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CHAPTER - 1I.

NEWTON - COTES INTEGRATION FORMULAE

2.1 INTRODUCTION
| There are so many formulae for numeficai

integration. This is because, there are so many different
ways for selecting the base-point spaéing, the degree of
the polynomial which inter polates the given function or
the given data, and the 1location of base points with
respect to the interval of integration. These formulae are
sometimes called quadrature or mechanical quadrature. The
integration methods, which are commonly used, are classified
mainly into two groups

(1) The Newton-Cotes formulae.

(2) Gaussian quadrature formulae.

In case of the Newton-Cotes formulae, the
functional values are taken at equal intervals. And, in case
of Gaussian quadrature formulae, functional values are not
necessarily equally spaced; but usually are determined by
certain 'ﬁroperties of orthogonal polynomials. We shall
discuss Gaussian quadrature formulae in the éhapter III; and

here we only discuss the Newton-Cotes integration formulae.
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2.2 NEWTON-COTES FORMULAE

Newton-Coﬁes integration formulae are usually
 classified . into two groups : one .cfoup is referred as
Newton-Cotes CLOSED integration formulae and the other |is
referred as Newton-Cotes OPEN integration formulae.ln% the
case of the Newton-Cotes closed integration formulae,i the
information about £(x) at both 1limits of integration |is
required. That is, the end points of the interval or 1limit
points of the infegration are also base points. In the case
of the Newton-Cotes open integration formulae the
information about f(x) at the 1limit points of 1 ihe
integration is not required. |

All these Newton-Cotes integration formulae can be
generated by integrating oné of the general interpolating
polynomials Pn(x), with proper base points and 1limits of.
the integration. We have supposed here that f£(x) is known
(or can be computed) only at the base points xo,xi,...,xn;
equally spaced by stepsize, say h. Therefore, the logical
choice to represent f(x) in the polynomial form is one 6f
the finite difference (forward, backward or central) forms.
Suppose the polynomial is represented in the form of the
forward finite differences using Newton's forward difference
formula,

_ ' a(o-1) . |
f(x,+te h) = £(x,) + o Af(x,) + —5 17— A E(x,) +....

a(a-1)...(a-n*1)
L+ . ATE(X0) + R (Xoto( h )

(7T 1)




which can be written as
f(x +a h) = Pn(xo*a h) +‘Rn(x°+a h),

where a = (x - x,)/h, P _(x, 2+« h) 1is the n-th degree

interpolating polynomial and R, (x,+> h) is the remainder
term , also known as error term. Further this error term

Rn(x°+a h) is given by

{n+1)

: ned f (%)
R (Xo+> h) = h™a(a-1)(a-2)...(a-n) T
€& (X,Xgs.0.0X,) . ... (2.2)
or
R (x,+a h) = h™ a(a-1)(a-2)...(a-n) £ [xx_X__,...,x.].

The formulae (2.1), (2.2) are used further in the derivation

of Newton-Cotes closed as well as open integration formulae.

2.3 NEWTON-COTES CLOSED INTEGRATION FORMULAE

First, we consider very siﬁple case of closed type
integration in which the two base points x, = a and x = b
are used. Using these two base points we can determine a
first degree polynomial P (x), that is, straight line
approximation of f£(x) as shown in the figure (FIG 2.1). Let
" us  change . the independent variable, x to a, by the
substitutation,

X = x_ + ah or a = (x - xo) / h. ... (2.3)

s ]
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Now, for these two base points, equation (2.1) becomes

- f(x) = £(x,+ ah)

u

£(x,) + & AL(x,) +-R, (X +oh)

This can>be written as

f(x) = P (x,+a h) + R (x + « h),

where

P,(x,ta h) = £(x,) + & /\ £(x,) ... (2.4)

is a first degree polynomial in a., Also, using equation

(2.2), the correspondig error term is given by

£97(%) ‘
Ry(xg+ h) = h's((-1) - =T , where ¥ = (xq,Xy)

...(2.5)

