CHAPTER III

.

ø.

STONE'S SPACE

.

.

<u>CHAPTER-III</u>

STONE'S SPACE

Introduction :

As distributive semilattice is a generalization of a distributive lattice. It prestingly we shall study some topological properties of the space of prime and maximal dual ideals in distributive semilatice.

Stone (11) has instructured a topology for the set of all prime ideals of a distributive lattice. Many more attempts have been made for investigating the properties of the Stone's space for distributive lattice.

Balachandran [2] has made an extensive study of Stone's topology of the distributive lattice and has obtained results supplementing to those of Stone. In the same way Venkatanarasimhan [19] has studied indetail the space of prime dual ideals for a pseudo completed lattice.

In this chapter we have collected some properties of the Stone's topology for the set of prime dual ideals in bounded distributive Λ -semilattice.

In 3.1 we have studied some properties of the Stone's topology on the set of prime dual ideals of a distributive semiattice. Mainly it is shown that \wp , the set of prime dual ideals in bounded distributive Λ -semilattice is compact and T₀.

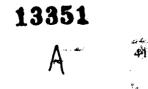
As every maximal dual idea is prime in bounded distributive Λ semilattice, Λ the set of all maximal dual ideals contains \wp , the set of all prime dual ideals. Hence we have to focus our attention on Λ together with the restricted Stone's topology on Λ . In 3.2

it is shown that every prime dual ideal in distributive semilattice is contained in a unique n eximal dual ideal if M is retract of g.

By defining new topology T' on \wp different from the Stone's topology on \wp . The new topological space (\wp , T') is studied in 3.3.

In 3.4 mainly we have studied that V(a) is compact and $\{V(a)/a \in S\}$ is a subbase for the open sets in (g_2 ,T)

* * *



3.1 The space of prime dual ideals:

Throughout S stands for a bounded distributive Λ - semilattice. Denote by \wp , the set of all prime dual indeals in S. For any dual ideal A in S, let V(A) denote the set of all prime dual ideals in S, not constaining A. i.e. $V(A) = \{P \in \wp / A \notin P\}$

Some properties of V(A) are mentioned in the following Result which are used in defining the topology on the set of all prime dual ideal in S.

Result :3.1.1: For dual ideals Ai in S, i & I (I is any indexing set) we have the following,

1) $V(\underline{X} Ai) = \underbrace{U}_{i} V(Ai)$ \bigcup 2) $V(A_1 \land A_2 \land ... \land A_n) = V(A_1) \cap V(A_2) \cap ... \cap V(A_n)$ 3) $V(S) = 8^{2}$ 4) $V([1)) = \Phi$ **Proof**: We have $V(A) = \{P \in g / A \not\subset P\}$ 1) Let $P \in V(XAi)$ Then $X Ai \not\subset P$ and hence $Ai \not\subset P$ for some i. Hence $P \in \bigcup_{i=1}^{n} V(Ai)$, proving that $P \in V(Ai)$, for some i. Thus, we have $V(\underbrace{V}_{i}Ai) \subseteq \underbrace{U}_{i}V(Ai) \dots$ **(I)** 11 For the reverse inclusion. Let p s U V(Ai) E t then A i $\not\subseteq$ P for some i i.e. $P \in V(Ai)$, for some i. This proves that $\bigvee_{i} Ai \not\subseteq P$. Hence $P \in V(\bigvee_{i} Ai)$. proving that $\bigcup_{i} V(Ai) \subseteq V(\bigvee_{i} Ai)$ **(II)**

Therefore from (I) & (II) we get $V(\underbrace{V}_{i}Ai) = \underbrace{U}_{i}V(Ai)$ 2) If P s V (A₁ Λ A₂ Λ ... Λ A n)then A1 Λ A₂ Λ ... Λ An $\not\subset$ P. Hence Ai $\not\subset P$ for every i, $1 \le i \le n$. i.e. $p \in \bigcap_{i=1}^{n} V(Ai)$ Thus V $(A_1 \Lambda A_2 \Lambda ... \Lambda A_n) \subseteq \cap V(A_i)...$ (Ⅲ) Now if $P = \bigcap_{i=1}^{n} V(Ai)$ This gives P & V (Ai), for every i i.e. Ai $\not\subseteq P$, for every i. As P is a prime dual ideal, $\stackrel{N}{\longrightarrow}$ Ai $\not\subset$ P. But then P s V ($\stackrel{N}{\xrightarrow}$ Ai) Therefore $\bigcap_{i=1}^{n} V(Ai) \subseteq V(\prod_{i=1}^{n} Ai)...$ (IV) Combining (III) & (IV) we get $\bigcap_{i=1}^{n} V(Ai) = V(\frac{n}{A}Ai)$ i.e. $V(A_1 \land A_2 \land \dots \land A_n) = V(A_1) \cap V(A_2) \cap V(A_n)$

