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C H A P T E R - II.

NEWTON - COTES INTEGRATION FORMULAE

2.1 INTRODUCTION
There are so many formulae for numerical 

integration. This is because, there are so many different 
ways for selecting the base-point spacing, the degree of 
the polynomial which inter polates the given function or 
the given data, and the location of base points with 
respect to the interval of integration. These formulae are 
sometimes called quadrature or mechanical quadrature. The 
integration methods, which are commonly used, are classified 
mainly into two groups :

(1) The Newton-Cotes formulae.
(2) Gaussian quadrature formulae.

In case of the Newton-Cotes formulae, the 
functional values are taken at equal intervals. And, in case 
of Gaussian quadrature formulae, functional values are not 
necessarily equally spaced; but usually are determined by 
certain properties of orthogonal polynomials. We shall 
discuss Gaussian quadrature formulae'in the chapter III; and 
here we only discuss the Newton-Cotes integration formulae.
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2.2 NEWTON-COTES FORMULAE
Newton-Cotes integration formulae are usually 

classified into two groups : one -group is referred as 
Newton-Cotes CLOSED integration formulae and the other is 
referred as Newton-Cotes OPEN integration formulae.In; the 
case of the Newton-Cotes closed integration formulae, the 
information about f(x) at both limits of integration is 
required. That is, the end points of the interval or limit 
points of the integration are also base points. In the case 
of the Newton-Cotes open integration formulae the 
information about f(x) at the limit points of the 
integration is not required.

All these Newton-Cotes integration formulae can be 
generated by integrating one of the general interpolating 
polynomials PnU), with proper base points and limits of 
the integration. We have supposed here that f(x) is known 
(or can be computed) only at the base points x ,x ,...,x ;o 1 n
equally spaced by stepsize, say h. Therefore, the logical 
choice to represent f(x) in the polynomial form is one of 
the finite difference (forward, backward or central) forms. 
Suppose the polynomial is represented in the form of the 
forward finite differences using Newton's forward difference 
formula,

«(<*-l) af(x0+<* h) = f(x0) + « Z\f(x0) + ---§ I--- +---

«(«-l)...(«-n+l)
. . .+ Jfj Z1 f(x0) + Rn(x0+-< h )
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which can be written as

f(x0+* h) = PnU0+<* h) + Rn(x0+o» h),

where « = (x - xrt)/h, P„(xrtt« h) is the n-th degree

interpolating polynomial and Rn(x0+« h> is the remainder 
term , also known as error term. Further this error term 
R (x +« h) is given byn o

Rn(x0+« h) = hn+1«(«-i) («-2). . . («-n)

? « (x,x0,...,xn). ...(2.2)

hn^4a(a-l) (a-2). . . (a-n) f [x.xn,xn4, . . . ,xc].

The formulae (2.1), (2.2) are used further in the derivation 
of Newton-Cotes closed as well as open integration formulae.

2.3 NEWTON-COTES CLOSED INTEGRATION FORMULAE
First, we consider very simple case of closed type 

integration in which the two base points x0 = a and \ - b 
are used. Osing these two base points we can determine a 
first degree polynomial P4(x), that is, straight line 
approximation of f(x) as shown in the figure (FIG 2.1). Let 
us change the independent variable, x to a, by the 
substitutation,
x = x0 + «h or a = (x - x0) / h. ...(2.3)

n

or
Rn(X0+Ct h) =

f<n+1>(?) 
(n+1) !



)

Now, for these two base points, equation (2.1) becomes 

f(x) = f(xo+ «h)

= f(XD) + a ZXf(xo) +-Rt(X0+ah)

This can be written as

f(x) = P4(x0+a h) + R4(x0+ h),
where

P4(xo+a h) = f(xo) + a f(xo) ...(2.4)

is a first degree polynomial in a. Also, using equation 
(2.2), the correspondig error term is given by

f"<*)R|(x#+-< h) = h -<<-r-l) ■ . .—-- -  , where * - (x0,Xj)
...(2.5)

Thus using polynomial approximation for f(x) we can write, 

b x4/ f(x)dx P1(x)dx (polynomial approximation)a x„- o

= h J P (x + ah)da (by changing the variable
o x to a or by (2.3) )

= h J*tf(x0) + -« Zlf(Xo)l d-( (by 2.4)
o

/lf(xo)
= h [ £(x0) + --- g----- 3 (by integrating)
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b £(X*) “ f(X«>)
* f(x)dx = h Cf(x0) + --- ---------4Si

(def of forward difference )

h
= ~2 t f(x0) + f(xj]

Therefore,
b h

^ f(x)dx i 5 «(xj + f(x ) J ...(2.6)a * 9 1

Equation (2.6) is well-known trapezoidal rule.