Thus using polynomial approximation for f(x) we can write,

b X
§ £(x)dx =J “P (x)dx (polynomial approximation)
a x '
O
1
= h [ P (x,+ ah)da (by changing the variable
o x to a or by (2.3) )
1
= h { [f(xy) + o /ANf(x5))d« (by 2.4)
AL(x ) |
= h [f(x,) + 3 ] (by integrating)
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S £(x)dx = h [£(x,) + 5 ] (def of forward
a | difference )
h - ' ,
=5 [ £(x,) + £(x,)]
Therefore,
fbfk d 2 {f 4 } 2.6
2 & + e .
- (x)dx = 7 f(xg) (x,) (2.86)

Equation (2.6) is well-known trapezoidal rule.

fx) 4

// e
/// ~f(2)

» R
X 1 | 7
Qa

«=0 °(=1

FIG.2.1: The Trapezoidal Rule.
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From figure, FIG. 2.1, we see that the required
area 1s the area under a solid curve and the approximated
area is the area under the dotted line and is shown by the
shaded portion .This approximated area (shaded portion) is a
trapezoid. Hence the name of this rule is trapezoidal%rule.

The error involved in this case is obtained by the
integral of the remainder term given in equation @(2.5).

Therefore, we get

X . 1
J 'R(x)dx = h [ R (x_+ah)
Xo had
= h J h¥oa(a - 1) _5—2-(-5..)__ de, & & (X4,%;)
° ' i
f!’ g) .
= h“f’a (o-1) —2—5 dex (2.7

If f(x) is continuous function of x then f’’(¥) is

also continuous function :of x. But £°’(f{) is unknown
function of x, therefore, ﬁe can’t evaluate equation (2.7)
fu:ther directly. Hence to solve the intégration in equation
(2.7) we take another approach. Here we see that « isis;mply
a transf&rmed value of x , therefore, £'’'(¥) is a continoug
function of the variable a ., Also, the factor a (a-1) 1is
negative for all a in the interval (2,1). Using these two
things we. can apply the integral mean value theorem to solve
this integration and we can write accordingly,A‘equation

(2.7), as
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J e g (%) ¢
Xq R:(‘X)d.x = h ———7-!—*—Ie o(ot-1)dof

h? a® a® 4
o LA SRR N i I
(]
n® |
= - T £ (), €, & [x,,x,] - |

|
Therefore, the trapezoidal rule with error term is givén by
3
jxx‘f(‘x)dx = -;-‘ [£(x,) + £(x)] - 1—2— £0(8), T e lxg.x,]
(-] .
...(2.8)

Here we observe that if the function £(x) 1is a
linear function, ﬁheh the trapezoidal rule gives exact
approximation to the integral value of the function f(x)
over the interval [a,b], because in that case f£’''(¥)
vanishes.

Now; we consider the more general situation. Here,
we consider the interval [a,b], and the (n+l) equally spaced
base points

azx, < X < x, <... < x <X
as shown in the figure ,(FIG 2.2). Here, the lower limit of
o

integration, a , coincides with the first base point. X

whereas the upper limit of integration, b, is arbitrary for

the moment. Since there are (n+l) base péints, the degree of

the interpolating polynomial will be n. We denote this nt‘h
degree interpolating polynomial by Pn(x).' Hence  the
. b | |
approximation to +the integral f‘ f(x)dx is given by
a ,
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b b
J f£(x) dx =2f P (x) dx
a a

By substituting x = x, + oh and assuming & = (b-x_)/h,vwe get

b a
J f£(x)dx = hf P _(x,+ @ h)de
a o :
a a(a-1) 2,,. i ;
= hJ_ { £(Xo) + % Af(xo) +—a— L E(X) #
a(o-1)...(a~n+1) "
— AME(x,)} do,  (by 2.1).
Therefore,
b . az aa az 2
[fxax = n [ a2xn) + 5 e + 5 - 73 AMx,)
4 - 2
o a ) o ®
Y- Tt E AL
o> ot 11 o o
+ (12@ - 16 + 72 - 8 )A f(xo) + -...]
o]
Therefore,
b . a® a®  of .
I feodx = b [afx,) v 5 A(x,) + <G - 0 AMG,)
& &
. o -
g -5+ 5 ) X)) *+..... ]
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FIG 2.2: General Case For Closed Integration.

