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CHAPTER - I

INTRODUCTION

1.1 NOTATIONS AND DEFINITIONS j 

Orthogonal functions s

Suppose we are given a function w(x) which is 

non-negative in some closed interval [a,b] together with a

sequence of functions {fn(x)}, n®0, 1, 2, .......... defined in

[a,bj. Suppose further that the following relations are 

satisfied

b
f w(x) f (x) . f (x)dx - 0, m f n ‘ m na

and
b 2
f w(x) f*Mx)dx * C ■ n na

where Cft is, in general a non zero constant (dependent on 

n). Then the funottone £„<*) are termed orthogoaal feectlone 

relative to the positive weighting function w(x).

Function of exponential order

Let F(t) be a function of t specified for t > 0..

If real constants M > 0 and r exist such that for all t > N

|ert F(t) | < M or |F(t)| < Mert

we say that F(t) is a function of exponential order r as t 

—> " or is of exponential order.
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Gamma f unc11 on

A function r(z) defined by

1

r(z)
zerz

M

n
n«l

Z
1 + -----  ) exp (

n

in which r is the Euler constant and the product is abso­

lutely convergent for all finite z.

Some formulae

r(i) - i 

I” (1) - -r 

r(z+i) - zr(z) 

r (i) ■* Jn 

r(z) « (z-i)!

Hypergeometric function

A function has expression

- (a) (b) zn
F (a, b j c) z) * 1 + E -----------------------

n=l (c,n n!

« (a) (b) zn
- E ------ 0------ 2--------

n=0 (C)n n!

where c s neither zero nor a negative integer.

(a)n = a(a +1) (a + 2) ... (a + n - 1), n a 1
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Then a function F (a,bjcjz) is called the hypergeometric 

function.

Sectional or Piecewise Continuity

Let F(t) be a function of t specified for t > 0,

is called sectionally continuous or piecewise continuous in 

an interval a & t s B if the interval can be subdivided into 

a finite number of Intervals in each of which the function 

is continuous and has finite right and left hand limits.

Analytic Function

A function f(z) of the complex variable z is 

analytic at a point zQ if its derivative f'(2) exists not 

only at zQ but at every point z in some neighbourhood of zQ.

It is‘analytic in a domain of the z-plane if it is 

analytic at every point in that domain.

Laguerre Polynomial

The Laguerre polynomials Ln<t) are defined by,

Lnm
e t

n

dn

dtn
(tn efc) , n 0,1,2,

Lagrange's Formula

Lagrange's formula is given by, 

n
P(x) = E L.(x)y. 

i =0
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where Lj,(x) is the Lagrange multiplier funcion

L ^ (x) «
(x-xQ) (X-Xj) ... (x-x^j) (x-Xj:+j) .

having the properties,

L^Cx^) = 0 for k # i, L^Cx^) * 1

Lagrange’s formula does represent the collocation polynomial

i.e. PCx^) “ yk ^or ^ ~ 1> ••• n

The function

n
n (x-x.) 

i*0
n(x) * (x-x ) ... (x-x„) « o n

1.2 INTEGRAL TRANSFORMS

Using partial differential equation, many of the

phenomena of classical physics may be described several 

physical problem may be discussed with reference to laplace 

equation, poisson’s equation, wave equation, diffusion 

equation and so on. The field variable is determined not 

only by the partial differential equation but by the initial 

values or boundary values assumed by the function.

e.g. The function

u(x,y) iux ueRe
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satisfies the laplace equation but it is the solution only 
of the boundary value problem

A2u(x,y) = 0, < x < ", y i 0
u(x,y) = eiux, -•• < x < «• 
u(x,y) ---> 0 as J x^ + y^ ----> *

for other forms of u(x,0) we have to construct other solu­
tion. The forms of the function F(u) the function.

Of
u(x,y) - f F(u)eiux " Ipiy du

- M

would also satisfy laplace equation in the half plane y l 0
and hence gives another solution. So there is a question
arise that can we find the solution corresponding to the 
boundary condition u(x,0) = f(x), -“ < x < •• ? This problem 
can be generalized as follows.

Suppose we have to find the solution of a homoge­
nous partial differential operator of the form.

Lu (r) « 0 ___ (1.2.1)

in a domain D. where r is the position vector with 
components (x^, x2, • .. xR) of a field point in En, the 
euclidean space of n dimensions and L is a linear
differential operator in the variables x^, x2 ... xn.
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0, reD, ueQIf L (r; u) =n

then since the operator L is linear, it is possible that the 
function,

u(r) *» [ F(u)n (r?u) du, reD
Q

will also be a solution of (1.2.1) for any arbitrary 
function F of u, if the integral converges uniformly for all 
reD, where n(rj u) is a simple solution of (1.2.1). The 
boundary conditions imposed in the problem, are sufficient to 
determine the form of function F(u).

