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CHAPTER-INII

STONE’S SPACE

Introduction :

As distributive semilattice is a generalization of a distributive lattice .
i+ crestingly we shall study some topological properties of the space of prime and
maximal dual ideals in distributive semilatice.

Stone (1]1) has instroduced a topology for the set of all prime ideals of a
distributive lattice. Many more attempts have been made for investigating the properties
of the Stone’s space for distributive lattice.

Balachandran [2] has made an exténsive study of Stone’s topology of the
distributive lattice and has obtained results supplementing to those of Stone. In the same
way Venkatanarasimhan [19] has studied indetail the space of prime dual ideals for a
pseudo completed lattice.

In this chapter we have collected some properties of the Stone’s topology for the
set of prime dual ideals in bounded distributive A -semilattice.

In 3.1 we have studied some properties of the Stone’s topology on the set of prime

dual ideals of a distributive semiattice. Mainly it is shown that g the set of prime dual
ideals in bounded distributive A -semilattice is compact and Ty,

As every maximal dual idea is prime in bounded distributive A semilattice,
the set of all maximal dual ideals contains g ,the set of all prime dual ideals. Hence we

have to focus our attention on I\ together with the restricted Stone’s topology on ' . In 3.2
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it is shown that every prime dual ideal in distributive semilattice is contained in a umque
L ~«imal dual ideal if M11is retract of g.

By defining new topology T' on g different from the Stone’s topology on & .
The new topological space (%,T") is studied in 3.3.

In 3.4 mainly we have studied that V(a) is compact and {V(a)/a e S} is a subbase

for the open sets in (g ,T)
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3.1 The space of prime dual ideals:

Throughout S stands for a bounded distributive A- semilattice. Denote by g, the
get of all prime dual indeals in S. For any dual ideal A in S, let V(A) denote the set of
all prime dual ideals in S, not constaining A. i.e. V(A)={Ps p/A¢P}

" Some properties of V(A) are mentioned in the following Result which are used in
defining the topology on the set of all prime dual ideal in S.
Result :3.1.1: For dual ideals Ai in S, 1 £ I (I is any indexing set) we have the following,
1)‘. V(V_i\Ai) = I‘I V (Ai) v
2)VA R A K. K An=V(A ) nV(A)N ...~ V(An)
NVE)=¢
Hv()=¢e
Proof : We have V(A)=(P¢ g.»/Acz P}
1) LetPeV (?_gAi) 1§
Then ! Ai @ P and hence Ai ¢ P for some i .
HenceP s ? V(Ai), proving that P s V (A1), for some i.
Thus, we have V(?\Ai) c I;I V(A1) ...... )
For the reverse inclusion.
Letps I.J V(A1)
B tthen A i ¢ P for some i
i.e. P g V (Ai) for some i.
This proves that SiZAi ¢ P. HencePs 'V (¥Ai) .

proving that U V(Ai) < V (Wi)...... (Im)
t 1
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Therefore from () & (I) we get
V(B;LAi)zl}JV(Ai)

2)HPe V(A XA X... XAn)then
Al KA AX..KAngP

Hence Aig Pforeveryi,1<i<n

ie.ps AV (Ai)

=)

.

Thus V (A A Ay’A....A An) c n V(A1)....

Now if Pa A V(A)
=i

This gives P s V (Ai), foreveryi
ie. AigP, foreveryi.

As P is a prime dual ideal,;‘\ AigP.
1=t
"
ButthenP s V ( A Ai)
1=t
n
Therefore_A VA) g V( X Al)...
1= H

1=}

Cuinbining (IIT) & (IV) we get

n n
AV(AD) =V ( R Ai)

1=t 1=

i.e.V(A; KAz K.. K An)=V (Ai) V (A2) ~ V(An)

()

)

3) As S is not contained in any member of g , we get V(S)= g

4) Since every prime dual ideal contains 1, it follows that V (1) )= ®

*%%

Define U (A)= g - V(A), the complement of V (A) in g. Then from the above

Result 3.1.1: we get
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Result 3.1.2 : For any dual ideal Aiin S, we have
HU(VAD --12‘ U(Ai)
b=t i=
2)U(A) KA X... AAn)=U (7() U U(A;) U... U U(An)
HUS)=0 |
HU(1))=¢
=%

