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A STUDY OF ELECTRIC AND MAGNETIC PARTS OF WEYL
TENSOR IN KERR-NEWMAN SPACE-TIME.

1. Introduction:

The purpose of this chapter is

6] To exploit the NP tetrad formalism for the analysis of electric and

. magnetic parts of the Weyl tensor. _

(ii) . To determine explicitly the electric part and magnetic part of Weyl tensor
in terms of angular momentum and charge of the gravitating body in the
Kerr-Newman space-time.

(i1i))  To identify the cause of electric field and magnetic field in the Kerr-
Newman space-time.

All static space-times are known to be purely electric space-times. There are
very few known examples of purely magnetic space-times; one such example is due
to Misra et al. (1968). Mclntosh et al. (1994) have proclaimed that there may not be
purely magnetic non-flat vacuum solution. Haddow (1995) has shown that all vacuum
purely magnetic solutions are of Petro type 1.

By noting the important role of pﬁrely electric and purely magnetic space-
times, Ahsan (1999) has investigated the relativistic problems having purely magnetic
or electric part of Weyl tensor. He has shown that the Weyl tensor for Godel Universe
is purely electric but not magnetic. Hasmani et al. (2008) have recently shown that the
parameter related to the vorticity of the fluid with reference to the Godel universe
causes the electric field.

The material of this chapter is organized as follows: In the Section 2, we
exploit the ‘amazingly’ useful Newman-Penrose tetrad formalism to study the Kerr-
Newman space-time. The tetrad components of Connection 1-forms, Curvature 2-
forms with respect to the chosen basis vectors are determined. In the next two
Sections, the tetrad components of Curvature tensor and Weyl tensor that are pertinent
to study the electric and the magnetic parts of Weyl tensor are described. The
expressions for the electric and the magnetic parts of the Weyl tensor with reference
to the Kerr-Newman space-time are obtained in terms of basis of the tetrad in the

Section 5. It has been shown that both the angular momentum per unit mass and the
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electric charge of the gravitating body are the sources of the electric part and the
magnetic part of the Weyl tensor. We have seen that if the angular momentum per
unit mass of a gravitating body is zero, the magnetic part of the Weyl tensor ceases to

be zero in the Kerr-Newman space-time while the electric part still exists.

2. The Kerr-Newman space-time:

In 1965, Ezra Newman found the axisymmetric solution of Einstein’s field
equation for black hole which is both rotating and electrically charged. It is
generalization of Kerr metric for an uncharged spinning point mass which had been
discovered by Roy Kerr (1963). It describes the geometry of space-time in the vicinity
of rotating mass ‘m’ with charge ‘e’. It is known as the Kerr-Newman space-time and

it is characterized by the metric
2
ds’ =[1-R2(2mr —e*)}dt* + 2aR™*(2mr —e*)sin’ O dt d¢ ——iz—dﬂ —R*dO* -

~[(r* +a®)* — Aa’ sin? @]1R? sin’ O d¢’

2.0
where, R*=RR" =r’+d*cos’@, R=r+iacos@ ,
A=rt=2mr+a®*+é*, R =r—iacos8 .
and m = mass,
a = angular momentum per unit mass,
e = the charge of the gravitating body.
The covariant components of the metric tensor are given by
gy =1-R?*Q2mr-e’) ; g, =aR”@2mr—-e*)sin’ 0 ;
2
2. 2_%_ : g, =—R? ; : .(2.2)

gy =-[0? +a*)’ —Aa’sin> O]Rsin’ 0.
To obtain the tetrad vectors with respect to the given space-time, we express the

metric (2.1) in terms of the basis 1-forms as
ds’ =20'6* -26°6* ..(2.3)

where the basis 1-forms 6% are
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A dt+—1—dr-— an

6" =
2R’ 2 2R’

sin’ 6d¢ ,

2

6° =dt *%dr ~asin’ 8d¢ ,

jasin 6 R? i(r*+a’) .
0 = d+—=—d6 -2 Lsingdy 2.4
V2R° \2k° 2R"
jasin @ R? i(r’+a®) .
0t =10 g S e+ sin@dg .
V2R 2R