To illustrate the situation which may arise we 
consider the solution of the form

u(x,y) « [ F(u)n(x,y,u) du, (x,y)eD
Q

If u(x,0) « f(x), we have the relation

f(x) “ ' kixtxi) du, x>eD^ .... (1.2.2)

where Dj is the domain of x and k(x,u) = n (x,o;u)*

When a function f is defined in terms of a 
function F as in (1.2.2) we say that f(x) is the integral 
transform of the function F(u) by the kernel k(x,u)-

In boundary value problem discussion for partial 
differential equations the basic problem comes to be the
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determination of the function F(u) when the function f(k) is 
given. In many cases we can find a solution of an integral 
equation of this type in the form

F(u) * [ f(x) . H(x;u) dx, ueQ
D1

where is the domain of x. Such a result is called an
inversion formula for the transform (1.2.2).

I£ we take Dj to be the positive real line and 
kernel to be e we get the Laplace transform defined by
the equation.

u(s,y) » f u(x,y)e sx dx 
o

is called the Laplace transform with respect to x of the 
function u(x,y) and

M
u(x,s) = f u(x,y)e sy dy 

o
its Laplace transform with respect to y.

Also if we take Dj to be positive real line and
g — 1kernel x^ we get the Mel1 in transform

Mu*(s,y) = f u(x,y)xs-1 dx
o
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is the Mel 1 in transform with respect to x of the function 
u(x,y).

1.3 PROCEDURE
In briefly the process in solving a differential 

equation with boundary and initial conditions by the use of 
any integral transform as follows,

i. select the suitable transform,
ii. Multiply the differential equation and boundary condi­

tions by the selected kernel and .integrate between 
limits with respect to the selected variable for exclu­
sion.

iii. While performing the integration in (1.2.2) make use of 
the suitable initial or boundary conditions,

iv. To obtain the transform of the required function, solve 
the resulting auxiliary equation,

v. Lastly invert to obtain the wanted function itself.

1.4 OCCURRENCE OF LAPLACE TRANSFORM
Laplace transforms arise in a natural fashion by 

considering the simple problem of determining the solution 
u(x,t) of the one-dimensional diffusion equation.

o u 1 ou—__ = --- ---- --- (1.4.1)oxz k ot

in the region t > 0, x > 0 subject to the initial condition
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u(x,0) ■ 0

and the boundary conditions 

u(0,t) s» Ft t) ,

(1.4.2)

(1.4.3)

u (x , t) ---- > 0 as x ---- > «• ....(1.4.4)

Also assume that u(x,t) remains finite as t --- > •*. We
multiply both sides of (1.4.1) by e8+ and integrating with 

respect to t from 0 to ».

fo 5st dt
1 " 6u
k ^o 6t -ste dt

1
{

k *

1
— {
k

u(x,t)

u(x,t)

es+}* + --- f u(x,t)es+dt
° k o

es+}^ + --- u(x,s)

-> — gwhere u(x,s) = fu(x,t)e dt ....(1.4.5)
o

using initial condition (1.4.2) and u remains finite as 
t—><* 

we have

l
k

“ ou

o 6

s

k
u(x,s)
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so that,

6 u s—_ ss --- u(x,s) .... (1.4.6)oxz k
Also from equation (1.4.3)

M
u(o,s) » f u(o,t)e dt 

o

« f F(t)e~8tdt 
o

u(o,s) ■ f (s)

we observed that f(s) is the Laplace transform of the pre­
scribed function F(t).

1.5 OCCURRENCE OF MELLIN TRANSFORM
The occurrence of Mel 1 in transforms can be 

demonstrated by considering the simple problem of determin­
ing the solutions u(<^ ,<!>) of the two dimensional Laplace 
equation appropriate to the infinite wedge <^ > 0, |4>| < a, 
where and <t> are plane polar co-ordinates. Using these 
co-ordinates, Laplace's equation can be written.

x 2o u 6u 1
---- + a u

d4>
T *- 

^ d<»
(1.5.1)

By formula for integrating by parts, we have
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" . 6 u 1 6u •• d dut <^s+1 (-^ +----—) = f ^ — «> —>«»«<■
o oq q dq o dq dq

' [<s+1 OU -,«•

6^
du

-s [ qs ^ . o —- dq 
o o dq

s+1 OU

oq
-s f q*

-IQ O

OU

oq

s+1 6u

6q
ts qsu(q,4>) ]** + s2 f u(q,*) qs-ldq 

o o

If the functions
s+1 °u s . ..q —, q u(q , <i>)

6q
tends to zero as q----> 0 and as q---- > •• we find that,

240 ,, 6 u 1 du ~ .
f q i—2 +----- )dq* [ q u(q , 4>)dq .... (1.5.2)
o oq q oq o

• 2■ s u*(s, 4>)

Mwhere u* (s, $) = f qs_1 . u(q, $)dq .... (1.5.3)
o

we see that u*(s, *) is the Mel 1 in transform of the function 
u(q ,$) with respect to the variable q.
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