«<-0

FIG.2.1: The Trapezoidal Rule.
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From figure, FIG 2.1, we see that the required 
area is the area under a solid curve and the approximated 
area is the area under the dotted line and is shown by the 
shaded portion .This approximated area (shaded portion) is a 
trapezoid. Hence the name of this rule is trapezoidal rule.

The error involved in this case is obtained by the 
integral of the remainder term given in equation | (2.5). 
Therefore, we get

xt tJ Rt(x)dx = h J R4(x0+oih)
X O

* a. f ’ ’ u )= h J h*«(« - 1) —--- do*, * « (x^.Xj)

f”(*)= hj«(«-l)----Ttf----  d« ...(2.7)
O * •

If f(x) is continuous function of x then f’’(?) is 
also continuous function of x. But £’’(?) is unknown 
function of x, therefore, we c*n't evaluate equation (2.7) 
further directly. Hence to solve the integration in equation
(2.7) we take another approach. Here we see that <* is simply 
a transformed value of x , therefore, f’’(?) is a continous 
function of the variable a . Also, the factor a (a-1) is 
negative for all a in the interval (0,1). Using these two 
things we can apply the integral mean value theorem to solve 
this integration and we can write accordingly, equation
(2.7) , as
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S f”«) *R^(x)dx = h--- -rp— <*(<*-l)d«r

h3 a3 a* i
= 2l f ’ ’ (?) l ~ ~2~ 3

h3
12 f (O, K.K « [xoIxt] |

I
ITherefore, the trapezoidal rule with error term is giv4n by

_ x4 h h* _ _J f(x)dx = ~2 tf(x0) + f(xj] - 12" £**«). ? « [x*,xj
xo

...(2.8)
Here we observe that if the function f (x) is a

linear function, then the trapezoidal rule gives exact
approximation to the integral value of the function f(x)
over the interval [a,b], because in that case f"(?)
vanishes.

Now, we consider the more general situation. Here, 
we consider the interval [a,b], and the (n+1) equally spaced 
base points

a=x^ < x < x„<... <x < xO 12 n-i n
as shown in the figure ,(FIG 2.2). Here, the lower limit of 
integration, a , coincides with the first base point x0 
whereas the upper limit of integration, b, is arbitrary for 
the moment. Since there are (n+1) base points, the degree of 
the interpolating polynomial will be n. We denote this n^*1 

degree interpolating polynomial by Pn(x). Hence the

approximation to the integral J f(x)dx is given by
a

0.3



b b
J f(x) dx ±J Pn(x) dx 
a a

By substituting x - x() + «h and assuming « = (b-x0)/h,we get

b a
J f(x)dx = hj Pn(x0+ « h)d«

= hj^ { f(x0) + -< Zlf(x0) +--- gi--- /lf(x0) +

.. . + a(a-l) . . . (ot-n+1) Zl*£(x0)}- d«, (by 2 1).

Therefore,
_ 3 2Jj - Cl Cl Ot

J f(x)dx s h [ <*£(x0) + — /lt(x0) + <— - — ) A.af(x0)

+ C
4 a 2a a a.

24 6 T 6+ F~ >Zl8f(x„)

5 4 _ 3 2ot . oi Hot ot+ C120 " ~~16 + W ~ ~T~ >^-*f <*•> + ....]
a

Therefore,
—g -2Ot OtJ f(x)dx ± h [«f(x0) + — Z\£(x0) + C— - —) Z\*£(x0) 

a

—4<x
24"

a “2Ot
6 + 6 > Zl f(x0) +. . .

(2.9)
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FIG 2.2: General Case For Closed Integration.