V2R
Now, the definition of basis 1-forms 8% =e¢'*'dx’ and the equation (2.4) gives the

vector fields of the NP complex null tetrad as
' = -ia((;a2 +a*)8) + ASs +ad))

n = 5—-11-53—(02 +a’)8] — A8} +ab,) , ...(2.5)

_ 1 o ,
m' = ——(iasin@s, + 3, +icosecds,)
'\/ER 1 3 4

where !’ and 72 are real null vector fields and m' is a complex null vector field. The

complex conjugate m " can be obtained by taking the complex conjugate of m' . These
vector fields of the tetrad satisfy the orthonormal conditions

In'=-mm' =1 ...(2.6)
and all other inner products are zero.

Solving four equations in (2.4) we obtain,

b= (r’ +az)91 N (r’ +a2)6)2 . iasin963 _iasing
A 2R? V2R V2R"
dr=0' - A2 62 ,
2R
d9=L(i93 o 9“) , ex)
JV2\R~ R

a a icosecl icosect
d¢:_61 + 2+ i 3 _ _ 4
2R’ V2R V2R




Taking the wedge product of equation (2.7) we get

(? +a) jasin@ _,; iasin@ ,, iaAsinf iaAsin @

g7 L7 g Y pue  1A2PNMT ,
V2R V2R* 2J§R2R "SR RER

dQAdtz_(r2+a2) 13__(r2+az) w (FP+a’) . (PP +ad) 24_iasint9

dr ndt =

— — - - . 2 - 934
ﬁAR V2AR" 2J2R°R 2\2RR" R’
1 A A |
drnd@=-——0" + ———0" - — o7 - — %
\/—R 2k" 2\2R*R 2\2R*R"
dr ndd :_‘lz-g” +zcosef9 P _zccfe_cé? " _zAcosech) iAcosecl
R V2R J2R" WARR . 22RR
a a a 2 a icosect
dg/\d¢=— ..—913__ — 914_ _"9,-.3_ — 924__ 934
J2AR  \2AR* 22R’R 22R*R" R?
cp 2 s 2 2 . ) sl 23 2 2
dt/\d¢=-—z(a sind +(r +f )cosec9)6,3+z(a siné + (r ia )cosec@)g,4 B
J2AR J2AR"
i(a’sin@—(r* +a’)cosech) ,, i(a’sinf—(r*+a*)cosectd) .,
- — 6~ + — " +
22 R*R 22 R’R"
a .3
ol

(2.8)

These equations will be used for computation purpose in the sequel.

Taking the exterior derivative of the basis 1-forms #“ in equation (2.4) one can

obtain
o' =2 2 Vg nar+ 2| A laonar-L- -‘-’-‘:\—S—“lﬁ dr A dg -
or 2 001\ 2R orl 2R’
. 2
A M“AS“’Z 9 \ao ndg
26\ 2R

Using equations (2.8) and on simplifying we get
do' = R*[R*(r —m)—Ar16" +iaos@AR™ 6™ |

Similarly,
2 2 . .
do? = V2a ;xznlt_fcosQen N ﬁaRS;I;;COSQ&M N 21a}§359934’
4o’ =~\/§iarsin9912+ 1 PIE A 6% (R’ cotf —iasin ) e

R R 2R’R V2 (R ’
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«ffz‘arsinég,z +:1-¢9“‘ A 0% 4 (R cot@+iasind) 0"

dg* = e _ —
R*R R 2R*R" V2 (R)?

...(2.9)