Consider the topology T defined on g for which V(A) is an open set. This
topology is the Stone’s topology and ( go,T) is the Stone’s space. At the out set we study
s~me properties of Stone’s space (( g,T). Many results of Venkatanarasimhan
[19] follow from our results.
Result : 3.1.3:Let X be any subset of g, then Cng = U (X0), X0 being the intersection of
all members of)X.
Proof :Let B =U (Xo)

ie.B={Pe p|Xoc P}

ie. B={Pe p|nXcP}

={Pe g@|~FcP}
FeX

LetFeX then"nFCc F&F € g, imply that
FeX
FeR Thus we get X ¢ B.
Li.U(A) = g - V(A) be any closed set containing >} But then A C F, for all Fe X

Hence {P € g |~ FCP}c{Pe p| Ac P}
FeX
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This gives, B < U(A)
i.e. B is the smallest closed set containing X

Therefore Cl. X =B = U(Xj) , Xo being the intersection of members of X.
£

L322

We define as usual for any subset B of S the hull of B: h(B)={p e  |[BcP} &
for any subset T o}f &, the Kemel of T in §, is defined as k(T)=~{P| P e T).
Thus from.the Result 3.1.3, we get T is closed if and only if T = hk(T).
Hence we have ,
Result :3.1.4: T is the hull Kernel topology on g.
Proof:LetTc o
We shall prove that h(k(T) ) is the smallest closed set containing T.
i.e. for any Tc®, h (k(T)) is the clostire of T in £.

i.e. CL{T} = {Psg/~ Qc P} =h(k(T)).
£ Qs T

Sirek(T)=nQ
Qe T

We get k(T) c Qfor all Q& T & hence T ¢ h(k(T))
Also, since V(k(T)) is open and

h(T) = go- VKT))

Thus we get h(k(T)) is closed.

- Let C be any closed set inffcontaining T.

Then C= g - V(A), for some Ac S.
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(g\?
Since\Q%é Cn V(A) =0
ie. Q¢ V(A), forallQs T &hence AcQ, forallQs T
i A gn Q

Qs T

ie. Ack(T) (a8 k(T)=n Q)
Qs T

And hen @ﬁ)} )

This gives k(T)c P

ie. ACP

This givesPs C (asC= g - V(A))

Therefore h(k(T))< C.

i.e. h{k(T)) is the smallest closed set containing T.
i.e. h(k(T)) is the closure of T..

i.e. CL{T}={P e g NQ c P} =h(k(T))
$ QeT

%%

In view of the above Result3.1.4. the topology on g is known as the hull-kemel
topology.

Next we prove
Result : 3.1.5.:( g0, T) is a To - space
Proof :Let Q,,Q:e g

Let Cl. {Qi} =CL{Q,}
& £
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By Result : 3.1.3 Cl.g{Q,} ={Pe o /QcP}
Clg{Q:} ={Pec p|QcP)}
ButQ s Clé{Q;} implies Q; s Cl&{Qg}
Hence Qxc O
Similarlly, Q2 & Cl.e{Qz } impliesthat Q; s Cl{g{Q;}
Hence Q, c G:
Thus Clé(Ql} = Clé{Qz} gives Q; =Q
which in turn proves that ( g2,T) is a To - space [See Def. 1.30]
*En
S being distributive semilattice with 0.
We get,
Result : 3.1.6: ( §2,T) is compact.
Proof: Let g —*—iéJIV(Ai) (I is any indexing set )
Then [ By Result3.1 (1 & 3)]

V1S)= = UV(A) =V (YAD)
fel 3&1 i

e 5N,

IfV Ai= S then there would e;:lsts a prime dual ideal containing VAi leading to V(VAi)»
e [By Results 2.4 & 2.6) %\\
But this contradicts our assumption.

Hence, YAI =3,
el

Ag 0eS , we get 0e VAL (as S=VAI)
el iel

Therefore there exists a finite number of elements
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81,92,........8 o (81j & Aij) such that

O=ayn aaNn ....N a8y, € VAl
iel
Therefore VAi ¢ A; VARV ... VA,
€l

Consequently,

Hence the result

k%
About the T1 - points of g we have,
Result: 3.1.7: P isa Ty - point of  ,T) if and only if P is a maximal dual ideal of S.
P: f :By Result 3.1.3 and Def. 1.24, it follows that c% {M} = (M}, Mc g
This proves that every maximal dual ideal is a T)-point of g.