3) As S is not contained in any member of \wp , we get $V(S) = \wp$

4) Since every prime dual ideal contains 1, it follows that $V([1)) = \Phi$

Define $U(A) = \wp - V(A)$, the complement of V(A) in \wp . Then from the above

Result 3.1.1: we get

Result 3.1.2 : For any dual ideal Ai in S, we have

1)
$$U\left(\bigvee_{i=1}^{n} Ai\right) = \bigcap_{i=1}^{n} U(Ai)$$

2) $U(A_1 \land A_2 \land ... \land An) = U(A_i) U U(A_2) U... U U(An)$
3) $U(S) = \Phi$
4) $U([1)) = \wp$

Consider the topology T defined on \wp for which V(A) is an open set. This topology is the Stone's topology and (\wp ,T) is the Stone's space. At the out set we study some properties of Stone's space ((\wp ,T). Many results of Venkatanarasimhan

[19] follow from our results.

Result : 3.1.3: Let X be any subset of \wp , then Cl.X = U(X0), X0 being the intersection of gall members of χ .

Proof :Let B = U(Xo)

i.e.
$$B = \{P \in \mathcal{P} \mid X_0 \subseteq P\}$$

i.e. $B = \{P \in \mathcal{P} \mid \cap X \subseteq P\}$
 $= \{P \in \mathcal{P} \mid \cap F \subseteq P\}$
 $F \in X$

Let $F \in X$, then $\cap F \subseteq F \& F \in \mathcal{D}$, imply that $F \in X$

Fe8 Thus we get $X \subseteq B$.

L. U(A) = $\wp - V(A)$ be any closed set containing X But then $A \subseteq F$, for all $F \in X$ Hence $\{P \in \wp \mid \cap F \subseteq P\} \subseteq \{P \in \wp \mid A \subseteq P\}$ $F \in X$ This gives, $B \subseteq U(A)$

i.e. B is the smallest closed set containing X

Therefore Cl. $X = B = U(X_0)$, Xo being the intersection of members of X.

We define as usual for any subset B of S the hull of B: $h(B) = \{p \in \mathcal{B} \mid B \subseteq P\}$ &

for any subset T of \wp , the Kernel of T in \Im , is defined as $k(T) = \bigcap \{P \mid P \in T\}$.

Thus from the **Result 3.1.3**, we get T is closed if and only if T = hk(T).

Hence we have,

Result :3.1.4: T is the hull Kernel topology on \wp .

Proof :Let $T \subseteq \wp$

We shall prove that h(k(T)) is the smallest closed set containing T.

i.e. for any $T \subseteq \emptyset$, h (k(T)) is the closure of T in \mathscr{B} .

i.e. Cl.
$$\{T\} = \{P \in \mathcal{B} \land Q \subseteq P\} = h(k(T)).$$

 $\mathcal{O} \in T$

Sir e k(T) =
$$\cap Q$$

O ε T

We get $k(T) \subseteq Q$ for all $Q \in T$ & hence $T \subseteq h(k(T))$

Also, since V(k(T)) is open and

 $h(k(T)) = \wp - V(k(T))$

Thus we get h(k(T)) is closed.

Let C be any closed set infcontaining T.

Then $C = \wp - V(A)$, for some $A \subseteq S$.

Since $X \subseteq C$, $C \cap V(A) = \Phi$ i.e. $Q \notin V(A)$, for all Q s T & hence $A \subseteq Q$, for all Q s T $i.e. A \subseteq \cap Q$ Q s T i.e. $A \subseteq k(T)$ (as $k(T) = \cap Q$) Q s T And hence P h(k(T))This gives $k(T) \subseteq P$ i.e. $A \subseteq P$ This gives $P \in C$ (as $C = \wp - V(A)$) Therefore $h(k(T)) \subseteq C$. i.e. h(k(T)) is the smallest closed set containing T. i.e. h(k(T)) is the closure of T. i.e. Cl. $\{T\} = \{P \in \wp : \bigcap Q \subseteq P\} = h(k(T))$ Q∈T Ø

In view of the above Result3.1.4. the topology on & is known as the hull-kernel

topology.