3. Tetrad Components of Connection 1-Forms »°; and Curvature 2-
FormsQ%s:

To find tetrad components of Connection 1-forms, we start with Cartan’s first

equation of structure
do® =-w*, N a,f=1234. ..(3.D)

where w”p are the components of connection 1- forms such that

Wop + D, =(

= Oy =Wy =0y =@y =0
Also 0% =1 0,
This gives 02 =7"0,, = 0,,

= ohr=w,=0

Similarly, we obtain

o' =~a’; =y, ,

o' =0' =a,,

0’ =0 =0, ,

oy =-0's =0, , ..(32)
(0’4 =0)32 =Wy
a)24 = a)31 =Wy -

These Connection 1-forms are defined by
w%p =yps0°

where vips =—e

(@)

i
i € € -
It can be shown that

o, =-[(e+8)0' +(y+ 7O +(@+ B0’ +(a+ B)0'],



0, =—(k0'+10° +30 +6")
w,=—(K0'+70°+50’ +po),
0y =70 +VO + 160+ 6t
w,, =0 ' +vO0* + 10 + uo° ..(3.3)
0y = (=50 +(r~7)0" ~ (@~ H)6° +(@-B)6".
Also from equation (3.1) we obtain
do' = -0 A0 -0y AO* —0s AOP —0's A B,
d6* =—0* i A0 — 0P AO? —0* 3 AP 07 AO*
d0® = -’ NG =02 AO* ~ 03 A -’ NG, ...(3.4)
do* =-0*' 1 A0 -0, A —0*s NG —0*i NO* .
To obtain non-vanishing components of Connection 1-forms we choose
' = 4,60+ 4,0° + 4,0° + 4.6,
w's =B,6" +B,6* + B,6 + B,6"
0's=C0' +C,0° +C,0° +C,0*,
w*s =D,#' +D,0* +D,6° + D, 6" , : ...(3.5)
w's=E0' +E0 +E6 +E06°,
s =F6'+F,0° +F,6° +F,6".
where all the coefficients are to be detzrmined. Substituting these values in equations
(3.4) we obtain
de' = 4,0V +(4,-B)6" +(4,-C)6" - B,0” —-C,0" +(B, -C,)8™ ,
Similarly, we obtain ‘
d6® = 4,6 - D,6" — E,0" - (4, + D,) 0" —(4, + E,)0% +(D, - E,)8* ,
de® = (E, -C,)0" +(E,~F)8" +E, 0" +(C, - F,)0” +C,0™ + F, 6%,
d#* =(D, - B)6" + D, 6" +(D, + F,) 6" + B,0” + (B, + F,)0% + F, 0™ .
...(3.6)
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Now using the equations (2.9) in (3.6) and comparing the corresponding coefficients

on both sides, we readily obtain

4,=B,=B,=C,=C,=D,=D,=E =E,=F =0,

A, = R*[R*(r-m)-Ar] ;

iasin@
A, =C =—=——;
T @R
— A .
‘" 2R'R"
1
D4 = E* s
iaAcosd
AT

F, =

\/’2"(:&5“*)2

_(R"cotf—iasinb)

iasin@

BT

A
B, =- — ;
“ 2R’R
iasin@
D =E B ————— |
2 2 ﬁRz
E, =—-l_—.- ;
R
_ (Rcot@+iasin®)
’ V2(R)?

Consequently, the non-vanishing tetrad components of Connection 1-forms are:

o't =—w’ = R*[R*(r—m)-Ar]0?

iasin@

iasind _,

o' 4 iasind A
3= == — - =
J2(R)?  2R’R
o' = iasin@ A
4 = 3 == g —
ﬁ(R*)Z 2R2 R'k
o=t =00 2 1 g
V2R R
o'y =0’ =—msm992 +—1—93 ,

2 R? R

93

R®  RE®Y

.(37)

R4

3 4 iacos@A ., | cotd
0 =-0's =——7—0" +

+iasin9 0° — cotd
V2R V2(R) V2R 2(R")?

iasin@ ]94

Now comparing the coefficients of basis 1-forms 8“ of equations (3.3) and (3.7) we

obtain the spin coefficients as

Kk=v=A=0c=£=0,



r—m

1 A

= - ==, =1-f, At ’
0 = u SRR a=r-pf VEHT SR
_ iasin @ iasin @ coté ...(3.8)

R TThry PTam
Similarly, to find the tetrad components of Curvature 2-formsQ%s, we start with
Cartan’s Second equations of structure