The error term, in this case, can be obtained by 
integrating the equation (2.2). Thus,error term is given by

hJ^_Sn(x0+<*h)d«( = hh*J [*(«-!)(«-2). .. («-n)d<* 7

. . .(2.10)

The equations (2.9) and (2.10) represent a family 
of related integration formulae. If we choose the upper 
limit b so as to coincide with one of the base points, say 
x„. , then the integration is across m intervals, that is, 
between a = x, and b = x . Also, in such case a assumes ano m
integral value. Thus, if « = 1, the equations (2.9) and
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(2.10) reduce to the trapezoidal rule given by equation 
(2.8). Hence letting « = 2,3,4,...etc in equations (2.9) and
(2.10) , we can obtain similar formulae for integration 
across m = 2,3,4 or more intervals. Again the selection of n 
is 3till open. It seems the most natural to have the choice 
n = ot .This set of formulae are known as Newton-Cotes closed 
integration formulae.

As a particular case,let us choose a = n = 2 :. For 
this choice equation (2.9) can be written as

J X*f(x)dx ± hj *f(x0+ «h) d« 
xo

r 1= h [2f(xeJ + 2Zlf(xe) + 7-ZX*f(x0) + 0Zl*f(x^) - 
- gg- A.*f(x0) + . . .J ...(2.11a)

= h [2f(x0) + 2ZXf(x0) + 4“ ZX*f(x0)]

Therefore,

(since /\4f(x&) = 0 for three values)

h
f(x) dx - —5— [f(x0) + 4f (x4) + f(xB)J (2.11b)

The equation (2.11b) is a famous Simpson's 1/3 
prule or Simpson's first rule. This rule is most frequently 

used than any other numerical integration formula. Famous 

numerical mathematician, Milton Abramowitz used to say 

somewhat like - that 95% of all pratical work in numerical 

analysis boiled down to applications of Simpson's rule and 

linear interpolation.



The calculation of error term in this case is
somewhat unexcepting to us in few places. Since the 
coefficient of Z\*f(x0) in equation (2.11a) is zero, 

therefore, by putting n = 2 in the equation (2.10) we can 
not obtain the required error term. Hence, we put n = 3 (but 
« = 2) in the equation (2.10) and obtain

* _ • f (?)hj Ra(x0+ <* h) d« = h j «(«-l) («-2) («-3) ---- j—i----  d«.o o ’ '
? « (x0,x2).

Further, the integration on the right hand side 
can not be evaluated directly by the application of the 
integral mean value theorem, as in case of trapezoidal 
rule. The reason is that the factor <*(«-l) (<*-2) (<*-3) does 
not have a constant sign over the interval of integration. 
But Steffensen [3,PP 73] has proved that,this error can be 
evaluated in the similar fashion. Therefore we can further 
write,

2
h J Rg(x^+«fh)

B f<4>(*) ..*
d# = h----t-i—J e((W-l) (e<-2) (*(-3) d«*,’ o

= -h“fw(f)/90, * (x0,x2)



Here ? and ? are simply unknown values, therefore, 
instead of mentioning both ? and ? , we only write ? in our 
further discussion. Now, Simpson's 1/3 rule with the error 
term is then given by

J X*f(x)dx = -3- If(x0) + 4 f(xj •+ f(x^ 3- -W" *“*<*). 
xo

? « (x0,x2) ...(-2.12)

The following figure., FIQ 2.3, illustrates the 
Simpson's 1/3 rule. Here only three points x0,x4,x2 are 
used to determine the polynomial. We would obviously expect 
the integration to be exact for £(x), a polynomial of 
degree two or less; but equation (2.12) shows that the 
integration is exact for the function f(x), which is a 
polynomial of degree three or less.

FIG 2.3: §impson's First Rule.



Here we give the list of Newton-Cotea closed
integration formulae corresponding to the values, « = 1,2,
3,4,5, as follows:
S = 1: Trapezoidal rule -

_ x4 h h*
J f(x)dx = -g- [f(x*) + f(x4) ] - -j2~ f”(?)
xo

—* 1»<4« = 2 : Simpson's 1/3 rule (or Simpson's first rule ) -

r x* k ** <•*>
J f(x)dx = 3 C f (X0) + 4f (x^) + f(xa)l - gg f (?)