Next we prove

Result : 3.1.5.:(\wp , T) is a To - space

Proof :Let $Q_1, Q_2 \in \mathcal{G}$

Let Cl. $\{Q_1\} = Cl. \{Q_2\}$

By Result : 3.1.3 Cl. $\{Q_1\} = \{P \in \mathcal{G} / Q_1 \subseteq P\}$ Cl. $\{Q_2\} = \{P \in \mathcal{G} | Q_2 \subseteq P\}$ But $Q_1 \in Cl...\{Q_1\}$ implies $Q_1 \in Cl.\{Q_2\}$ Hence $Q_2 \subseteq Q_1$ Similarly, $Q_2 \in Cl.\{Q_2\}$ implies that $Q_2 \in Cl.\{Q_1\}$ Hence $Q_1 \subseteq Q_2$ Thus Cl. $\{Q_1\} = Cl.\{Q_2\}$ gives $Q_1 = Q_2$, which in turn proves that (\mathcal{G}, T) is a To - space [See Def. 1.30]

S being distributive semilattice with 0.

We get,

Result : 3.1.6: (\wp ,T) is compact.

Proof: Let $\wp = UV(Ai)$ (I is any indexing set) $i \in I$

Then [By Result 3.1 (1 & 3)]

 $V(S) = \wp = UV(Ai) = V(\underline{V}Ai)$

If V Ai \neq S then there would exists a prime dual ideal containing VAi leading to V(VAi) \neq

େ

[By Results 2.4 & 2.6]

But this contradicts our assumption.

Hence, $\forall Ai = S$. i $\in I$ As $0 \in S$, we get $0 \in \forall Ai$ (as $S = \forall Ai$) i $\in I$ i $\in I$

Therefore there exists a finite number of elements

 $a_{i1}, a_{i2}, \ldots, a_{in}$ (aij s Aij) such that

 $0 = \mathbf{a}_{i1} \land \mathbf{a}_{i2} \land \dots \land \mathbf{a}_{in} \in \mathsf{VAij}$ $i \in \mathsf{I}$

Therefore $\underline{VAi} \subseteq A_{i1} VA_{i2}V \dots VA_{in}$

Consequently,

 $\mathfrak{S}^{2} = \mathbb{V}(\underbrace{\mathbb{V}}_{i}A_{i}) \subseteq \mathbb{V}(A_{i1} \mathbb{V} A_{i2}\mathbb{V} \dots \mathbb{V}A_{in}) = \mathbb{V}(A_{i1})\mathbb{U}\mathbb{V}(A_{i2})\mathbb{U}\dots\mathbb{U}\mathbb{V}(A_{in})$

Hence the result

About the T1 - points of \wp we have,

Result: 3.1.7: P is a T_1 - point of (\wp, T) if and only if P is a maximal dual ideal of S.

P: if :By Result 3.1.3 and Def. 1.24, it follows that $Cl_{\mathcal{H}} = \{M\}, M \subseteq \wp$

This proves that every maximal dual ideal is a T_1 -point of \wp .

Now if $P \in \wp$ is a T_1 -point of \wp then [By Def. 1.33] it follows that P is a maximal dual ideal. The set of all T_1 -points in \wp is the set of all maximal dual ideals of S.

If M denotes the set of all maximal dual ideals in S. then we have,

M = the set of all T₁-points of \wp .

Further we have,

Result : 3.1.8: The closure of set of T_1 -points of (\wp , T) is U(D) where D is the dual ideal of dense elements of S.

Pr of: By Result 3.1.7.

The closure of the set of all T_1 -points in $\mathscr{D} = Cl. \bigwedge = \{P \in \mathscr{D} \mid \cap \bigwedge \subseteq P\}$ But $\cap \bigwedge = D$ [By Result 2.19] Hence $Cl. \bigwedge = \{P \in \mathscr{D} \mid D \subseteq P\}$ = U(D)i.e. $Cl. \bigwedge = U(D).$ Hence the proof.

