


NEWMAN- PENROSE TYPE FORMALISM FOR RIEMANNIAN

1. Introduction:

In the 4-dimensional space time of General Theory of 

Relativity amongst all the formalisms, Newman Penrose (1962) 

formalism has been proved to be the most powerful formalism. The 

formalism is widely used right from its inception in many 

applications. Especially in the study of

1. exact solutions of Einstein’s field equations Kramer, stephani, 

Herlt, and MacCallum (1980)

2. electromagnetism, Tariq and Tupper (1975, 76), Debney and 

Zund (1981)

3. the black holes, Hawking and Ellis (1973), Chandrashekhar 

(1983).

It is the language of many working relativists. Its exposition is 

available in the following books. Flaherty (1976), Carmeli (1977), 

Kramer et.al (1980), Chandrashekhar (1983). Many authors have 

exploited this technique in their research work. To mention few of 

them are : Zafar etal. (2001) have used it to obtain the Lanczos 

potential for perfect fluid space times. Ng. Ibohal Singh (2002, 

2005) has shown by using the technique of Newman-Penrose 

formalism that every electrical radiation of the non -rotating black 

hole leads to a reduction in its mass by some quantity. If such
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reduction takes place continuously for a long time in the black hole 

body the original mass of the black hole may be evaporated 

completely. Katkar and Khairmode (2005, 2007) had it to prove that 

not-every non-empty non flat space time can be embedded locally 

and isometrically in a five dimensional space of non-zero constant 

curvature and also to study the existence of second rank Killing 

tensor in non-empty space times.

In this chapter an attempt is made to develop the Newman-Penrose 

type formalism and applied to study the geometry of 2-dimensional 

Riemannian space V2. It is interesting to note that it works

beautifully. The components of connection 1-form and curvature 2- 

forms are expressed in this formalism. It is shown that the curvature 

2-form is exact satisfying

Q“ = d(Dap. The detail exposion of the Newman Penrose type

formalism is given in the following section and is applied to show 

that the Riemannian space V2 has constant curvature. The

commulator relation and the field equation in V2 are derived in the 

section 3 in the form

(Js-SS)t = /eSf+KS4,
_ _ _
SK+dtc-lKK+y/ + $12 —- = 0

6
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2. Newman-Penrose type formalism for 2-dimensional 

Riemannian space:

It is well-known that the metric of V2 is given by

where

and

ds2 = r2 {d02 + sin2 0 d<j>2)

Jr2 0 '
S,) y 0 r2 sin2 6 J

^ = |^| = ^4sm2^

(1
r2

0
V

1
r2 sin2 Oj

Let us define a diode e(a)(

(2.1)

(2.2)

(2.3)

(2.4)

where m, and m, are the complex conjugate of each other such 

that

mt m =0 and m.m =1 (2.5)

Then the equation

Safi

(0 O
V1 oy

^es gafj

Hence the vector of the dual diode becomes

(2.6)

4 a)=(ml m,) (2.7)

Thus the relation between the metric tensor of the space and the

null complex vectors of the diode is given by
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This becomes

e _ a >) e{p)
B,k Bafi Kt Kk

g,k=mfmk +m,mk
This gives gikg'k = 2

For the metric (2.1), define the basis 1-form 0a as

0l = -j=(rd0+irsm.0df)
\2

and 02 =-j=(rd0-irsin0d<f)
v2

Hence the metric (2.1) reduces to the simple form

ds2=20x 02
Now the equation

gives 

and
Equations (2.9) to (2.12) give

0a=e\a) dx'

01 - m, dx'

02 = m< dx'

a =1,2

mi = -J=r(r, -irsm0)

m, -4=(r, irsin#)
V2

Consequently the equation rri = g,kmk gives

(2.8)

(2.9)

(2.10)

(2.11)
(2.12)

(2.13)

(2.14)

and

, 1 ^1 -i \m = —=■
42 9

rsm.0 j

—i 1 (l i 'S
m ——f=

42 9

Kr TSW.0J

(2.15)

(2.16)
From equations (2.13) to (2.16) we show that the null vectors 

satisfy the condition (2.5)

We start with Cartan’s first equation of structure given by

d0a =-afpK0p <x,p=1,2.
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Where'd’ is the exterior derivative defined by

d= , dx'

= 0l +m 02j (2.17)

or d = S0l+S02 (2.18)

where S= m!, S= , m and afp = ypr 0r (2.19)
In 2-dimensional1 space the connection 1-form has only one

component and is either <d12 or m2l.