Q% =do’p+0°, A0, a, pB,7=12,3,4. ...(3.9)
where from equations (3.7), by taking the exterior derivatives of Connection 1-forms
we obtain

sind
do"y = d[R2(r —m) — R Ar)A0® + R R (r —m) - Ar]de* - 222 Jp°
= d[R( ] ) i

_da g S0 o, da gl S0\ g, fasinG o
V2 L (R) V2 L(RY) V2(R")?
On simplifying, we get

i g
do'y = {R™2 —[4r(r —m) + A]R™ +[4Ar? —2a*r? sin? G]R "} 0" + L2507 gis _
1 | V2(R)*

——l-?—si—r_l—g—9“+ V2 a? sinfcos @ Aér‘—_ ‘zaAsmf 6% +
REY R°R 2J2R*(R)

+| v2a* sinBcos b ?i* + zaAsmf* 0™ +
R R 2'\/§R2(R *)3
+[2iacos@R[R? (» — m) - Ar]+ 2iarcosOR™ + 4ia’rsin? Ocos OR ™ Jo>

Similarly, we obtain .
. iaAsin@  ia(r-m)sin€ | ,, |iacos@ a’sin’@|
3= — - — 0+ = —=10"+

V2R Ry V2R R)’ 28 (B

[iacos® a’sin’@ (r—-m) Ar A A "
= T ea T s T toaraa oo |9

| 2R°R R°(R) R°R R'R 2R°(R)" 2R

" 2 2 2

A(r4r_n)_ A(,’:-" 4A,-2+A(, 0™ 4

. 2R'R 2R°R 4R'(R)" 4R

___ Acotd 2iaAsin @ o

| 22R*(R)* 242R*(R)’

+
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iacos@ iacos@

do’s = - 2_9 6* +
2R°R 2R’R’
N iasind  iasin@ _\/Eazsinﬁcost9+ cotd g ’
V2R*R \2R*R R J2R?
, | a’rsin?@ a’rsin*6 4iarAcos€ 2ia(2r —m)cos@ g
e T T T O R *
iaAsin 6 iaAsin6 32iaAsinfcos® 6 2
+ — + — - 6 T 0
| V2R'R  2V2RX(R) RSR

. . . . -3 : 2
_ﬁAsulé’ N zaAsm_@ +\/§la As;n_lfCOS 0 0% 4+ ...(3.10)
\/ERAR‘ 2\/§R2(R')’» R°R

[ 1 2iacos® a’sin’@ 2iacosd

—_ — — 4 e
. R* R*R  R*R)}* R'R o
a’*sin’ 8  a’sin’ @ . 2a’cos’ 0

+ — —_—
| R*R"Y R R®

From equations (3.9) we obtain fora = g =1,
QY =do'1 +0', Ao
QH=dm5+wHAwﬂ+wUAwﬁ

Using equations (3.7) and (3.10) we obtain

_ jasin @
Q' = {R? —[4r(r — m)+ AJR™ +[4Ar? = 2a%r? sin? 9] R Jg© - L33NY_gus
{ J Ty
zasmé? o zasmé’ +| 24 sin Ocos 9 il iaAsin@ 0% +
R 2R 2R ) R°R 22R*(R)’
Ar iaAsiné A A
+|v2a” sin Bcos  —— + — 6* + - m— L
{ @ R 22R'(R'Y } {2R2(R)2 2R2(R‘)2}

+ [2iacos OR*[R*(r —m)— Ar]+2iarcos@R™ + 4ia’rsin® fcos OR™® ]934
a’sin’d a’sin’ @ n, fasing ., ialsing iaAsin 9

H = = [0 =0 ————————4__9 =
2R*(R)* 2R*(R") J2®'y  22R‘'R 22R'R°

On simplifying we get
+_____2zacost9 [2 Qmr —e*) - mRz]H34
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Similarly, we obtain

B 2 )
Q4 =04 = ';n___(znzr —ez) 0"
| R°R R°(R)
_ o
Ql4 = 932 = zm_t . (27:""—*32) 9!3 ,
| R°R R (R™) |
_ R
Q% =04 = 2m—« ~(2’:7"_*ez) o
| R*R R (R™)" ]
_ B ﬂ
QY =0 =| ) g (3.11)
| R°R R (R)

a2 2
3a 6COS 9) (zmr ‘32)934

7 2
Qh=-Q% = e [mR2 -2r(2mr —ez)]é’12 + (r

and all other are zero.