A sufficient condition for the space g_{0} to be Π_{0} - space is given in the following

Result : 3.1.9: Let S be a bounded semilattice.

Then (\wp, T) is Π_{υ} if D = [1)

Proof :Let V(A) be any non-empty open subset of \wp .

Let if possible $A \subseteq M$, for each $M \in M$ then $A \subseteq \cap M$ & hence $A \subseteq D$ [As $D = \cap M$]

But by data, D = [1]

We get $A \subseteq D=[1]$

Thus A = [1) proving that $V(A) = V([1)) = \phi$ [By Result 3.1.1 (4)]

This contradicts the fact that V(A) is non-empty.

Hence there exists at least one maximal dual ideal, say M such that A $\not\subset$ M. But then

M∈V(A).

As $Cl_{\mathcal{B}} \{M\} = \{M\}$

V(A) contains the closed set {M}

Hence [By Def. 1. 36] it follows that (g_0,T) is Π_0 -space.

3.2 The space of maximal dual ideals.

L⁺ us denote the set of all maximal dual ideals of S by M.

As every maximal dual ideal in a distributive semilattice S is prime [By Result 2.6]

We get $\Pi \subseteq \wp$, the set of prime dual ideals in S.

An interesting property of the subspace (Λ, T) is established in the following

Result : 3.2.1: The subspaces (Λ, T) is the smallest of the subspaces X of (\wp, T) such that X is not weakly separable from any point out side it.

Proof: First we will prove that M is not weakly separable from any point out side it.

Let $P \in \wp$ such that $P \notin M$. Then as every proper dual ideal is contained in some maximal dual ideal [By Result 2.4], there exists $M \in M$ such that $P \in M$. But then $M \in \{M\} \cap Cl.\{P\}$ proving that M is not weakly separable from any point out \wp side it. [By Def 1.40]

To prove that M is the smallest subspace of (\wp, T) satisfying the given condition. Let there exists $X \subseteq \wp$, such that $X \cap Cl. \{P\} = \phi$, for any $P \notin X$. Let if possible $M \not\subset X$. Hence there exists $M \in M$ such that $M \notin X$. As $M \in \wp$ by the property of X, we get $X \cap Cl_{\mathcal{R}} \{M\} \neq \phi$ i.e. $X \cap \{M\} \Rightarrow \phi$ i.e. $X \cap Cl_{\mathcal{R}} \{M\} = \{M\}$ by

Result3.1.7]But then $M \subseteq X$ which is a contradiction. Thus M is the smallest sub space of \wp satisfying the given condition. 4

Sufficient condition for a subspace X of \wp to be compact is given in the following.

Result : 3.2.2: If X is any subset of go containing A then (X,T) is compact.

proof :Let $X \subseteq U \lor (A)$ Then [By Result 3.1.1(1)]

$$X \subseteq V(\underline{V} Ai)$$
$$i \in I$$

 $\begin{array}{ll} \text{Therefore no member of X contains } \underline{V}Ai \text{ and as } \underline{N}\underline{\subset}X \text{ no member of } \underline{N} \text{ contains } \underline{V}Ai \text{ .} \\ i \in I & i \in I \end{array}$

But this will imply $S = \underline{V} Ai$. Hence $0 \in S$ implies that $0 \in \underline{V} Ai$ $i \in I$ $i \in I$

Hence $o = a_{i1} \land a_{i2} \land \dots \land a_{in}$ where $a_{ij} \in Aij$, for $1 \le j \le n$

But then,

 $S = [\mathbf{a}_{i1} \land \mathbf{a}_{2} \land \dots \land A_{in}]$ = $[\mathbf{a}_{i1}) \lor [\mathbf{a}_{2}) \lor \dots \lor [\mathbf{a}_{in})$ $\subseteq A_{i1} \lor A_{i2} \lor \dots \lor A_{in}$

Therefore, $X \subseteq V(A_{i1} \ \lor A_{i2} \ \lor \dots \lor A_{in})$

 $= V(A_{i1})UV(A_{i2})U \dots UV(A_{in})$

Thus every open cover of X contains a finite subcover proving that X is compact.