Now if Pe g is a T-point of g then [By Def 1.33] it follows that P is a

maximal dual ideal. Y.e. the set of all T}-points in & is the set of all maximal dual ideals

of S. PN
If I denotes the set of all maximal dual ideals in S. then we have,

I = the set of all T;-points of .

Further we have,

Result : 3.1.8: The closure of set of Ti-points of (g2,T) is U{(D) where D is the dual ideal

of dense elements of S.

Pr- ~f: By Result 3.1.7.
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The closure of the set of all T-points ing = Clg)!'\f-{Pe | nNcP)
But~f1=D [By Result 2.19]
Hence Clg)ﬂ= {Pe g |Dc P}
=U(D)
i.e. CL '\ =U(D).
3 (D)

Hence the proof.

*%¥%

A sufficient condgtion for the space g to be IT, - space is given in the following
Result : 3.1.9: I.et S be a bounded semilattice.

Then (§,T) is I, ifD=[1)

Proof :Let V(A) be any non-empty open subset of 0.

Let if possible AcM, foreachM e 1 thenAc A1 &hence AcD [AsD=n ]
But by data, D ={1)

We get A D=[1)

Thus A =[1) proving that V(A) =V([1)) = ¢ [By Result 3.1.1 (4)]

This contradicts the fact that V(A) is non-empty.

Hence there exists at least one maximal dual ideal, say M such that Ag M. But then
MeV(A).

As CIB.,{M} ={M}

V(A) contains the closed set {M}

Hence [By Def. 1. 36 ] it follows that ( g,T) is ITy-space.

-y
3.2 The space of maximal dual ideals.
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L-* us denote the set of all maximal dual ideals of Sby 1

As every maximal dual ideal in a distributive semilattice S is prime
[By Resnit 2.6]
Wegetlc g, the set of prirhe dual ideals in S.
An interesting property of the subspace (f\T) is established in the following
Result : 3.2.1: The subspaces (I T) is the smallest of the subspaces X of { g, T) such that
X is not . .wesgkly separable from any point out side it.
Proof: First we will prove that 1 is not weakly separable from any point out side it.
Let P € g such that P¢l\ Then as every proper dual ideal is contained in some maximal
dual ideal [By Result 2.4], there exists Me M such that lﬁig. C
But thgn Mz (M}~ Clé {P} proving that ' is not weakly separable from any point out
side it. [By Def 1.40 ]

To prove that 1 is the smallest subspace of (£ ,T) satisfying the given condtition.
Let there exists Xc g, such that XmCl&{P} =¢ ,forany P¢ X
Let if possible ['1 ¢ X. Hence there exists Mell such that M¢X. As Me g by the
property of X, we get X Cle{M}x ¢ i.e. X {M}=¢since C}S’{M}={M}[ by
Result3.1.7]8ut then Mc X which is a contradiction .Thus I is the smallest sub space of
& satisfying the given condition .
Sufficient condition for a subspace X of g to be compact is given in the following.
Result : 3.2.2:1f X is any subset of g containing I then (X, T)is compact.

proof :Let Xc UV (A)Then [By Result 3.1.1(1)]
kI
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X < V(Y At)
1€l

Therefore no member of X contains VA1 and as =X no member of M contains VA1 .
tel 1el
But this will imply S=V Ai.flence0 ¢ S implier that0 £ Y Al
1el el
Hence o =agn apn ... nag, where a; € Aij, for 1<j<n

But then,

S=[ayn aan ... /\A-‘,& )

=[ay) ¥[az) ¥.. V[ay)

CAY Ag YLNA,,

Therefore, Xc V(Ay YA ¥ ... N.Ap)
=V(A;UV (Ap)U ... UV(Ay)

Thus every open cover ofX contains a finite subcover proving that X is compact.

L2 2 4

A class of distributive lattices in which every prime ideal is contained in a unique

maximal ideal is studied indetail in [ 8 ]. In the following theorem we give a topological

condition under which every prime dual ideal in a distributive semilattice is contained in

a unique maximal dual ideal.

Result : 3.2.3.:1f Mis retraction of g then every prime dual ideal in S, is contained in a

unique maximal dual ideal.