4. Tetrad components of Curvature tensor, Ricci tensor and Weyl

Tensor:
To find tetrad components of Curvature tensor we start with the definition of

Curvature 2-forms as

Q% =%R“M a7 (4.1

By giving different values to «, 8, 7, & from 1 to 4, equation (4.1) gives

1 s
Qllziﬂl Ralyé‘

er

1
Q]l = 57712 R2175 075

Q' = _Rmzelz - R.12130l3 - R1214914 - an‘g23 - R,224924 - leg34

Comparing the coefficients of basis 2-forms of this equation with the equation (3.11)

we get
dmr (3r’ —a’cos’ 6) ,
Rz =-R,, = I G Q2mr —-e?),
2iacos@

R'ss =—R’s =—R,p, = ——k—g-—[Zr(2mr —e’)-mR’],
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Similarly, we obtain

m_ (2mr —e*)
R*R  R*R)* ~

1 2
R34 = R4 = Ry, =

m_ (2mr —e?)
R*R" R*(R")*

I 2
R'ais = R%54 = R,y; =

R's4 =Ry, = R @mr - &) (r> = 3a’ cos’ 6) . (42)

and all other are zero.
Also, we know tetrad components of Ricci tensor R,; and Ricci scalar R can be

defined as
Ry =07 Roups
Ros =R gy + Ryppr = Rypps = Rugps

and R=R,n% ...(4.3)
R=R,+R, —R, - R,

Therefore,

Rn =Ru22 '*'Rzm ”Rsm _R4;23

= R1212 + R1324 + R1423

dmr 6mr® 3rle’ 2mra’cos’® a’e’cos’O 2mr
+

Ry, =~ R RS RS R + RS + o
2
——2(2%&—)—(# —a’cos’ 6)
2
e
R = “’ET
Similarly, we get
o2
Ry =Ry =Ry = ""1‘{4‘ -(4.4)

and all other are zero.

Thus, Ricci scalar R =0.
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Now the tetrad components of Weyl tensor are given by

1 R
Caﬁy& = Raﬁys + E(ﬂayRﬂS + 77/35Ra;y - nmSRﬂy - UﬂyRaa)"“g(’?aaﬂﬂy - Way’?ﬁ&)
...(4.5)

This gives the non-vanishing tetrad components of Weyl tensor as follows

1 R
Cipy =Ry, +§(7711R22 F Ry — 1Ry~ Ryy) —“6"(77127721 ~= M)

1
Cipy = Rpypy + ’2‘(“R21 -Ry)

Cian =Ry — Ry,
dmr (3r* —a’cos’ 6) ,. é*
Chp=— 2 + G (2mr—e )4»;;1~
Similarly,
Ci = _g}f%s_e_[zr(zmr”ez)_mlez],
m  (2mr-e*)
Cou = R T R®Y
m 2mr —e’ .
Couis = n ) ) ...(4.6)

R’R* R*@RR*)?
2

C3434 =R"* 2mr ~ 32)(i’2 —3a? cos? ) —% .

We exploit these results for construction of the electric part and the magnetic part of
the Weyl tensor and study the consequences of angular momentum and charge of the
gravitating body in causing electric and magnetic parts of the Weyl tensor in the

following section.

5. Electric and Magnetic Parts of the Weyl tensor:
Consider an observer with a time-like 4-velocity vector. Such an observer will

measure the electric and magnetic components £,, and H,, respectively, of the Weyl

tensor through the equations

E, +iH, =0, =C_whykujuk -.(3.1)

where O =05 th = thui =0
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and Chijk = Ch(/’k + lC/;gk

1

and Con = S 8w "C ..5.2)

himn

where & ™ is the Levi-Civita permutation symbol.
Here, C,,, is the Weyl Curvature tensor and C,,, is it’s dual.
Also the electric and magnetic parts of the Weyl tensor C,,, are respectively defined
by
E, =Cyu'u' . (53)
and H,=C,u'u ... (5.4)
The electric and magnetic parts of Weyl tensor are symmetric, %' - orthogonal and

traceless i.e.