« = 3 : Simpson's 3/8th rule (or Simpson's second rule) -

J *f(x)dx

« = 4 ;

3h
— tf(x0) + 3f (x4) + 3f(x2) + ^(x3)l

3h*
80 fw(«)

x«J *f(x)dx 
*o

2̂5— h [ 7f(x0) +32f(xf) + 12f(xa) + 32f(x9)
8h7 JLti+ Tnx^i - -945.r§,m

« = 5 :

J X“f(x)dx = 5h
2Q0-1 19f(xo)+75f(x4)+50f(x,)+50f(x,)+75f(x^) 

275h7+19f(x.)l - -Ygage f' «).



From this list, we observe that [3,PP 74] when a 

is even, that is when there are odd number of base points, 
the corresponding formulae are exact for f(x), a polynomial 
of degree (<* + 1) or less. While, if a is odd, the formulae 
are exact for f(x}, a polynomial of degree <* or less. Hence 
the odd-point formulae are more frequently preferred than 
the even-point formulae. Another thing, we observe here is, 
that not a single formula requires the calculation of the 
forward differences or the coefficients of the interpolating 
polynomial. These Involve only the computation of a weighted 
sum of the base-point funotional values. In other words, all 
formulae in this list can be represented in the form

b nJ f(x)dx = E WjfCxJ a i»o

where the are referred as the weights assigned to the 
functional values, f(xt), i = 0,1,... n. Thus we can
represent it in terms of Riemann Sums.
2.4 NEWTON COTES OPEN INTEGRATION FORMULAE

Now, we derive general Newton-Cotes integration 
formulae of open type. As previously said, though these 
formulae involve equally spaced base points, they do not 
require the values of the function at one or both of the 
integration limits. Suppose, we want to evaluate the 
integration of the function f(x) over the interval of 
Integration [a,b]. Let x, ,x„,...,x . be (n-1) evenly spaced4 Z n*l

base points and h be the distance between any two 
consecutive base points. Let a, the lower limit of 
integration, coincides with xQ= x^- h; whereas b, the upper
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limit of integration, be arbitrary for the moment, as shown 
in figure, FIG (2.4). Then the interpolating polynomial is 
Qf degree (n-2) and the approximation is given by

b b
J f(x)dx t J P^UJdx

* J bW*>d*
X_

ot
= hj I -*{V ah) da (by putting x = x0+ah)

. . .(2.13)
where “ = (x-Xo)/h and « = (b-x0)/h

FIG 2.4: Newton-Cotes General Open Integration.
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An obivious representation of P _(x) is obtained by

the forward finite difference polynomial. Therefore, 

applying Newton's forward formula and considering forward 

differences of f(xi) instead of f(x0), we get

(a-1)(a-2)
P„_,(x0+ + -- § j---- f(X4)

+ - ----- fn-21 i---------  ^ f<*.}
...(2.14)

Using equation (2.14), the equation (2.13) can be written as

J* f(x)dx * hja ff(xt) + (4-l)ZXf(xt) +...+ 
a o •*

(<x-i) (o»-2). . . («-n+2)
(n1^) i

Zln“*f(x ) ] d«

a*
*h[ “f(xt) + C~2” - «>Z\f(x4) +

a8 3a* a
+ «> Z\*f(xJ)+. . .]

Therefore, 

b 
a
b aX f(x)dx ^ h |« f(x4) + (-j--- «) ZXf(x4) +

~9am 3a ^ «4 g  —  y— + •( ) /\ f(x4) + . . . J ...(2.15)A
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The error term for this case is given by

a
hj R. _(x +«h)da =

o n>
a (a-l)(a-2)...(o-n+l)

<»•

where ? «• (x0,b) (2.LH)

Equations (2.15) and (2.16) describe a family of 
related Newton-Cotes open integration formulae. Taking 
different integral values for « (=n), we get different 
Newton-Cotes open integration formulae. A list of few 
formulae is given below.

_ x hS
<* = 2 : J *f(x)dx = 2hf(xA) + — f”(?)

