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Chapter-I

Introduction

1.1 Preliminary Remark: -

The theory of Integral Transforms is a classical subject in mathematics 

whose literature can be traced back through at least 175 years. The classical 

theory of integral transforms of functions and their applications are too well 

known. Integral transforms of generalized functions are used in various 

problems of mathematical Physics and applied Mathematics. On the other 

hand, the theory of generalized functions is of recent origin, its advent being 

the publication of Laurent Schwartz’s work, which appeared from 1944 

onward, most notably of them is his two volume work, “Theorie des 

Distributions”, published in 1950 and 1951. The concept of generalized integral 

transformation is confluence of these two mathematical streams. In this chapter 

we give a brief account of elementary concepts that are required for the 

development of the work of dissertation.

1.2 Integral transforms:-

Integral Transformation is widely used in pure and applied mathematics. 

They are used in solving some boundary value problems and integral equations. 

A function F(s) is defined and denoted as in the form of integrals

co

F(s)= J k(s,x)f(x)dx------- (1.2.1)
Ow-cc
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is called integral transform of function /(x).

Where s-is real or complex.

k(s,x)- Kernel of the transformation.

It is assumed that integral on R.H.S of (1.2.1) is convergent.

Different forms of kernel k(s,x) and the range of integration, give rise 

to different integral transformations; such as Fourier, Laplace, Mellin, Hankel 

transformations.

The problems involving several variables can be solved by applying 

integral transformations successively with regards to several variables.

1.3 The Hankel Transformation:-

The conventional Hankel transformation is defined by

CO

F(y) = h/Jf= \f(x)y[xyJM(xy)dx-------- (1.3.1)
0

Where 0 < y < <x>, pi is a real number, and Jfl is the Bessel function of first 

kind and order pi.

Inversion Theorem: (Watson [25]; p.456) If /(x)eZ,(0,oo), if /(x)is of 

bounded variation in a neighborhood of the point x = x0 > 0, if pi>~, and if 

F(y) is defined by (1.3.1),

then ^[f(x0+O) + f(x0-0)] = h^F = t°lF(y)^yJft(xoy)dy------ (1.3.2).
“ 0
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When , conventional inverse Hankel transformation hj is

defined precisely by the same formula as the direct Hankel transformation hM ;

in symbols h =h 1.

Theorem (1.3.2):- If f(x) and G(y) are in Z.,(0,co), if , if

F(y) = hjf(x)], and if g(x) = fi~'[G(y)],

QU

Then Jf(x)g(x)dx= \F(y)G(y)dy----------- (1.3.3).

A series expansion for the Bessel function J (z) of any order ju is

0

r zv+2k

_K±
k\\ju + k + i

1.4 Generalized functions and Distributions:-

P. Dirac [4] introduced delta function in 1947. The idea of specifying a 

function not by its value but by its behavior as a functional on some space of 

testing functions was a new concept. This new mode of thinking gave rise to 

the theory of generalized functions.

The impact of generalized functions on the integral transforms has 

recently revolutionized the theory of integral transformations. The foundations 

of the theory of generalized functions were laid by Bochner [1] and Sobolev 

[21]. But the work of Laurent Schwartz [20] was a systematic construction of 

theory of generalized functions.
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Generalized functions:-

Let 7 be an open subset of R" or C".

where Rn -Real n-dimensional Euclidean space.

C" - Complex n-dimensional Euclidean space.

A set V(I) is said to be a testing functions space on 7 if the following 

conditions are satisfied,

(i). V(I) consists entirely of smooth complex valued functions defined on I.

( ii ). V(I) is either a complete countably multinormed space or a complete 

countable union space.

(iii). If sequence converges in V(l) to zero then for then for every non

negative integer k in R”, {Dk</>„ \ converges to the zero function uniformly on 

every compact subset of I.

A generalized function on 7 is any continuous linear functional on any 

testing function space on 7 .Thus / is called a generalized function, if it is a 

member of the dual space V‘(J) of some testing function space V(l).

Distributions:

Let / be a non empty open set in Rn and K be a compact subset of I. 

Dk(I) is the set of all complex valued smooth functions defined on 7 which 

vanish at those points of I, that are not in K. Dk(l) is a linear space under the 

usual definitions of addition of functions and their multiplication by complex 

numbers. The Zero element in Dk(I) is the identically zero function on7. For

each non-negative integer k in R" defined Yk by
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(1-4.1)r*(#) = sup|Z)V(0| ;#e Dk(i)
tel

then {rk} is a countable multinorm on Dk (/).

We assign to Dk(I) the topology generated by {yk} and thus Dk(/) is a 

countably multinormed space. Moreover Dk(I) is complete and hence a 

Frechet space.

Let be a sequence of compact subsets of 7 with properties,

i. Kx cr K2 c AT3 c---------

ii. Each compact subsets of 7 is contained in one of the Km,

00

then 7 = U Km and I)Ku (/) c DK (/) and topology of DK (/) is stronger than
m~\ m m+ m

the topology induced on it by DK^ (7).