Proof :Let us assume that M is retract of gw. Hence there exists a retraction say f of

gonto M1
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Let f{PF=M, for some Pc M. We will prove that, M is the unique maximal dual ideal
containing P. As I is Ty-space . {M} is closed in ['\. By continuity of f, f ! ({M}) is
closedin . AsPs f'({M})and Clg{P} is the smallest closed set containing P. We get
CléP}g_ f'{m}. Now ifPc M, and M;xM in M then M; czé{}'-;,.
Hence M, s f'({m}).i.e. M) =M. But M, )=M,, fbeing retraction.
Therefore M=M;. This implies that, every prime dual ideal in S is contained in a unique
maximal dual ideal.
s

3.3 The space (g,TH

In this article we define a new topology T” on the set of all prime dual ideals g
of 5.

Let us define F(A) = (P ¢ g/ PnA 20 }. Where A is any ideal in S. the
following result illustrates some properties of F(A).

Result :3.3.1.: 1.F(Y A1) - UF(A1) where I 15 any indexing set.
il el

2FANAIN. .AA) =F(A N F(ADA ...AF(A)
3E(8)= @
4. F(o1)= ¢

Proof : 1. Let Pl (YA1)
iel

Then we get P (VAi) = ¢ implying that P~ Ai = ¢ for someie L
ier
i.e. PeF(Ai) for some ieL
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Hence PeUF(A1)

1€l
Thus F(¥A1) ¢ UF(A1) .......(I)
il el

' PcUF(AQ) then P~ Ai # ¢ for some . 1€ |
i.e. P~ V(Ai) = ¢, proving that Pe F(VAI)

Thus UF(Ai)c F(VAL) ... (1D
iel i€l

From (I ) & (I) we get the proof of 1.
2./:Let PeF (Ain Aon ... nAL)
Le. PevALy ¢, foreveryic I, (15i<n)
proving that P> F(Ai)
0=l
A D | )
re. F(O Ay A F(AD) ... (1)
=2 ()
Now if Pe F(Al), then PeF(A1)  foreveryi (1<i<n.)
i.e. Pn Aiz ¢ for all i, (1< 1< n)

This implies that a, eP Aiforall i

But this irm?ﬂ proves that, ajAmA. . .Aan Pn(RAi)

. \W-.:!:i“p-..

ie. P (AL
=1

ie. P e F(n"Ai)
=1

But this implies that ~ F(Ai)C F(RAQ) ......... avy
=1

Thas fom (IIT) & (IV) we get

A F(AD = FRaAi)

= &)
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3. F(S)= g
As every prime dual ideal of S 1s contained in S.
Therefore F(S)= g
4. F((0])=9¢
As (0]=S is not contained in any prime dual ideal. We get F((0])=¢
Define F(A) = g -F(A). Then from Result (3.3.1) we get following .
Result : 3.3.2; |

1. T(YA) = AFY(AQ)
."I IEI =

2. FllA n Aan ... nAD) =F'(A|) UF(A;)U... UF(An)

3. FS)=¢

4. Fl{(o) =g

The above Result 3.3.2 shows that F! defines a closure operations in g, there by giving

rige to a topology say T on g

L2 2

3.4 Subbase

We begin with the following

Def.3.4.1: Let S be a bounded distributive A -semilattice and let a,b £ S. Define V(a) =
(P g/ny¢P)
where g0 i the set of all prime dunl ideal in S.

We have a property of V(a) in the following.

Result :3.4.1: Letab s S and let V(a) be open set in g then b > a gives V(b) c V(a)
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Proof :Let P s V(b).
We geth ¢ P.
Ifa<bandasP,thenb ¢ P, a contradiction.
Therefore a ¢ P.
Then we get P € V(a).
Thus b > a gives V(b) c V(a)
*kk
Further we have
Result :3.4.2.:Letas S. Then V(a) is a corapact in .
Proof:Let A be a class of subsets of S.
Let {V(AYA < A } be an open cover of V(a).

re. V(a) c UV(A)=V(V A) [By Resuit 3.1.1(1)]
AsgA AcgA

=V(B)where B=VY A
AcA

i.e. V(a) c V(B), where VA=8

AcA
Suppose a ¢ BThen(s] "nB=0  [By Result 2.23]

There exists a prime dual ideal Psuchthat Bc Pand (al ~nP=0
Therefore a ¢ P.

Hence P & V(a)

But V(a)c V(B)

Therefore P e V (B)
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This gives B ¢ P, a contradiction to the choice of P.
Therefore a s B.

ie.ag VA
AgA

n
le.azay Ay A Aagzsuchthat, g, 8 Ay ,a8A;, ...angs A 1.e.as VAl

=4
Thus we get V(a) ¢ V(V" Ai)
i=1
This shows that the given open cover of V(a) has a finite open subcover.