_ X* 3h r n 3h3
« = 3 : J* f(x)dx = ~g  [ f(X4)+f(x,) J + —— f”(?)

a - 4 :
_ X, 4h r 14hS 4<M

Tf(x)dx = ■—2f(x^)-f(x1)t2f(x^) J + f (?)

a = 5 ;
-x. 5h r T 95h3J f(x)dx = -2I-[llf(xJ+f(xik)+f(xl,)+llf(x^)]+-Tir- f""(?)
xo

a = 6 :
x 3h j* iJ f(x)dx = “jg-^llf(x4)-14f(xa)+26f(x#)-14f(x4)+llf(xB)J

xo

41h
140 f<<S>(?)

33



As in the case of closed integration formulae, 
here also we observe that [3,pp 76] when there are odd 
number of base points, that is, when ct is even, the 
corresponding formulae are exact for f(x), a polynomial of 
degree (a+1) or less. While if a is odd then the 
corresponding formulae are exact for £(x), a polynomial of 
degree « or less. For this reason, the odd point formulae 
are more frequently used than the even point formulae.

2*5 COMPOSITE INTEGRATION FORMULAE
Suppose we subdivide the interval of integration 

[a,b] into smaller ones and then apply the low order formula 
separately on each subinterval. Then, the resulting 
integration formula is called COMPOSITE INTEGRATION FORMULA. 
In this way, we apply a low order formula repeatedly 
instead of a single application of a high order formula. 
This technique became very popular because of the simplicity 
of the low order formula and also due to lack of 
computational difficulties associated with the high order 
formulae. Though we can extend any of the Newton-Cotefc low 
order formulae to its composite form, we especially use 
closed formulae. The reason is that the base points at the 
ends of each subinterval, except x = a and x = b, are also 
base points for adjacent subintervals. Therefore, if we 
apply an m-point formula n times then we need n(m-l)+l 
functional evaluations only instead of nm as one might be 
expected. Thus, there is a considerable saving especially 
when m is small.
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Aa an example, we consider a very simple composite 
formula which is generated by repeated applications of the 
trapezoidal rule. Let the interval [a,b] be divided into n 
equal subintervals as shown in figure (for n = 7), FIG 2.5, 
such that h = (b-a)/n.
Then

Further,
X. = X +ih i o (i = 1,...,tt)

bf f(x)dx a
X X X XJ "f(x)dx -J 4f(x)dx +J #f(x)dx +...+ J "f(x)dx

*0 X0 Xi Xn-1

h r2“|Cf(x0)+f(x1)] + [ f(x4)+f(xa)l +__ +

+ [ f(Xn_4)+f(Xn)] } - -7?- C f"(«t)
J isi

FIG 2.5: The Composite Trapezoidal Rule.
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J b£(x)dx 5 t £(X0) + f(Xn)J ♦ h^E^ftXi) - -J-gr E £ (<*)»
a - t=l

?.« [x..4,x.] ...(2.17)

i

In terms of n,a and b, this formula is written as
i

b (b-a)rl 1 n-i fh-a> 1
J f(x)dx = —£—172 £(a) * ~ £(b) +.Ef(a + i)J

(b-a)* »
------- f (<), a * * * b. ...(2.18)

12n

The equation (2.17) or (2.18) la the extended or
!

composite form of the trapezoidal rule.

Similarly we can obtain composite Simpson's rule!
_j *

For n applications of Simpson's 1/3 rule we require 

functional values of (2n+l) base points: x^,x ....,. The 

composite form of the Simpson's rule is

b xJ f(x)dx =J nf(x)dx
a xAo

h !
= — Cf(x0)+4f(x4)+2f(x,)+4£(x,)+2£(xJ + . . .+

h° n
+2f(W+4f(W+£(**>r'- 4J4£‘4,(V

...(2.19)
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where, h = (b-a)/2n,

**.-< - *i= • i = 0,1,2,3...,2n.

In terms of a,b and n , it is written as

bJ £(x)dx = 
a

(b-a)r■65T“[£(a) + f(b) + 2E* f Ca
v -4

(b-a)
+ —-— O +

+
ln«i

4 E f <a+
i at A
A>**

(b-a)
2n

(b-a)a
2880n*

f“‘«)

(2.20)
where a < ? < b . The second sum involves Z\> = 2 which 
indicates that the index i should take only odd values.