The error term, in this case, can be obtained by

integrating the equation (2.2). Thus,error term is given by

® . ™ £1) (x
hf R (x,+eh)del = A [a(a—l)(a-Z)...(a—n) )
o o

(K+1T!'f‘]d°‘?
...(2.10)

The equations (2.9) and (2.10Q) represent a family

of related integration formulae. If we choose the upper

linit b 80 as to coincide with one of the base points, say

m then the integration is across m intervals, that 1is,

between a = x, and b = x_. Also, in such case o assumes an

integral value. Thus, 1f a = 1, the equatlions (2.9) and

-
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(2.10) reduce to the trapezoidal rule given by equation
(2.8). Hence letting a = 2,3,4,...etg in equations (2.9) and
(2.10), we can obtain similar formulae for integration
across m = 2,3,4 or more intervals. Again the selection of n
is still open. It seems the most natural to have the choice
n = a .This set of formulae are known as Newton-Cotes ciosed

integration formulae.

As a particular case,let us choose o = n = 2 ; For

this choice equation (2.9) can be written as

X 2
Jx "f(x)dx = hj; £(x,+ oh) da

o
1
= h [Zf(xui + 2/NE(xg) + -AM(xy) + 8L E(xy) -
T L}f?(xo)f... ...(2.11a) .
1 2
= b [220x,) + 2202(x,) + 5= A"x,)]
(since kaf(xoj = @ for three values)
Therefore,
Xy h
jx £(x) dx = —3— [f(xo) + 4f(x,) + f(xg)] ...(2.11b)
(4]

- The equation (2.;1b) is a famous Simpson’s 1/3rd
prule or Simpson’s first rule. This rule is most frequently
used than any other numerical integration formula. Famous
numerical mathematicién, Milton Abramowitz wused to say -
somewhat like - that 95% of all pratical work in humerical
analysis boiled down to applications of Simpson’s rule and

linear interpolation.
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The calculation of error term in this case |is
~ somewhat unexcepting to us in few places. Since the
coefficient of zsff(xo) in equation (2.11a) is zero,
therefore, by putting n = 2 in the equation (2.10) we can
not obtain the required error term. Hence, we put n = 3 (but

a = 2) in the equation (2.10) and obtain

. | L f“)({) |
hJ R, (x,*+ @« h) da = h' [ a(a-1)(a-2)(a-3) . de.
o o )

£ € (x,,%,).

Further, the integration on the right hand side
can not be evaluated directly by .the ‘application be the
integral mean value theorenm, aé in ocase of itrapezoidal
rule. The reason is that the fadtor a(a-1)(a-2)(a-3) does
not have a constant sign over the interval of integration.
But Steffensen [3,PP 73] has proved that,this error can be
evaluated in the similar,ﬂashion. Th@refore we can further
write, | -

(4) 3
2

2
- s o Cd
h I Ry(xq+oh) def = h—— 1 I el(s-1)(e-2)(e-3) a<,

(4>

= "hsf (g)lgg: fa'{ € (xoaxz)
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‘ Here £ and ¥ are simply ﬁnknown values, therefore,

instead of mentioning both_ Z and ? . We only write £ in our

3rd

further discussion. Now, Simpson’s 1/ rule with the error

term is then given by

Xy h h
I;) £(x)dx = 3 [£(x5) + 4 £(x,) '+ £(x,) I- g5~ £
0 . ’

(&)

),

t e (x,,x) ...(2.12)

The following figure, FIG 2.3, 1illustrates the

Simpson’s 1/3rd rule. Here only three points x, ,x ,x, are
used to determine the polynomial. We would obviously expect
the'intekration to be exact for f(x), a polynomi&l of
degree two or less; but equation (2.12) shows that tﬁe
integration is exact foii the function £(x), which 1is a

rolynomial of degree three or less.

foon

FIG 2.3: Simpson’s First Rule.
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list of Newton-Cotes closed
= 1,2,

Here we give the
integration formulae corresponding to the values, &
3,4,5, as follows:

& = 1: Trapezoidal rule -
3

X4 - h )3
J "f(x)dx = <5 [f(x,) + £(x) 1 - 3~ £’ (X)