A class of distributive lattices in which every prime ideal is contained in a unique maximal ideal is studied indetail in [8]. In the following theorem we give a topological condition under which every prime dual ideal in a distributive semilattice is contained in a unique maximal dual ideal.

Result : 3.2.3.:If M is retraction of \wp then every prime dual ideal in S, is contained in a unique maximal dual ideal.

Proof: Let us assume that M is retract of g_0 . Hence there exists a retraction say f of g_0 onto M.

Let f(P)=M, for some $P \subseteq M$. We will prove that, M is the unique maximal dual ideal containing P. As M is T_1 -space. (M) is closed in M. By continuity of f, \overline{f}^1 ((M)) is closed in g_2 . As P s $f^1(\{M\})$ and Cl. (P) is the smallest closed set containing P. We get g_1 (M) is the smallest closed set containing P. We get g_2 (Cl. (P) $\subseteq \overline{f}^1(M)$. Now if $P \subseteq M_1$ and $M_1 \neq M$ in M then $M_1 \subseteq Cl. \{F\}$. g_2 Hence $M_1 \in \overline{f}^1(\{M\})$. i.e. $f(M_1) = M$. But $f(M_1) = M_1$, f being retraction.

Therefore $M=M_1$. This implies that, every prime dual ideal in S is contained in a unique maximal dual ideal.

3.3 The space (\wp, T')

In this article we define a new topology T' on the set of all prime dual ideals \wp of S.

Let us define $F(A) = \{P \in g / P \cap A \neq \Phi\}$. Where A is any ideal in S. the following result illustrates some properties of F(A).

Result :3.3.1.:1.F(\forall Ai) ~ UF(Ai) where I is any indexing set. i \in I i \in I

 $2.F(A_1 \cap A_2 \cap \ldots \cap A_n) = F(A_1) \cap F(A_2) \cap \ldots \cap F(A_n)$

3.F(S)= 🔊

4.F((οງ)= φ

Proof: 1. Let P∈F (¥Ai) i∈I

Then we get $P \cap (\underline{V}Ai) \neq \phi$ implying that $P \cap Ai \neq \phi$ for some $i \in I$. i.e. $P \in F(Ai)$ for some $i \in I$. Hence P∈UF(Ai) i∈I Thus $F(YAi) \subseteq UF(Ai)$ (I) i∈I i∈I If $P \in UF(Ai)$ then $P \cap Ai \neq \phi$ for some $i \in I$ i.e. $P \cap V(Ai) \neq \phi$, proving that $P \in F(VAi)$ Thus $UF(Ai) \subseteq F(VAi) \dots (II)$ i∈I i∈I From (I) & (II) we get the proof of 1. 2. SLet $P \in F$ (A₁ \land A₂ \land \land \land A_n) i.e. $P \cap Ai \neq \phi$, for every $i \in I$, $(1 \le i \le n)$ proving that $P \in \bigcap_{i=1}^{n} F(Ai)$ i.e. $F(\bigcap_{i=1}^{n} Ai) \subseteq \bigcap_{i=1}^{n} F(Ai)$ (III) Now if $P \in \cap F(Ai)$, then $P \in F(Ai)$ for every i. $(1 \le i \le n.)$ i.e. $P \land Ai \neq \phi$ for all i, $(1 \le i \le n.)$ This implies that $a_i \in P \cap Ai$ for all i But this intum proves that, $a_1 \land a_2 \land \dots \land a_n Pn(n \land i)$ i.e. $P \cap (\cap^n Ai) \neq \phi$ i=1i.e. $P \in F(\cap^n Ai)$ i=1 But this implies that $\bigcap_{i=1}^{n} F(Ai) \subseteq F(\cap Ai)$ (IV) Thus from (III) & (IV) we get $\bigcap_{i=1}^{n} F(Ai) = F(\bigcap_{i=1}^{n} Ai)$

.

- ...

3. $F(S) = s_{2}$

As every prime dual ideal of S is contained in S.

Therefore $F(S) = \wp$

4. $F((0)) = \phi$

As (o]=S is not contained in any prime dual ideal. We get $F((0)) = \phi$

Define $F'(A) = \wp - F(A)$. Then from Result (3.3.1) we get following.