Now countable union space D(I) is defined by

co

D(/)=UDr (/)------- (1.4.2)
m=1

Its dual space is denoted by D (I). Members of D (I) are called distributions 

on 7 .Thus a distribution is a continuous linear functional on space D(I).

Main advantage of generalized functions and distributions is that by 

widening the class of functions, many theorems and operations are freed from 

tedious restrictions. Generalized functions in mathematical physics are 

discussed by Vladimirov V. S. [24] .Gelfand I. M. and Shilov G. E. [7] is also 

available.
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1.5 Generalized Integral Transformation:

The concept of the Generalized Integral transformation has been 

originated from the confluence of two mathematical disciplines, the theory of 

integral transformations and the theory of generalized functions. An important 

achievement of the theory of generalized functions published by Schwartz was 

the extension of Fourier transform to generalized functions, which led to a 

great process in the theory and applications of the generalized integral 

transformations in many directions and applied to various problems such as 

wave equation, electricity potential [26], heat condition, gas dynamics, heat 

diffusion and so on.

J. L. Lions [11] was the first, who extended Hankel transformation to 

generalized functions in such a way that an inversion formula could be stated 

for it. Recently Zemanian [26] extended various types of transforms to a certain 

class of generalized functions. Zemanian gave an alternative theory designed 

specifically for the Hankel transformation.

At present, the theory of generalized functions has numerous 

applications in physics, Mathematics and Engineering.

1.6 Generalization of Hankel Transformation:

A generalization of the Hankel transformation is different from that used 

for the Laplace and Mellin transformations. Here our definition is an indirect 

one based upon Parsevel’s equation. On the other hand, in each of the previous 

cases constructed a testing function space, has been contain the kernel
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function, and then a transform is defined directly as the application of a 

generalized function to the kernel function. This latter approach doesn’t always 

work now because the kernel function JxyJ^ixy) as a function of x is not a 

member of Hfi, and therefore the equation

ChfJ)(y) =< f(x),JxyJpixy) >

does not possess a sense for every f eHu . However, under certain restriction 

on /, above equation will possess a sense and will agree with the definition

<h,lf,0>t<f,hp0>

where ju>
2’

fsH' and jeHu.
J h T M

1.7 Some Definitions and Theorems:

Space of test functions:

The space of testing functions, which is denoted by D(R), consists of all 

complex valued functions $(t) that are infinitely smooth and zero out side 

some finite interval.

Theorem: A Local boundedness property of Distributions.

Every distribution / that is defined over some neighborhood of a fixed 

finite closed interval / in R possesses the following boundedness property, 

there exist a nonnegative integer r and a constant C such that, for each ^ in D 

whose support is in I,

|</s^>|^Csup|^(,)(0|
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C and r depend only on / and / .

Spaces': The space of all complex valued function </>(/) that are infinitely 

smooth and are such that, as They and all their partial derivatives

decrease to zero faster than every power of ^.

When t is one dimensional, every function <j>{t) in S satisfies the infinite 

set of inequalities

<C,m.k -00 < t < 00

Where m and k run through all nonnegative integers.

The elements of S are called testing functions of rapid descent. 

Distribution of slow growth /Tempered distributions

A distributions / is said to be of slow growth if it is a continuous linear 

functional on the space S of testing functions of rapid descent.

1.8 Theory of Boehmians:

Zemanian A.H. [26] presents generalization of a number of commonly 

encountered integral transforms. His idea is to construct testing function spaces 

which contain appropriate kernels of integral transforms and to extend the 

classical theories of the corresponding testing function spaces. The theory thus 

developed is then applied to find generalized solution of partial differential 

equations.

The theory of Schwartz distributions was developed in order to give a 

solid mathematical foundation for generalizing the properties of Dirac S
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function introduced by British physicist P. A. M. Dirac in the late 1920’s. Since 

Soboleff [21] and Schwartz [20] introduced the notation of distributions, there 

arise a number of theories of generalized functions. These theories differ from 

one another by generality, by application or by language, which is used to build 

them. One of the youngest generalizations of functions; and more particularly 

of Schwartz theory of distributions is Boehmians.

This idea of the construction of Boehmians was initiated by the concept 

of regular operators introduced by Boehme T.K [2], Regular operators form a 

subalgebra of the field of Mikusinski operators and hence they include only 

such functions whose support is bounded from the left. Attempts were made to 

generalize the notion of regular operators in order to embrace all continuous 

functions and a general construction of Boehmians presented by Mikusinski 

[12]. In a concrete case the space of Boehmians contains all regular operators, 

all distributions and some objects which are neither operators nor distributions. 

An example of such a space is given in [12]. A concept of convergence of 

Boehmians was introduced and discussed in [13], In the same paper the 

concrete space of Boehmians mentioned above is discussed in more detail. The 

space furnished with the introduced convergence appears to be a complete 

quasinormed space.

For every ring without zero divisors, there exists the corresponding field 

of quotients. The space C+ of all continuous functions on the real line R with 

supports bounded from the left forms a ring without zero divisors with respect 

to the convolution. The field of quotients for this space is known as the field of
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Mikusinski operators [12]. When replacing C+ by the space C of all continuous 

functions, the construction of the field of quotients is impossible due to the 

presence of zero divisors inC. The construction of Boehmain is similar to the 

construction of the field of quotients and in some cases it gives just the field of 

quotients. On the other hand, the construction is possible where there are zero 

divisors, such as space C (with the operations of point wise addition and 

convolution).