Xo

o =2 : Simpson’s 1/3rd rule (or Simpson’s first rule ) -

5
Xy h h (3]
Ix f)dx = T3 [2(x,) + 4f(x) + £(x)]) - Tgpm £ (8)

a = 3 : Simpson’s 3/8“'rule (or Simpson’s second rule) -

Xg 3h '
J Todx = g [£(x,) *+ 32(x,) + 3£(xp) + £(xy)]
(]

3n’

- 25 f“)({)

0:4.:

X 2 o
j‘x *£(x)dx = —z— n [7£(x,) +322(x,) + 12£(x,) + 32£(x,)
0

8h’

+ 7f(x‘)] - — 945 t‘"(t)

a =5
X 5h

fx f{x)dx = W19f(x°')+75f(x‘)+5ﬂf(x.)+50f(x,)+75f(x‘)
o

27507 (g
+19£(x,)) - 73596 t‘ ).
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From this list, we observe that [3,PP 74] when «
is even, that is when phere are odd number of base points,
the correspéqding formulae are exact for f£(x), a polynomial
of deziée (a + 1) or less. While, if a is odd, the formulae
are exact for f(x), a polynomial of degree « or less. Hence
the odd-point formulae are more frequently preferred than
the even-point formulae. Another thing, we observe here is,
that not a single formula requires the calculation df. the
forward differences or the coefficients of the interpdlating
polynomial. These involve only the computation of a weighted
sum of the base-point functional values. In other uords. all

formulae in this list can be represented in the form

b n '
j'a f(x)dx = E wf(x;)

=0

where the w, are referred as the weights assigned tb. the
functional values, £f(x), + = 2,1,...n. Thus we can
represent it in terms of Riemann Sums.

2.4 NEWTON COTES OPEN INTEGRATION FORMULAE

- Now, we derive general Newton-Cotes integration
formulae of open type. As preViously said, though these
formulae involve equally spaced base points, they do not
require the values of the function at one or both of the
integration 1limits. Suppose, we want to evaluate the
integration of the function ‘f(x) over the interval of
integration [a,b]. Let x‘,xz,...,i;d.be (n-1) evenly spaced
base points and h be ‘the digtance between any two

consecutive baée points. Let a, the lower linmit of

integration, coincides with X = X - h; whereas b, the upper
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limit of integration, be arbitrary for the moment, as shown
in figure, FIG (2.4). Then the interpolating polynomial 1is
of degree (n-2) and the approximation is given by
b _ b
J ot =] P (x)dx

th

"

b .
J P, _(x)dx
xO

a .
hf; P__,(x,+ &h) da (by putting x = x_+ah)

... (2.13)
where = = (x-Xo)/h and < = (b-x4,)/h
foo
"\\\
\\
— N
, ’5\\\
~ Pﬂ"zo‘)
Agg , _— X
%o Xy X X, Xnr Xpoi® X
41

FIG 2.4: Newton-Cotes General Open Integration.

31



(x) 1is obtained by

An obivious representation of P__,
the forward finite difference polynomial. Therefore,
applying Newton s forward formula and considering forward

differences of f(x,) instead of f(x ), we get

. (o=1)(a-2) .
P a(x,+ oh) = £(x,) + (a-1)Af(x,) + —5 INE(x,)
(a-1)(a-2)...(a=(n-2))
+. (h-2) 1 A f(x,)

...{(2.14)

Using equation (2.14), thg equation (2.13) can be written as

b -3
Jofoxax £ AJ [ex) +- (120 4.4

(a-1)(a-2)...(-n+2) s
+ T A2 (%) ] a=
th[ at(x,) + 5 - DAL(x,) +
o® 3a’ 2 &
-7 9 Af(x1)+...]
Therefore, )
b - ot _
Feodax En o) ¢ (5 - @ Afx)
a .
- —-2 '
3 .
¢ -t #0 OF o+ L] ...(2.15)
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The error term for this case is given by

a a (a-1)(a-2)...(a-n+1)

B o — "
nj; R, g(X,+oh)da = h j; o1y £ (&) da,
where { = (xo,b) L2186

Equations (2.15) and (2.16) describe a family of
related Newton-Cotes open integration <formulae. Taking
different integral values for a (=n), we get different
Newton-Cotes open inteération formulae. A 1list of few
formulae is given below.
2hf(x,) + *gi £ X)

21
"

xl
2 : J Tf(x)dx

- X 3h 3
S=3: [t = 55— [ oty |+ —— 20
xo
a = 4
X : 4h ' 14n®
I feoax = =5 2t -txpratny |+ 100

; = §

Xa 5h 9sn® ..
JTte0ax = - [ )LL) |4 70
o .