In this way we can generate the composite formula 
similar to (2.17) and (2.19) for any of the low order 
integration formulae. There are several theoretical facts 
about the effectiveness of a family of composite ruleis as 
n-»«> . One, which is very Important [4,pp 57] is that, if the 
low order rule integrates the constant 1 exactly, then its

bcomposite rule will converge to J f(x)dx. as n-*» .
a

2.6 REMARKS ON NEWTON-COTES FORMULAE
First of all, we should note that the Newton-Cotes 

formulae are equispaced points formulae. Therefore, if the 
given data is not equispaced then these formulae are wholly 
inapplicable.
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If we compare both groups (open as well as closed) 
of Newton-Cotes formulae for the same number of functional 
values, then we observe that [3,pp 76] the open formulae are 
slightly better when two or three points are used. But, for 
more than three points the closed formulae are more 
accurate. For this conclusion, of course, we have assumed 
that the derivative terms f<k~4>(?) are roughly the same for 
the two corresponding formulae. Hence it is beneficial to 
use closed type formula rather than open type formula where 
it can apply. Again, we should take a note of caution for 
the use of formulae of open type, because, the error 
estimates given in these formulae are valid only if the 
integrands f(x) are in classes of type Cz[a,b],(for 
two-points formula), C*[a,b] (for three and four points 
formula) etc.

Further, if the value of the function at an end 
point of the interval cannot be computed because of a 
singularity then the use of open type formulae lead to 
serious error. On the other hand, there are some advantages 
also in using open type formulae in some cases. [4,pp 71]. 
In particular, for functions whose derivatives have 
singularities at the end points, it is observed that,the 
open type formulae rather than the corresponding closed 
formulae are more effective. This is one example of the 
principle of "avoiding the singularity." We cannot restrict 
open type formula for equidistance points. For example, the 
Gauss formulae are also of open type.
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A formula Is said to have degree of precision ra if 
it is exact for all polynomials of degree m or less, e.g 
Simpson's first rule has degree of precision three because 
it produces exactly the integral of all polynomials of 
degree three or less. Since the degree of precision of the 
Newton-Cotes formulae increases with the number of points we 
might guess that a very high order formula would be more 
exact than a low order formula. But, unfortunately, this is 
not the case [3,pp 77] because high order formulae have some 
very undesirable properties from the view of the computation 
such as large weight factors with alternating sign and which 
lead to serious rounding errors. Moreover, there are so many 
functions for which the magnitude of the derivative 
increases without bound when order of derivative increases. 
Thus, we conclude that high order Newton-Cotes formula can 
produce large error than a low order one. Therefore, we 
should use low order formulae and formulae having more than 
eight points are never used. Again we can reduce error 
associated with low order formulae by applying its 
corresponding composite formulae.

2. 7 SPLINE INTERPOLATION
The spline, especially cubic spline proves to be 

an efficient device for approximation as well as 
interpolation. Naturally, the cubic spline replaces the 
spline of draughtsman by a set of cubic polynomials, using a 
new cubic in each interval of points Hence we study cubic 
spline in somewhat detail.



In order to match with the idea of the 

draughtsman's spline, it is necessary that both the slope 
(dy/dx) and the curvature (d2y/dx2) are the same for the 

adjacent pairs of cubics. We shall derive the cubic spline 
equation as follows.

2.7.1 Derivation of Cubic Spline Equation

This derivation is mostly based on the derivation 

of cubic spline equation given by Davis and RabinbWitz 

[4,pp,51]. Let, as usual, the points a=xQ<x1<x2<. . . <xn=b be 
the points of division of the interval [a,b]. Let the J-th 
interval be
ZX, = [x,.x.] and h. = x. - x. <J = l,2,...n),j r* j J j r4

...(2.21)
As s(x) is piecewise cubic, therefore, s'(x) is 

piecewise quadratic and s"(x) is piecewise linear and 

continuous. Therefore, we can write for the interval ZX^ , 
(J = 1,2,...,n).