In recent years the investigations in the Integral transforms for 

Boehmians have become an active and important part of the theory of 

generalized integral transforms. In the literature several integral transforms for 

various spaces of Boehmians are defined and their properties investigate [14], 

[16], [17].

The purpose of this talk is to give a general definition of Boehmians 

spaces and to explain how these spaces generalize the generalized functions 

spaces.

General Construction of Boehmian :

Let G be an additive commutative semigroup and S be a subset ofG. 

We assume that to each pair of elements a e G and 8 e S there is assigned an 

element of G denoted by a *8. (* is a map form GxS to G ).

It is called the product of a and 8. We postulate that the product has the 

following properties:

I. If 8,T] € S then 8*rjeS andS*?] = Tj*S.

II. If aeG and 8,rjeS thm(a*8)*Tj = a*(8*rj).
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III. If a, PeG and SeS then ((a +J3)*S = a*S + p*S.

Properties (I) and (II) imply that 5 is a multiplicative commutative semigroup.

Consider a family A c SN satisfying the following conditions:

Al. If a,p&G, {£„}e A and a*8n = fi*Sn, VneN then a = (3 in G .

A2. If€ A then*#„}e A .

Elements of A are called Delta Sequences.

Consider the class “ A ” of pairs of sequences defined by

An element ({/„},{(/>„})^A is said to be quotient of sequences, denoted by 

% iff, * fy = fj * A, Vi, y e iV.

We say that two quotients of sequences are in relation if

for each rt,me N, we have fn * <pm = gm * (j>n. This relation is equivalence in A. 

Thus the family^ splits into equivalence classes. The equivalence classes will 

be called Boehmians and the space of all Boehmians will be denoted 

by B = B(G, A) ■

Definition: The addition of two Boehmians is defined by

A + Z(A*<P»).

and multiplication by a scalar can be defined in a natural way

,ae □
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The operation * and the differentiation are defined by

Jg*/ (fn*gn)/
_/tn_ _ /<Pn_

and

In particular, if € B and 5 e S is any fixed element then the product *

defined by w * 5 -
1/ 4,.

is in B(G, A).

Remark: 1 An element / e G can be identified as an element of B by the map

/-> /*<L

herejP',,} e A. It is shown in [12] that the representation is independent of the 

delta sequences and the map gives an algebraic isomorphism of G 

into S(G, A).

Remark:2 G is also equipped with a notion of convergences. The intrinsic 

relation between the notion of convergence and the product * is given by

i. If fn -»/ as H ^ co in G and <j> e S is any fixed element then

f *</> as m->oo in G.

ii. If /„ ->/ as noo inG and {<5a}eA then f as n-»oo inG.
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(a). A sequence of Boehmians {x„} in B is said to be S -convergence

to a Boehmians xeB, denoted by xn—if there exist a delta sequence 

{x„}, such that , gG Vk,neN and {x„ *Sk} -^{x*^} as

« —> co in G, yk,n^N.

From die condition (i) it is clear that /„ -» / as n -> oo in G then fn -» / as 

«-»oo in B.

(b) A sequences of Boehmians {x„} in B is said to be A convergent to a 

Boehmians x inB, denoted by xn——>x, if there exist a delta sequences 

[Sn} g A, such that (xn - x) * Sn e G, VneN and (xM - x) * Sn -> 0 as in G.

Support of a Boehmians:

Suppose U be an open set. A Boehmians x g B is said to vanish

onG, if for each compact set KqU , there is a representative of of x,

such that /„ = 0 on K for each n e N.

Support of a Boehmians x is defined as the complement of the largest 

open set on which x vanishes.

Some Examples of Boehmians:

1. Let us now give an example of a Boehmian space in which the 

distributions D can be imbedded. Take G = C°(R) equipped with the topology 

of uniform convergence on compact sets, S = D(R) and A to be the class of 

sequences from D satisfying the conditions
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(i) ^n(x)dx~ 1 ,\/neN.
R"

(ii) j]^„ (x)| dx <M \/n , for someM > 0.
R

(iii) s(</>n) -> 0 as n-> oo where s(<p) = sup ||x|: x e R, 0(x) * 0 }

For / e G, <t> e S we define the convolution * as

(/ * = \f{x - t)(/>{t)dt.
R

Clearly * defines an map from GxS to G and members of A 

satisfies the conditions (A1) and (A2). The Boehmians space thus obtained is 

denoted by B = A) and its members are called C” -Boehmians.

2. As a second example let us take G be the set of all locally integrable 

functions on R and identify two such functions whenever they are equal almost 

every where with respect with to the Lebesgue measure on R. The topology of 

this space is taken to be the semi norm topology generated by

P,{f)=)\f\dx ( * = 1,2,3,------- )
-n

Consider S = D(R) and A to be class of sequences from D defined 

above. We get a corresponding Boehmians space B = B(G, A) called the space 

of Locally integrable Boehmians.
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