; = 6
X 3h
j; f(x)dx = “Ta-[llf(x‘)-14f(xa)*26£(x,)-14f(x‘)+11f(x5)]
[+ ]
a1n?
+ Tap IR,
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As in the case of closed integration formulae,

here also we observe that [3,pp 76] when there are odd
number of base points, that is, when a is even, thé
corresponding formulae aré exact for £(x), a polynomigl of
degree (;+1) or less. While if a is odd then the
corresponding formulae are exact for f£(x), a polyndmiql: of

degree a or less, For this reason, the odd point foﬁmulae

are more frequently used than the even point formulao. -

2.5 COMPOSITE INTEGRATION FORMULAE

Suppose we subdivide the interval of integration
[a,b] into smaller ones and then apply the low order férmula
separately on each sﬁbinterval. Then, the res&lting
integration formula is called COMPOSITE INTEGRATION FO&MULA.
In this way, we apply a 1low order formula repeétedly
instead of a single application of a high order formula.
This technique became very popular because of the simplicity
of the low order formula and also due to lack of
computaﬁional difficulties associated with the high order
formulﬁe.aThough we can extend any of the Newton—Coteé low
order formulae to its composite form, we especially use
closed formulae. The reason is that the base points at the
ends of each subinterval, except x = a and x = b, are also
base points for adjacent subintervals. Therefore, 1f we
apply an m-point formula n ‘times then we need n(m-1)+1
functional evaluations only instead of nm as one might be
expected. Thus, there is a considerable saving especially

when m is small.
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-

As an example, we consider a very simple composite
formula which is generated by repeated applications of the
trapezoidal rule. Let the interval [a,b] be divided into n
equal subintervals as shown in figure (for n = 7), FIG 2.5,
such that h = (b-a)/n.

Then

X, = x_ tih | (i

It
[y

o)
Further, |

b X, X, Xg X,
J fx)ax =f Tf(x)dx =f “f(x)dx +f “f(x)dx +...+ [ "f(x)dx
a xo xo x‘ X
n-4
h
= {L I E)T + L2x)+Ex)T +.. e

. h. M "
+ [f(xn_‘)+f(xn)]} -7 £

i=d

foy A
e ——
/ e~ -
| \\. — e (\
fex)
> K
a | b

- -FIG 2.5: The Composite Trapezoidal Rule.
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b
J  f£(x)dx
a

In terms of n,a and b, this formula is written as

b
J f£(x)dx
a

composite

h n-~4 h' I u‘
= = Lf(xg) + £(xy)) + h EBf(x) - -1z E £ (F0),
s - =1

ge [x_,,x] ... (2.17)

|
(b~a) 1 n-1 - : :
z —= [—-2- £(a) + 5~ £(b) + Ef(a + mai)‘ 2*>]
(b‘a)' ” .
- —s £ (%), asf=<Dp, ...(2.18)

[

The equation (2. 17) or . (2 18) ia the extendqd or
form of the trapezoidal rule.

Similarly we can obtain composite Simpson's-jrule°

For n applications of Simpson 8 1/3rd_ rule we réquire

functional values of (2n+1) base points- X

composite

b
J f(x)ax
a

;ogx‘,....x:n.g The
form of the Simpson 8 rule is
xzn
=f £(x)dx
xo
h | |
= 5 [E(X,)HAE(X,)+2E(x, ) +4£(X ) +2E(x ) +. . .+
I L n®
+2f'(xm)+4f(x2",')+£(kz,,)]' - 58 4‘5‘1‘_"(: ]

.(2.19)
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where, h = (b-a)/2n,

‘= xo*"h ] - .‘ = 0;1;2130--;2!‘1

. ?