E,=E,, Eu‘=0, E,g“=0
and H,=H,, H,u*=0, H,g"“=0. ... (5.5)
The Weyl tensor is said to be purely electric if H,,= 0 and purely magnetic if E, = 0.
It is known that the Weyl tensor in terms of E and H can be decomposed as

Cll=2u iEa Uyl +5§f E,‘;]l ~ " H V0" """ H Uy, ... (5.6)

nli
which can be equivalently written as

Cljkl — (ny'nm nk/rs __gijnm gklrs )um u, Em +(771jmn gk/rs __gijmn Uklrs )um u, Hm- . (5-7)
The time-like vector field ' in terms of NP tetrad vector fields can be expressed as
u'= —=(I'+n") ...(5.8)

Consequently, the expressions (5.3) and (5.4) for electric and magnetic parts of the
Weyl tensor become

1 ;
E, = ECWU k

1

and H, = Ec;,j.ku“f ..(5.9
where U* ='l" +1'n* +n'l* +n'n")



Now Weyl tensor can be written as composition of electric and magnetic parts as

follows

lﬂ—

. 1 1,
Chijk = Eithj +Eth/ik - Eithk —Eth’y' +5”/{;1H(H'Ukp _Enlﬁq[{qupj +57?j[':(IHh1]U

1
- 5 ﬂﬁ«q Hiq Lrhp

...(5.10)

where V, =11 +2m,m, +nn;

Hasmani et al. (2008) have defined the tetrad components of electric part of Weyl

tensor Ehj in to the four real and three complex scalars as

E, =E,I"l, E,=E,I"n’ ,

E,=E,l"m’, Ep=E,n"n’,

Ey =E,n"m’, Ey=E,m"m’, (51D
Ey=E,m'm’ .

Similarly, the tetrad components of the magnetic part of the Weyl tensor H,, are

obtained from equation (5.11) just by replacing E by H.

Using equations (5.9) and (5.11) one can determine the tetrad components of electric

part of the Weyl tensor as
E,=E,I "y
1

=5Ch,jk(l"lk +1'n* +n'l* +n'n*) I

Z%c,,y.k(z"mfz" PP AP DT 1 ety

1
:E(Clll] +Ci +Cy + Gy )

1
=—C
2 1212

Similarly, we obtain

1
E,=-E,=Ey= Ecmz s

1
E13 = _E23 = “"(Clm + CI223)9
2
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1
E33 = “2‘(C1313 +C2323),

1
E, = "Z“(C-Bm + Coyy ) ...(5.12)

Now we express the electric part of the Weyl tensor as a linear combinations of the

basis of the null tetrad in the form
E, =Eee!” ...(5.13)
Explicitly, we have
E, =E,ll, +E\ln, —E,lm, —E,lm +E,nl +Enn, —Enm,—E;nm, —
~Eyml, —E,mn, +E,mm, +E,mm, —E,ml —E.mn, +E,mm, +
+ Eyi i,
E,=Eyll, +E,(In, +nl )+ Enn, —E),(Im, +ml)-E (mn, +nm;)-
—Ey(,m, +m 1)-E (mn, +nm)+E,mm, +E,mm, +
+E,(m m, +m m,)
...(5.14)

Using equation (5.12), above equation become

1
E. = E{C1212 [l,.lj - 21(,.nj) +n; - 2(Cy5+ C,m)[l(,.mj) - m(,.nj)] -

if
=2(Cipy C1224)[Z(i;ﬁj) —mn, 1+(G

+2(Czq + C23l4)m(imj)}

3+ Cogp)mmy +(Crypy + Cop)m; m; +

313

...(5.15)
Using the set of equations (4.9) in chapter I, equation (5.15) reduces to
1 _
.@=§&bdufﬂQWﬁ%mﬂ+ﬂQm+Cm“mdm3 ..(5.16)

Likewise the tetrad components of the magnetic part H, and its expression in

terms of basis of the tetrad are obtained by simply replacing the tetrad components of
the Weyl tensor by it’s duals in the set of equations (5.12) and (5.16).