Result : 3.3.2:

1.
$$F'(\forall Ai) = \wedge F'(Ai)$$

if $i \in I$

- 2. $F'(A_1 \land A_2 \land \dots \land A_n) = F'(A_1) UF'(A_2)U...UF(A_n)$
- 3. $F'(S) = \phi$
- 4. $F'((o)) = s_{0}$

The above Result 3.3.2 shows that F' defines a closure operations in \wp , there by giving rise to a topology say T' on \wp

3.4 Subbase

We begin with the following

Def.3.4.1: Let S be a bounded distributive Λ -semilattice and let a, b ϵ S. Define V(a) =

 $\{P \in g_2/a \notin P\}$

where ω is the set of all prime dual ideal in S.

We have a property of V(a) in the following.

Result :3.4.1: Let a,b ε S and let V(a) be open set in \wp then $b \ge a$ gives V(b) \subset V(a)

Proof :Let P s V(b).

We get $b \notin P$.

If $a \le b$ and $a \in P$, then $b \in P$, a contradiction.

Therefore $a \notin P$.

Then we get $P \in V(a)$.

Thus $b \ge a$ gives $V(b) \subset V(a)$

Further we have

Result :3.4.2.:Let a s S. Then V(a) is a compact in \wp .

Proof:Let Δ be a class of subsets of S.

Let $\{V(A)/A \subseteq \Delta\}$ be an open cover of V(a).

i.e. $V(a) \subseteq U V(A) = V(\underline{V} A)$ [By Result 3.1.1(1)] $A \varepsilon \Delta \qquad A \varepsilon \Delta$ = V(B) where $B = \underline{V} A$ $A \varepsilon \Delta$

i.e. $V(a) \subseteq V(B)$, where $\underbrace{V}_{A \neq a} A = B$ $A \in a$ Suppose $a \notin B$. Then $(a) \cap B = \Phi$ [By Result 2.23]

There exists a prime dual ideal P such that $B \subseteq P$ and (a) $\cap P = \Phi$

Therefore $a \notin P$.

Hence $P \in V(a)$

But V(a)⊂ V(B)

Therefore $P \in V(B)$

This gives $B \not\subset P$, a contradiction to the choice of P.

Therefore a s B.

i.e. $a \ge a_1 \land a_2 \land \dots \land a_n$ such that, $a_1 \ge A_1$, $a_2 \ge A_2$, ... an $\ge A_n$ i.e. $a \ge \bigcup_{i=1}^{n} A_i$ Thus we get $V(a) \subseteq V(\bigcup^n A_i)$ i = 1

This shows that the given open cover of V(a) has a finite open subcover.

Therefore V(a) is compact.

Two properties of Stone space \wp a bounded distributive Λ -semilattice are studied in the following.

Result. 3.4.3: The Stone space g of a bounded distributive Λ -semilattice has sthe following two properties.

I) so is a To - space in which the compact open sets form a base for the open sets.

II) If A is a closed set in \wp , {Uk /k ε K} is an updirected family of compact open sets of

 \wp and Uk $\cap A \neq \Phi$ then

 \cap {Uk/k \in K} \cap A \neq Φ

Proof : To show sthat (I) holds., we have to prove the following

1) (is To - space.

2) $V(\alpha)$ is compact open set, and

3) V (a) form a base for the open sets of \wp

(1) & (2) are proved [see Results 3.1.5 and 3.4.2]

Now, we prove (3) i.e. V(a) form a base for the open sets of \wp .

In other wards, for a,b ε S, P ε V(a) \cap V(b),

we have to find c ε S with P ε V(c) such that V(c) \subseteq V(a) \cap V(b) where P ε \wp

For a,b ε S, P ε V(a) \cap V(b), we get

 $P \in V(a)$ and $P \in V(b)$.

This gives $a \notin P$ and $b \notin P$

i.e. [a) \cap [b) $\not\subseteq$ P

As P is prime, there exists $c \in S$ such that $c \in [a) \cap [b)$, which gives $c \notin P$ such that

$$\mathbf{c} \geq \mathbf{a}, \mathbf{c} \geq \mathbf{b}$$

Therefore P ε V(a) such that V(c) \subseteq V(a) and V V(b). [By Result 3.4.1] Hence P ε V(c) such that V(c) \subseteq V(a) \cap V(b)

Thus for P ε V(a) \cap V(b) there exists c ε S with P ε V(c) such that V(c) \subseteq V(a) \cap V(b).