Thus

etx=rf*<Daj a = 1,2.

<d\=g)21

=>a>\=~a)u

and = ®21
Thus a>\=-(on=-(o\ (2.20)

and a>\ = mj = 0

Similarly, the Ricci’s rotation coefficients yaPr has only two 

independent components and are yl21(or y2U) and ym(or ym) and 

are given by

¥121 - e(2) e{\)

=> ym = -mtJ m m

Any tensor can be expressed as a linear combination of its basis 

vectors. Thus we express.

mu = Am,rtij+B mt ntj +CmlmJ+D m, nij

where the coefficients are defined as
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(2.21)

A =mrj m m =k 

B - mi } m mJ =-at

C = m, m'm =0 

D= mt J rri m} = 0

Thus mrj = Kmlm}-K mlmj (2.22)
Thus we have

m,j = -Km, m} +xm, m. (2.23)

The intrinsic derivative of the tetrad vector in the direction of m' and

m are given by

m m1 = -Km,

mu m1 = Km,

m,.>
—j m = -Km,
—jm -Km, (2.24)

Thus the non-vanishing Ricci’s rotation coefficients are given by

Tni = K

and Ym= ~K (2.25)
Now taking the exterior derivative of basis 1-form defined in (2.9)

we get

d0l =-\=ir cos 9 d9 /\d<f>

where from equation (2.9), we have

1 1
d0 = s ($l+o2)

and
1

& rsin#
t—{O1 -92\
ir\ ft ' *
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Thus

Similarly, we obtain

dd /\d(f>
r2 sin#

a e2

V2 r

de2=-Lg^e2
•n/2 r

Also from Cartan’s first equation of structure, we find

(2.26)

(2.27)

(2.28)

d0x = -a\ a 0X - »!, a #2 (2.29)

w/im? ®12 = Yna °a

~^®12=7l21^ ’*‘^122^

=> mi2 = k0{-k02 (2.30)
Thus due to equation (2.30), equation (2.29) becomes

d9x={K0x-K02)A0x

=>d$x=K0xA02 (2.31)
Similarly we get

d02 ------m\ a Q2

^>d92 =-k9x a02 (2.32)
Comparing equations (2.27), (2.28) and (2.31), (2.32), we readily

get

K = K = -
1 cot#

-v/2 r
Now from Cartan’s second equation of structure, we have

(2.33)

QTp = dafp + ©“ aafp, a,f5>o~\,2.

From this, we obtain the non-vanishing components of curvature 2- 

form as

Q1, = dm\ , 
and Q22 = dm,\.

This show that Tfp = dmap, Va,p = 1,2.
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This proves that the curvature 2-form is exact (Frankel (1997)). 

In this case we have

Ql2=da>n=K0x a02 (2.34)
where k is the curvature of the space V2.

Now

n\=deo\
=>a \=-d(/c0l-K02)

=>Q\ =-dKA0l-Kd0l+dKA02 +xd02

Using equations (2.18), (2.31) and (2.32) we obtain

n\=-(SK0l+Stc02)A0l-tc(lc01 a02)+

+{Sk01 + 8k0z ^ a 02 + k{-k0x a 02) 

=> Q\ ={S/c+Sk-2kk) 0l A 02

Similarly on using Q22 = da>22 we obtain

Q22 = -{s k+Sk-2kk^0x a02

Thus we have

q\ =- a\ =(Sk+Sk-2kk)0x a02

Using (2.33) we get

n\ =- al
f
Sk+Sk-

\

cot2 0 ^
' y 0X A 02

Solving the right hand side, we get

(2.35)

Q?j =- Q2 =
y[2 i

-cot#
—im +

Si
-cot# m

cot2 0 0xa02 ,

z =1,2.