X a¢ o ¢ Xy

In terms of a,b and n , it is written as

b (b-a) n-1 (b-a)
J f(x)dx = o [f(a) + £(b) + 2Ef(a + ——— O ¢+
a Lmg
sn-¢  (b-a) (b-a)®
+ 4 Efargp— ) | - ———— £
ime 2882n

Z\i=z2 =
...(2.20)
where a < £ < b . The second sum involves /\i = 2 which
1ndicates’that the index i should take only‘odd values,

-In this way we can zeneratevthe composite fo?mula
similar to (2.17) and (2.19) for any of the low brder
integration formulae. There aie several theoretical (facts
about the effectiveness ofla faﬁily of composite rﬁl&s és
n-o One; which is very important [(4,pp 57] is that, ﬁf;the
low order rule integrates the constant 1 exactly, then its

b

composite rule will converge to [ £(x)dx. as n-+o .
a

2.6 REMARKS ON NEWTON-COTES FORMULAE

First of all, weléhould_note that the Newton-Cotes
formulae are equispaced points formulae. Therefore, if the
given data is not éqdispaced then theie formulae are wholly

inapplicable.
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If we compare both groups (open as well as closed)
of Newton-Cotes formulae for the same number of functional
values, then we observe that [3,pp 76] the open formulae are
slightly better when two or three points are used. But, for
. more than three points the oclosed formulae are -hore
accurate. For this conclusion, qf course, we have assumed

that the derivative terms gkv

() are roughly the same for
the two 6orresponding formulae. Hence it is beneficial to
use closed type formula rather than épen type formula where
it can apply. Again, we should take a note of caution for
the use of formulae of open type, because, the error
estimates given in these formulae are valid only if ‘the
integrands f(x) are 1in classes of type c*ra,bl, (for
two-points formula), C'[a,b] (for three and four points
formula) etc. |
Further, if the value of the function at an end
point of the interval cannot be computed because of a
singularity then the use of opén type formulae 1lead to
serious error. On the other hand, there are some advantages
also in using open type formulae in some cases. [4,pp 71].
'In particular, for functions whose derivatives have’
singularities at the end points, it is observed that,the
open typé formulae rather 'than the corresponding closed
formulae are more effective. This is one example of the
principle of “"avoiding the singularity;" We cannot restrict
open type formula for equidistance points. For example, the

Gauss formulae are also of open type.
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A formula is said to have degree of precision m if
it is exact for all polynomials of degree m or less. e.g
Simpson’'s first rule has degree of precision three because
it produces exactly the "integral of all polynomials of
degree three or less. Since the degree of precision of the
Newton-Cotes formulae‘increases with the number of points we
might guess that a very high order formula would be more
exact than a low order formula. But, unfortunately, this is
not the case [3,pp 77] because high order formulae have some
very undesirable properties from the view of the computation
such as large weight. factors with alternating sign and which
lead to éeriaus rounding errors. Moreover, there are so many
fuhétions "for which the magnitude of the derivative
increases without bound when order of derivative increases.
Thus, we conclude that high order Newton-Cotes formula can
produce large error than a low order one. Therefore, we
should use low order formulae and formulae having more .than
eight points are never used. Again we can reduce error
associated with 1low order formulae by applying its

corresponding composite formulae.

2.7 SPLINE INTERPOLATION

| The spline, especially cubic spline proves to be
an efficient device for approximation as well as
interpolation. Naturally, the cubic spline replaces the
spline of draughtsman by aiset of cubic polynomials, using a

knew cubic in each interval of points Hence we study cubilc

spline in somewhat detail.
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In order to match with - the idea of the
draughtsman’s spline, it is necessary that both the slope
(dy/dx) and the curvature (d’y/dxz) are the same for the

adjacent pairs of cubics. We shall derive the cubic spline

equation as follows.

2.7.1 Derivation of Cubic Spline Equation

This derivation is mostly based on the derivation )
of cubic spline equation ’ziven byy Davis and Rabinowitz
[4,pp,51]. Let, as usual, the points a=x <x <x,<...<x =b be

the points of division of the interval (a,b]. Let the Jj-th
interval be
453 = [x};,le and h, = X, = X, J =1,2,...n), |
...(2.21)
As s(x) is pieceﬁise cubic, therefdre, 8’ (x) \is
Plecewise . quadratic and s8”(x) 1is piecewise 1linear and

continuous. Therefore, we can write for the interval LL? R

(J =1,2,...,n).