sj(x)
x. - X J

~T + M: (2.22)

where M. and H. , are certain constants, in fact,if we putj j-i

x = Xj in (2.22), we get

s”(x.) = M. , J= 0,1,2,3, . . . ,n ...(2.23)
j j j

Now integrating equation (2.22) twice on ZY w r t x, we get
J
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s'j(x) =
<xrx)* (x~xj-i)2

( -2 )h j + 2h' +

. .a . .3(Xj-X) (X-X^)
and a, 00 = ---gj— + M,----gjp- + a,x + bg

where a.bj are conatanta of Integration. Thia equation can
4 4

be written in the form

(X j ~x) (X-Xj_4)
s^x> = —w— + —mr— +Ai(xrx)+Bi(x-xj_*j

<J J

...(2.24)
For the determination of A. and B., put x = x in equation

J J J *

(2.24) to get

Cxi~x)8
si(xj-*> = Mi-*—gh“---- + Ai(xj - xj-*}

°r ki = “jr [ '*■*--- *~B ' ] ...(2.26>

Similarly putting x = x. in equation (2.24), we get
4

B,
Mihi

(2.26)
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Using the values of A. and B. in equation (2.24), we obtain* V

(xrx)
si(x) = Mi-—6h~ + —mr— +j j

+
Mj~thj xrx

6 -X* ■) + <yr
M jh* 

6 x-
x"xj-i

. . .($.27)

Differentiating equation (2.27) we get

Sj(x) = -
(xrx)‘ (x~x) yj~yj-i

2h + Mj' 2h

M -M „t i ~1 
6 (2.28)

for the interval Z\4"J
Taking Unit of equation (2.28) aa x.* Xj- we get

hj hi yi - yi-l
Sj(Xj_) = g Mj_| + 3 Mj + hj ...(2.29)

Writing equation (2.28) for the interval /V41 we get

(xj + 1-x)* (x-xp*
sj+*<x> = ---2h“--- + Mj+*~2h~---- +

•* * J + l * j + i
y -y.j + i i h

j

M . -M .4«-* i
6 hi+*

Taking limit of this equation as x •* x(+ we get
J

S^(x.t) = -
j + i hi..

“*+
y. -y.'j + l * 4

lj + i ••(2.30)
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Now, since s'(x) is required to be continous, we should have 
S'(xr) = S^(x,+ )

Putting values from (2.29) and (2.30) and rearranging terms 
we get,

h h +h h y -y
j i j+i j+t j
— Mi-‘+ 3 MJ. + 6 = h~

J ♦ 1

U = 1,2,...,(n-l)] ...(2.31)

Equation (2.31) produces a set of (n-1) linear equations in 
M_,M ....,M . To obtain the unique solution for this system,o t n
we require two more equations. After the determination of 
values of all M^s, we can determine the interpolation 
spline completely through equation (2.27). Now, we shall 
abbreviate these equations (2.31) by using following 
notations:

x. = 
j

h
» 1-X.■L t

h iTT7+FJ77
y -yj j-*

6(0'. - o-.)J
■**< = hj+hj + 4, » J s 1,2,..., (n-1).

Then equation (2.31) reduces to

"A*+ 2M. + X.M. j )V J = 1,2,...(n-1)

A*

. . .(2,32)



We shall take two additional equations in the form 
2M + X M = <*o ow« o

and obtain several possible choices of the constantsi
x , &, u, d and their interpretation. The combined system ® ® n "
in the tridiagonal matrix form, thus, we obtain is

2 X0 0 ..... 0 0 0 «o do
2 X ...... i. 0 0 0 M1 d*

0 2 ...... 0 0 0 d2

0 0 0 2 X 0 <*u-

0 0 0 2 Xn-i Mn-l dr>*C
0 0 0 0 2 «n dL -J

Special cases -(i) if we choose X = u = d = d= 0 thenO Tt O Tt

equation (2.33) yields M = M = 0 and then by equation (2.23)o n
we have s"(a) = s"(b) =0. If we consider a spline to be a 
thin beam, then this corresponds to simple support at both 
the ends and gives the natural spline.