Using equations (2.15) and (2.16) we obtain
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n\ =- a\
cos ec20 1 t 1 

*j2r *j2r *j2r
cosec20 1

4lr
0lA02

=> O1, =- n\ = ~0l A 02 (2.36)

Thus from equations (2.34) and (2.36) we have the curvature of V2

is given by

K = ~,r (2.37)
r

Now to find the non-vanishing components of the curvature tensor 

of V2, we have from the definition

This gives

n;a s'

=> €fp=Ram0xA02

a\=-n22=R\l201 a02

Comparing the coefficients from (2.36) we obtain

(2.38)

Consequently we get

Rnn=~ (2.39)

However the tetrad components of curvature tensor are given by



—A , —k
m m mJ m

1
= R1212

Z'—1 , , —2 —1 2 2 —1 ^m m mm -m m m m - 

K-m mx ml m + m ml m2 m ,

1
= R1212

f 1 \
vr4 sin2 0,

or Rnn = r2 sin2 9
is the tensor component of the curvature tensor.

(2.40)

Commutator Relation and Field Equations:

Let ^ be a scalar invariant, we express tetrad components

of covariant derivative of A as

(3.1)
From this we obtain

“ e(«) C{p) + e(a),j e(/3)

where from definition of Ricci’s rotation coefficients, we have
(3.2)

%).j %) yapy

Thus the above equation (3.2) becomes

= r.*, ^ (3-3)

Interchanging a and p in (3.3) we get

h,a = e(ft) e(a) ~ t Yfiaa ^ (3‘4)

Subtracting equation (3.4) from (3.3) we get

="#, ^ {Yaap ~ Yfiaa ) (3’5>
a, p,ar = 1,2.
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This gives

0,ct;P ~~$,P,a ~~0,i {ja\p~Yp\a ) ~ii ^ ^ {Ycc2p ~7p2a )

ta-,p ~ip,a =~i, m ' (Yaip ~Ypia ) ~#;f {/alp ~Yp2a )

ia,p ~ip,a =~-#0(raip-Ypia ) -S<f>{Ya2p-7p2a ) (3‘6)

Using (3.1) we have

4i=Mo

=> (j)x = S</> (3.7)
Similarly we have

=>i2=S0 (3.8)

Thus giving a, p = 1,2. in (3.6) and using (3.7) and (3.8), we obtain

(SS-#S)i = ~S0(-r2n)-£0(Ym)

=>(s$-SS)0 = kS0 + kS0 (3.9)

This is the commutator relation in V2.

3. Field equation:

The tetrad components of the Weyl tensor are given by

^aPyS ^aPyS ^ &pS^ay &Py^aS SaS^'Py')’^ j\&ay&PS SpySaS)

(3.10)
where Rap = RraPr denotes the tetrad components of the Ricci tensor 

and R = gapRap the Ricci scalar curvature. However, in 2- 

dimensional Riemannian spaced, equation (3.10) has only one 

component and is given by
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(3.11)^1212 - Cj212 +-^12 g

where from equation (2.38), we have

8T A fl*

=>£21i=1!12129'aS2

However, from equation (2.35), we have

a#2 =Rm2 &l a 92

This gives

Rm2 = -{d k + 6k-2kk^

Hence equation (3.11) becomes

._ _ _.
-\5K + SK-lKKj=Cnn +jR12 - —

Define

^ = Cm2 = Chijkmh m mJ m

$n ~ R\i ~ R>jm' rn 

$n=R\i =RIJm'mJ 

$n=Rn= RtJ m m

Hence we obtain the field equation

_ _ _
Sk+Sk-2kk+i//+$12-—=0.

(3.12)

(3.13)

(3.14)
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