sy(x) =M g —¢—— +tM, —x— ...(2.22)
where qjand Hfi are certain constants. in fact,if we put

x = x; in (2.22), we get

sj(xﬁ = Mj. J= 2,1,2,3,...,n ...(2.23)

Now integrating equation (2.22) twice on z;j WwWrtx, we get
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2 2
' (x;-x) (x-%;_,)
s 3
(x;-x) (x-x;_,)°

and si(x)o= KH th + Mj 6h5”A + a‘ix + b'i

where a}..bj are constants of integration. This equation can

be written in the form

(xj~x)’ (x-xj_‘)'
six) = M. —%n,  * M en, +A;(x;-x)+B;(x-x, )

...(2.24)
For the determination of A.i and Bj, put x = X 4 in equation

(2.24) to get

(x;-x,_,)
Via® 85(%. ) = M~ % j v A(x; - x;,)
, 2
1 M;_.h;
or N I v [yj__‘- — ...(2.28)
J

Similarly putting x = X, in equation (2.24), we get

2
1 M;h;
B, = —K; [YJ- —_— ..(2.26)



~ Using the values of A, and B, in equation (2.24), we obtain

8 8
(x;-x) (x-x,_,)
Sj(X) = Mj—t ShJ + M’ shJ +
2 2
M‘i_‘hj - X ;-X | MjhJ X-Xj_q
‘ ‘ 1
| ... (2.27)
Differentiating equation (2.27) we get
: 2 2
(x,-x) (x-x,_,) ViVi-a
sy(x) = - M. Ton  *MTam,  * 7w,
uj-uj_‘ |
- — h, ...(2.28)
for the interval A.j
Taking limit of equation (2.28) as x = xj- we get
) b, by Vi~ Y51
sj(xj__) = TM‘._. + TMJf k; ...(2.29)
Writing equation (2.28) for the interval Ay, Ve get
2 2
(x,,,-%) (x-x ) YiesY
8% (x) = -M—5—— + M. + -
Jee £} 2hj+1 j+e 2hjﬂ hj .t
M -M
j*r
- 6 hi..
Taking limit of this equation as x - xf* we get
j+1 hj+1 Yied 7 .
X = - M - e Myt Ty, (223
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Now, since s’(x) is required to be continous, we should have
53(":‘) = Sa“(x;f)
Putting values from (2.29) and (2.30) and rearranging terms

we get,
h h +h h y .Y, y -y
3 : 3 i+ j+t i+t i i ji-1
& Wt T3 My T ML =T - Y
jvra ‘.l
[J = 1,2,0.-,(“"1)] ) --n(2-31)

Equation (2.31) produces a set of (n~1) linear equations 1in
M,.M,,...,M . To obtain the unique solution for this systenm,
we require two more equations. After the determination of
values of all M's, we 6ah determine the interpolation
spline completely through equation (2.27). Now, we shall

abbreviate these equations (2.31) by using following

notations:
h. h y -y
x j+rs L j ; -1
- E E - - = - - — 1::1_'—""""—-
’ ELTYO $5 Thyvb L T i
< = Kj¥h;+s , J=1,2,...,(n-1).

-

Then equation (2.31) reduces to

“3”,'..; + ZM‘i + XJ.HJ.“ = d.i » J=1,2,...(n-1) ...(2,32)
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We shall take two additional equations in the form

2Mo + )\OM‘ = d

g 1M (I | d

and obtain several possible choices of the constants

‘ho, dgs My d“,hnd their interpretation. The combined;%ystem
in the tridiazonal'métrix form, thus, we obtain is

P ol hy - -]
2 A, P o d,
1 2 TEEEE o M d,
") H, 2 cee ) 2 Q2 M, d,
2 © @ 2 M__, d._,
“n-t 2 K“-.‘ uh-l dh‘?‘
R “ﬂ 2_____ Mﬂ _J L dh _J
Special cases -(1) if we choose Ao = 4= d,= d= @ then

equation (2.33) ylelds M = M = @ and then by equation (2.23)
we have s”(a) = s”(b) = @. If we consider a spline to be a
thin beam, then this corresponds to simple support at both
the ends and gives the natural spline.