However, the tetrad components of the dual Weyl tensor are given by Hasmani et. al
(2008)

* i ap
gs C

s =55 (5.17)

afop
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This can also be written as -
* — i o VP
Caﬂr& - ‘igyﬁsvn 7 Caﬁo'p

* __i le . 2p lo,. 3p lo, 4p 20, 3p 2¢ . 4p
Caﬁya_”icaﬁap[gy&z’? N5 FEs3 N FE N N T FEuN T FE N T+

20, 1p 30, lp 3o 2p 3o . 4p 4o ip
FEsuM N FETT T A E sy N FE T FE sy T

4o 2p 4o 3p
+ 5l N+ E s "]

¥ i
Cops = ?[Caﬁ 1€ T Cwu€sn ~Cuutwn ~Cupuen —

“Cun€wu ~Cuynton ~Cputsn ~Cpn€pn —
“Co3€wn ~Copn€pa *Copntuu +Cpu€psanl

...(5.18)

By giving different values to the indices a,,7,6 from 1 to 4 we can establish the

following non-vanishing relations between the tetrad components of the Weyl tensor

and it’s duals as

i
*
Cian :E[szzlglm +Chn€im —Cini€iis ~ Coon€io — Cions€iag — Crann€iag =

=Ci€is ~Cran€iom — Ciasine = Cin€inm T Cron€i + Clasi€ia ]

...(5.19)
Using definition of Levi-Civita permutation symbol equation (5.19) gives
. i
Conp = E[C1243€1234 +C 33461003 ]
= i[—C —Cly14 ]
) 1234 1234
C1*212 = =iC\yy
Similarly, we obtain
C1*234 ==iCyy, Cras =iC 3 5 Cipna = —1Csyp ..(5.20)

Using equations (4.6) and (5.20), we obtain thé non-vanishing components of the dual

of Weyl tensor as follows

. . 2acos@ ,
Cpp = —iCyyy 2”7[2"(2mr—e’)~m1\32],

. _ dimr  i(3r’ —a’cos’ 6) .. ie’
Cippg =—iCyy, = R - IG (2mr—e _F’

38



. ) im  iQmr-e*)
Cisq =1C5, = -

1324 ™ Rzﬁ* RZ(F*)z (521)

2

. . 2acosd
Cina = —1Cyyy =—T[2r(2mr~ez)—mR2],

Now the expressions for E, and H ; with reference to the Kerr-Newman metric

become

E =] R{[2mr(r* —3a’ cos’@)—e*(3r* —a’ cos’ O[], - 21,n,, +nn,]-

=3
—4[mr (r* =3a’ cos’ @) —e*(r* —a’ cos’ O)|mm }
.(5.22)
and

H, =(-acos®) R [mr(3r* —a’ cos® @)= 2re’ |[11, =2, n,, +nn, +2m,m ]

...(5.23)
respectively.
From equations (5.11) and (5.22) we obtain
E,=-E,=FE,= -;—R‘(’ [2mr (r* —3a* cos’ @) ~e*(3r* —a’ cos’ )] ,
E,, =—R*[mr (r* =3a’ cos’ 6)-e’(r’ —a’ cos’ 6)] ..(5.24)
and all complex tetrad components of electric part of Weyl tensor are zero.
Similarly, we find
H,=-H,=H, = H,, =(-acos@) R°[mr(3r* —a’ cos’ §)-2re’]  ...(5.25)

and all other complex tetrad components of the magnetic part of the Weyl tensor
vanish.
At very far distance from the gravitating object i.e. » - one can observe that the

electric and magnetic parts of the Weyl tensor vanish.
6. Conclusion: The expressions for-the electric and magnetic parts of the Weyl

tensor with reference to the Kerr-Newman space-time are obtained in terms of the
basis of the tetrad. It has been observed that both the angular momentum per unit
mass and the electric charge of the gravitating body are the sources of the electric part

and magnetic part of the Weyl tensor. We see that if angular momentum per unit mass
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of a gravitating body is zero, the magnetic part of Weyl tensor ceases to be zero in the

Kerr-Newman space-time while electric part £, still exists.
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