Therefore V(a) is compact.

%%

Two properties of Stone space g a bounded distributive A -semilattice are studied in

the following

Result. 3.4.3:The Stone space gofa bounded distributive A -semilattice has sthe
following two properties.

1) g i1s aTo - space in which the compac:: open sets form a bage for the open sets.

) IfA is a closed set in g , {Uk /k ¢ K} is an updirected fmmily of compact open sets of
g and Uk~ A = @ then

~A{UkksK} N A= @

Proof :To show sthat (I} holds.,we have to prove the following
1) ¢ 18 To - space.
2)V(a) 14 compnc i open sot, md

3) V (u) form a base for the open sets of g

56



(1) & (2) are proved [ see Results 3.1.5 and 3.4.2}

Now, we prove (3) i.e. V(a) form a base for the open sets of .

In other wards, for ab s S, P g V(a) » V(b),

we have to find ¢ £ S with P & V(c) such that V{c) ¢ V(a) ~ V(b) where P ¢ g
Forab s S, P s V(a) ~ V(b), we get

P £ V(a) and P € V(b).

This givesa ¢ Pandb ¢ P

ie.faynb)g?P

As P is prime, there exists ¢ s S such that ¢ € [a) » [b), which gives ¢ # P such that

~

c>acy, b |

‘Therefore P g V&dg such that V(c) ¢ V(a) and & V(b). [By Result 3.4.1]

Hence P s V(c) such that V(c) c V(a) ~ V(b)

Thus for P s V(a) ~ V(b) there exists ¢ £ S with P s V{c) such that V(c} ¢ V(a) ~ V(b).
Hence {V(a) /a & S} form a base for the open sets of &.

To verify; (II) for g, let A be aclosed setin g.

Therefore A= g-V(F) is closed in & where V(F) is an open set in p. And {Uk/k s K}
is an updirected family of compact open sets of &.

i.e. Uk=V(g), forsomeksK.

1e. Uk={Ps g /a, ¢ P}

Now consider I = {3/x < g, for some k ¢ K}

First wo prove that T ix o tdenl
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i) Since 0 < a foreveryksK

Thereforeos 1. we getl= @

ii)Letx< yandysl

We gety < a forsomekeK

Asx< yandy < 3, we getx< o, forsomeks K

This gives x ({ I

i) Letxy s1 Thenx < ay for somek, e K.

and y < ay; for some k; € K. There exists Uk; in updirected family such that Uag) ¢
U(an) A U(a2)

Now since Uag ¢ Uayy and Ugs = V(a;ﬁf)

This gives V(ag) < V{an) '

Consider ay $ A3

Take Q s g such that‘a“ ¢Qandags ¢ Q.

This gives Q ¢ V(a) .1 2. Q sV (an)

Hence ay ¢ Q, a contradiction Therefore V(ag }c V (ay) this gives as >ay

Similarlly, since Uy ¢ Uy and Uas = V (a3 YTherefore V{ag)cVia).

This gives 213 2 2. Now as a3 < agfgives ayw &1, take z=ay; s I Thus for x ,y £ I there
existzs Isuchthatz>xandz 2> 1. 'ﬁxerefore from (i),(ii) & (iii) we get I is an ideal.
Now uince Uy e v A 7@ Therefore Uy o[ go- V(I 7@

i.0. Uy c o and Uy ¢ V(E). Therefore V() < gand V () ¢ V(I), wheve Y=Y ¢

Now if a, s Fthena, ¢ P forall P o F. This gives 3 s P for all P s g - V(F)=U,
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i.c. 3 & P for all P ¢ V(a) Therefore a, ¢ P for all P suchthata, ¢ P, a contradic#ion.

Therefore a, ¢ T, for all k. Now we prove that InF =0

L1 F2Q then there exist x s [N F . i.e. x < &, for some k this gives x s Fand x < ag i.e.
@ contradictim-

& F,}’merefore there exists a prime dual ideal P withP D FsuchthatInP=O.

Thena, ¢ Pandso P e V(g) forallks K AlsoPo F

This gives P ¢ V(F) i.e. Ps g - V(F)

Therefore Ps A

Andas g slforallkandP1=0Q

Therefore 2, ¢ P

This gives P s V() forall k

te. Pg U forall k

Therefore P s [{U/keK}]

Thus P 8 A{{Uyk € K} ] This shows that An[~{Uyk £ K} J=®.

Hence the result.

*Ex
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