = 0. By fuzzy max-min transitivity, $R(a, n) \ge \max \min (R(a, y), R(y, n))$ y ∈ X $\therefore 0 \ge \max \min (R(a, y), R(y, n))$ y ∈ X \therefore max min (R(a, y), R(y, n)) = 0 y∈X

A Study Of Fuzzy Lattices 🛠

 $\therefore \min (R(a, y), R(y, n)) = 0 \qquad \forall y \in X.$ Now, $b \in X$ $\therefore \min (R(a, b), R(b, n)) = 0 \qquad (2)$ Thus, from (1) and (2), we get a contradiction. Thus, our assumption that R(m, n) = 0 is wrong. Thus, R(m, n) > 0. Thus, R(a V c, b V d) > 0. (Since m = a V c, n = b V d) Thus if R(a, b) > 0 and R(c, d) > 0 then R(aVc, bVd) > 0. \Box

> Theorem 2.3: -

Let (X, R) be fuzzy poset. Let a, b, c, $d \in X$. If a Λ c and b Λ d exists, R(a, b) > 0 and R(c, d) > 0Then $R(a \Lambda c, b \Lambda d) > 0$.

> Theorem 2.4: -

Let (X, R) be fuzzy poset. Let a, b, $c \in X$. If R(a, b) > 0 and R(b, c) > 0 then R(a, c) > 0.

Proof: -

Let R(a, b) > 0 and R(b, c) > 0 To prove: R(a, c) > 0. Let, if possible, R(a, c) = 0By fuzzy max-min transitivity, $R(a, c) \ge \max \min (R(a, y), R(y, c))$ $y \in X$ $\therefore 0 \ge \max \min (R(a, y), R(y, c)) = 0$ $y \in X$ $\therefore \min (R(a, y), R(y, c)) = 0$ $\forall y \in X$

Submitted by Sachin H. Dhanani

Page 13 of 65

```
Now, b \in X
\therefore min (R(a, b), R(b, c)) = 0
\therefore R(a, b) = 0 or R(b, c)) = 0
which is contradiction to given data.
Hence our assumption that R(a, c) = 0 is wrong.
Hence R(a, c) > 0
If R(a, b) > 0 and R(b, c) > 0 then R(a, c) > 0.
                                                        \Box
```

> Theorem 2.5: -

Let (X, R) be fuzzy poset. Let $a, b \in X$.

a Λ b exists and R(a, b) > 0 iff a Λ b = a.

Proof: -

Let $a \wedge b$ exists and R(a, b) > 0.

Let, if possible, $a \wedge b \neq a$.

Now, $R(a \wedge b, a) > 0$. (By theorem 2.1)

By fuzzy perfectly antisymmetric property,

 $R(a, a \wedge b) = 0.$

Now, R(a, a) > 0(Fuzzy reflexive property) and R(a, b) > 0(given data) (by theorem 2.3)

 $\therefore R(a \land a, a \land b) > 0$

 \therefore R(a, a \wedge b) > 0.

Which is a contradiction.

 \therefore Our assumption that a Λ b \neq a is wrong.

- $\therefore \mathbf{a} \wedge \mathbf{b} = \mathbf{a}.$
- \therefore R(a, b) > 0 \Rightarrow a \land b = a ____(1)

Conversely, Let $a \wedge b = a$ Now, $R(a \wedge b, b) > 0$ (by theorem 2.1)

Submitted by Sachin H. Dhanani

Page 14 of 65

A Study Of Fuzzy Lattices

 $\therefore R (a, b) > 0.$ (Since a $\Lambda b = a$) $\therefore a \Lambda b = a \implies R(a, b) > 0$ (2) Thus, from (1) and (2), we get $R(a, b) > 0 \text{ iff } a \Lambda b = a \square$

> Theorem 2.6: -

Let (X, R) be fuzzy poset. Let $a, b \in X$. a V b exists and R(a, b) > 0 iff a V b = b.

> Theorem 2.7: -

Let (X, R) be fuzzy poset. Let $a, b \in X$. R(a, b) > 0 and R(b, a) > 0 iff a = b.

Proof: -

Let R(a, b) > 0 and R(b, a) > 0

Let, if possible, $a \neq b$

By fuzzy perfectly antisymmetric property,

 $R(a, b) > 0 \implies R(b, a) = 0$

which is a contradiction.

 \therefore our assumption that a \neq b is wrong.

 $\therefore a = b.$

 $\therefore R(a, b) > 0 \text{ and } R(b, a) > 0 \Rightarrow a = b \qquad (1)$

Conversely, let a = b R(a, b) = R(a, a) = 1 > 0 (Fuzzy reflexive property) R(b, a) = R(b, b) = 1 > 0 (Fuzzy reflexive property) $\therefore a = b \Rightarrow R(a, b) > 0$ and R(b, a) > 0 _____(2) Thus, from (1) and (2), we get R(a, b) > 0 and R(b, a) > 0 iff a = b \Box

Submitted by Sachin H. Dhanani

§2.7.1 Fuzzy Zero Element: -

Let (X, R) be any fuzzy partial ordered set.

An element $0 \in X$, if exists, is called the fuzzy zero element of X

if $R(0, x) > 0 \quad \forall x \in X$.

Here '0' is called the smallest element of X.

§2.7.2 Fuzzy Unit Element: -

Let (X, R) be any fuzzy partial ordered set.

An element $1 \in X$, if exists, is called the fuzzy unit element of X if R(x, 1) > 0 $\forall x \in X$

Here '1' is called the largest element of X.

§2.8 Fuzzy Bounded Posets: -

A fuzzy poset (X, R) is said to be fuzzy bounded poset if 0 and 1 exists in X.

§2.9 Fuzzy Chain: -

A fuzzy poset (X, R) is a fuzzy chain

if for any two elements x, $y \in X$, either R(x, y) > 0 or R(y, x) > 0.

Remark: -

Every fuzzy chain is fuzzy partial ordered set.

But converse need not be true.

Counter example:

Let $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$

R(X,X) is given by membership matrix as follows:

Submitted by Sachin H. Dhanani

	\mathbf{x}_1	X ₂	X 3	X4	X5	X 6
\mathbf{X}_{1}	1	0.8	0.2	0.6	0.6	0.4
X ₂	0	1	0	0	0.6	0
X ₃	0	0	1	0	0.5	0
X 4	0	0	0	1	0.6	0.4
X5	0	0	0	0	1	0
X ₆	0	0	0	0	0	1

The Hasse Diagram is,

Here the ordered pair (X, R) is fuzzy partial ordered set.

Consider, $x_2, x_3 \in X$.

Here, neither R $(x_2, x_3) > 0$ nor R $(x_3, x_2) > 0$

Hence, X is not a fuzzy chain.

Submitted by Sachin H. Dhanani

Page 17 of 65