(1i) We can also specifi the slopé of the.
spline at the endpoints. We use here the conditions

s’ (a) = y, - and s’ (b) =y,
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Further, from (2.29) thses conditions are equivalent to the

selection

o
3
1"
:l
3 (o2}
—~
‘<
:.
]
X
=3
2
i
»
—

In case,y;and y;are unknown, their values are approximated

using finite difference formula.

2.8 SPLINE INTEGRATION

Many times we require to0 integrate a function
which is given byAscattered data. At this situation, we .can
fit the data by means of splines, the fit being made in the
sense of least squares or any other criteria of minimality.
Thus, fit the data (xrsz) by a spline and then integrate it

formally. From equation (2.27) we have on the interval zxj s

& i=t T i=r
% 8(x)dx = —93—— h; - . h;
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Thus, adding all these integrals for all subintervals of
(a,b), we get

b o Vi n Mot
5 Ps(x)dx = B2t . .
a (x)dx R 2 h; jfi 53 hj

This formula is nothing but the trapezoidal rule
with a correction. The computer programm in "C ° for spline

integration is given in the chapter IV.

2.9 ERROR ANALYSIS

It is possible to determine the appropriate high
order derivative and study its behaviour on the interval
[(a,b] to find an error bound for +the particular selected
formula, if function f(x) is known analytically. But, in
practice, the error formula is of less importance because an
expression for the derivative can nbt be available. In some
of these cases, it m#y‘ be possible to estimate the
derivative value from high order finite divided differences
of the functional values.

¢ However it can be possible to find the error even
when information about higher order derivatives is not
available, if the integral is computed using two different
integration formulae with comparable degrees of precision.
As an ex&mple; let us consider the evaluation of

- b -
I¥= [ f(x)dx.
: a
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by using Bimpﬁon‘s first and seoond rules. Each of these

rules have degree of precision three._Let the estimation of

I* and the error using Simpson’s first rule be I‘ and 8:

respectively; and using Simpson’s second rule be I2 and E2

reSpectively. Then we have

1 = I+ B = I+ E, ...(2.34)
Now,in terms of the integration limits a and b the valués of

E‘ and E, are

E.= (b-a)5 RN 4 - (bfa)b .
s= 2880 « an == 6480 (¥a)

where ¥,and ¥; are different and %,,%;= (a,b). Therefore

E, 9 f“’(l;)

L £947(2,)

If we suppose that f‘%tz) z'f‘\{z). then above equation

reduces to

With this relation, equation (2.34) becomes,

9 4
* T L
I"° = 5 I 5 I

2 4

This equation is valid if and only if £ (Z,) and £ (Z,)

are equal.
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There is one theorem [12,pp 114] which gives an

expression for the error in the n-point Newton-Cotes

formula. Here Q(x) is the polynomial,

'Qh(x) = (x-x.)(x-%,)...(x-x_).

-

where the xk's are the points in the formula. The statement

(n+t)

of this therorem is : If £ (x)’ is continuous on [a,b]

and n is odd then there exists a point tn, where tne (a,b),

so that

1 b .
Where e, ,, = Ty _r X Q,,(x)dx
. a )

If £™(x) is continous on [a,b] and n is even then there

exists a point { where tne (a,b), so that

E [£] = e £7(Z)

. 1 b
where, e, = I; Q,(x)dx.

In section 3.10, we will state some additional
expressions for E[f] using Peano’s kernel theorem and also

discuss the bounds on roundoff errors.
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The following result [4,pp 58] is also useful in
case of composite rules. Let R be a fixed m-point
integration rule defined over an “interval [a , ],
Suppose the error, E.’correspondinc to rule R is given by an

express;on,
B (£) = o(f - ¥ P(2), £ « (a,m)

provided f e Ck[a.ﬁ]. Here the constant ¢ may depend Qn R
but it is independent of «, and £. Let n * R designate“the
composite rule formed from R which results from dividing the
interval of integration into n equal subintervals and
applying R to each of 'them. Let E ., denotes the

corresponding error. Then this error 1is given by the .

expression,

lim n° E___(£) = e(b-a)* ¥ (b) - £ %) )

nxXR
n->0

provided, fe C*[a,b].
Besides'this, we have also derived an error term in each

Newton-Cotes integration formula studied so far, from the

remainder term of the approximationvfoxmula.
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