Hence $\{V(a) | a \in S\}$ form a base for the open sets of \wp .

To verify; (II) for \wp , let A be a closed set in \wp .

Therefore $A = \wp - V(F)$ is closed in \wp where V(F) is an open set in \wp . And $\{Uk/k \in K\}$

is an updirected family of compact open sets of go.

i.e. $Uk = V(a_k)$, for some $k \in K$.

i.e. Uk = {P $\in \mathcal{G} / a_k \notin P$ }

Now consider $I = \{x/x \le a_k \text{ for some } k \in K\}$

First we prove that I is an ideal

i) Since $o \leq a_k$ for every $k \in K$

Therefore $o \in I$, we get $I \neq \Phi$

ii) Let $x \leq y$ and $y \in I$

We get $y \leq a_k$ for some $k \in K$

As $x \leq y$ and $y \leq a_k$ we get $x \leq a_k$, for some $k \in K$.

This gives x 🕺 I

iii) Let x.y ϵ I. Then $x \le a_{k1}$ for some $k_1 \epsilon K$.

and $y \leq a_{k2}$ for some $k_2 \in K$. There exists Uk₃ in updirected family such that U(a_{k3}) \subseteq

 $U(a_{kl}) \cap U(a_{k2})$

Now since $Ua_{k3} \subseteq Ua_{k1}$ and $Ua_{k3} = V(a_{k3})$

This gives $V(a_{k3}) \subseteq V(a_{k1})$

Consider aki & aki

Take Q s so such that $a_{k1} \in Q$ and $a_{k3} \notin Q$.

This gives $Q \in V(a_{k3})$.i.e. $Q \in V(a_{k1})$

Hence $a_{k1} \notin Q$, a contradiction Therefore $V(a_{k3}) \subseteq V(a_{k1})$ this gives $a_{k3} \ge a_{k1}$

Similarly, since $U_{k3} \subseteq U_{k1}$ and $Ua_{k3} = V(a_{k3})$ Therefore $V(a_{k3}) \subseteq V(a_{k2})$.

This gives $a_{k3} \ge a_{k2}$. Now as $a_{k3} \le a_{k3}$ gives $a_{k3} \ge I$, take $z = a_{k3} \ge I$. Thus for x, y $\ge I$ there exist z $\le I$ such that $z \ge x$ and $z \ge 1$. Therefore from (i),(ii) & (iii) we get I is an ideal.

Now since $U_{k} \leftrightarrow A \neq \Phi$. Therefore $U_{k} \leftrightarrow [g_{2} - V(F)] \neq \Phi$

i.e. $U_k \subseteq \wp$ and $U_k \not\subset V(F)$. Therefore $V(a_k) \subseteq \wp$ and $V(a_k) \not\subseteq V(F)$, where $U_k = V(a_k)$

Now if $a_k \in F$ then $a_k \in P$ for all $P \supseteq F$. This gives $a_k \in P$ for all $P \in \{p - V(F) = U_k\}$

i.e. $a_k \in P$ for all $P \in V(a_k)$ Therefore $a_k \in P$ for all P such that $a_k \notin P$, a contradiction.

Therefore $a_k \notin F$, for all k. Now we prove that $I \cap F = \Phi$

If $I \cap F \neq \Phi$ then there exist x s $I \cap F$. i.e. $x \le a_k$, for some k this gives x s F and $x \le a_k$ i.e. a contradiction.

 $a_k \in F_A$ Therefore there exists a prime dual ideal P with $P \supseteq F$ such that $I \cap P = \Phi$.

Then $a_k \notin P$ and so $P \in V(a_k)$ for all $k \in K$. Also $P \supseteq F$

This gives $P \notin V(F)$ i.e. $P \in \wp - V(F)$

Therefore P s A

And as $a_k \in I$ for all k and $P \cap I = \Phi$

Therefore $a_k \notin P$

This gives $P \in V(a_k)$ for all k

i.e. $P \in U_k$ for all k

Therefore $P \varepsilon \qquad [\cap \{U_k / k \varepsilon K\}]$

Thus P $\varepsilon A \cap [\cap \{U_k / k \in K\}]$ This shows that $A \cap [\cap \{U_k / k \in K\}] \neq \Phi$.

Hence the result.

- -