(ii) We can also specify the slope of the. 
spline at the endpoints. We use here the conditions 

s'(a) = y'0 and s'(b) = y'n

4^



Further, from (2.29) thses conditions are equivalent to the 
selection

d* =

d
6

h n ( yn

y ~yn r.- 1 
-

n
]

In case.y^and y^are unknown, their values are approximated 
using finite difference formula.

2.8 SPUME INTEGRATION
Many times we require to integrate a function 

which is given by scattered data. At this situation, we can 
fit the data by means of splines, the fit being made in the 
sense of least squares or any other criteria of minimality. 
Thus, fit the data (x.,y.) by a spline and then integrate it

J J

formally. From equation (2.27) we have on the interval Z\. ,

x y + y M + M
l i j-* j i-* i as(x)dx = ----g---- hj “ ----2fl--- hixj-*
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Thus, adding all these integrals for all subintervals of 
(a.b), we get

I ^s(x)dx 
a j=1 2

+ M.
* j
*24

This formula is nothing but the trapezoidal rule 
with a correction. The computer programm in 'C ' for spline 
integration is given in the chapter IV.

2.9 ERROR ANALYSIS

It is possible to determine the appropriate high 
order derivative and study its behaviour on the interval 
[a.b] to find an error bound for the particular selected 
formula, if function f(x) is known analytically. But, in 
practice, the error formula is of less importance because an 
expression for the derivative can not be available. In some 
of these cases, it may be possible to estimate the 
derivative value from high order finite divided differences 
of the functional values.

' However it can be possible to find the error even 
when information about higher order derivatives is not 
available, if the integral is computed using two different 
integration formulae with comparable degrees of precision. 
As an example, let us consider the evaluation of



by using Simpson'a first and seoond rules. Each of these

rules have degree of precision three. Let the estimation of 
$I and the error using Simpson's first rule be I4 and Et 
respectively; and using Simpson's second rule be I2 and E2 
respectively. Then we have

I* = It+ = I#+ E, . . .(2.34)

Now,in terms of the integration limits a and b the values of 
E4 and Et are

Ki=
(b-a)s
2880 f‘“(*») and E,=

(b-a)3
6480 f‘-,(«a)

where *4and are different and (a,b). Therefore

St g f<4>(**)
®a~ ~ 4 f<*»(£ )

If we suppose that f^C?^) f<‘‘>(?2). then above equation

reduces to

9
E s —t— E

With this relation, equation (2.34) becomes,

This equation is valid if and only if f<4>(t ) and f ***(£)
1 2

are equal.



There is one theorem [10,pp 114] which gives an 
expression for the error in the n-point Newton-Cotes 
formula. Here Q (x) lo the polynomial,n

Qn(x) = (x-x4)(x-xa)..,(x-xn).

where the xk's are the points in the formula. The statement
of this therorem is : If f (x) is continuous on [a,b] 

and n is odd then there exists a point C , where ? « (a,b),n n
so that

E tf3 = ^

1 b
where - I x Q„(x)dx

a

Cn)If f (x) is continous on [a,b] and n is even then there 

exists a point ? where ? « (a.b), so thatn n

E [f] = e fw(f )
n

1 b
where, e„ = -r—r J Q„(x)dx.“ * a

In section 3.10, we will state some additional 

expressions for E[f] using Peano's kernel theorem and also 

discuss the bounds on roundoff errors.
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The following result [4,pp 58] is also useful in 
case of composite rules. Let R be a fixed m-point 
Integration rule defined over an Interval [« , ftJ.
Suppose the error, E corresponding to rule R is given by an

* I

expression,

Em(f) * Gift - '* «

kprovided f « C [«,/»]. Here the constant c may depend dn R 
but it is independent of a,ft and f. Let n * R designate the 
composite rule formed from R which results from dividing the 
interval of integration into n equal subintervals and 
applying R to each of them. Let 1 denotes the
corresponding error. Then this error is given by the 
expression,

lim nk Enxm(f) = c(b-a)k (f<k 4>(b)
n-*a>

<k~t>,f (a)

provided, f«CkCa,b].

Besides this, we have also derived an error term in each 
Newton-Cotes integration formula studied so far, from the 
remainder term of the approximation formula.
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