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C H A P T E R - III 
GAUSSIAN QUADRATURE

3. 1 IHTROPUCTI OKI

All Newton-Cotes integration formulae developed in 
the previous chapter have the following form.

b "J f(x)dx i T ...(3.1)
■ a t «o

where, the (n+1) values wt are known as the weights. these 
weights are associated with (n+1) funotion values f(x ).

V

Here the values of base points xt are equally spaced, and 
thus we have no choice in the selection of the base points.

The Gaussian quadrature formulae are also , of the 
same type but in Gaussian quadrature, these base pointy x

V

are not fixed and also there is no any other restriction on 
their selection. Thus, in this oase, we have (2n+2) 
undetermined parameters, namely (n+1) values of wt and (n+1) 
values of xt. For these (2n+2) parameters we can define a 
polynomial of (2n+l) degree. Further, we select the values 
of base points xt so that the sum of the (n+1) appropriately 
weighted functional values given in equation (3.1) gives the 
exact value of the integral when f(x) is a polynomial of 
degree (2n+l) or less. For such determination we require 
some background knowledge of orthogonal polynomials. For a 
given weight w(x), it is possible to define a sequence of 
polynomials P0(x).P4(x),..., which are orthogonal and in 
which P (x) is of exact degree n; i.en
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m Jt n
b

(P.P ) = J w(x)P (x)PCx) = 0 , 
a

Further, by multiplying each Pn(x) by an 
appropriate constant we can produce a set of polynomials P*

n
which are orthonormal,i.e.

<F*,F*> = 0, if m # n
in n

=1, if m = n

Orthogonal polynomials are popular because of the
property, that the zeros of real orthogonal polynomials are
real, simple and located in the interior of [a,b].

Here, we state the theorem. [4, pp 74] Let w^x)£0

and is defined on [a,b], with corresponding orthonormal
polynomials F*(x). Let the zeros of F* (x) be x ,x ,.,.,x 

n rt 1 2 n
such that a<x,<x„< . . . <x <b.ft I n

Then we can find positive constants w„,w., . . . ,w^ such thatft • n

J bw(x)F(x)dx = EwkP(xk) ...(3.2)
a k*i

whenever, F(x) is a polynomial of class p„_ , . The weights*r»—* •
wk have the explicit representation,

WK =
1

(3.3)
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If abscissas and freights are determinded as above 
then the resulting integration rule is said to be of GAUSS 
type. Here kn is the coefficient of, the degree term in 
the orthonormal polynomial F* and ire-take kn aa positive.

3.2 SOME SPECIAL ORTHOGONAL POLYNOMIALS
Just, we have seen that the orthogonal polynomials 

play an important role in Gaussian quadrature. There are 
some well known and very common families of orthogonal 
polynomials. Their intervals and corresponding weight 
functions are as follows:

3.2.1 Legendre Polynomials
Let F (x) denote the Legendre polynomial. Thesen

polynomials are orthogonal on the interval [-1,1] with 
respect to the weight function w(x) = 1. Therefore, we Have

♦ 4
J Pn(x)Pm(x)dx - 0, if n S* m
-4

= c(n) 0 0, if n = m ...(3.4)

These polynomials can be obtained from the recursive 
relation,

2n-l n-1
P~U) = —3— xP„_*(x) - —3--- P«_«(x) (n * 2)

with PQ(x) = 1, P|(x) = x.

S3k

...(3.5)



3.2.2 Chebyshev Polynomials
Let us denote these polynomials by Tn(x). These

polynomials, are orthogonal
on the interval [-1,1] with respect to weight function 

1
w(x) = —....Thus, we have

V i *1-x

rj -* V' T (x)T (x)dx =
1-x { 0, n # m 

c(n) ' *• 0 , n = m. ..(3.6)

These polynomials have recursion relation given by

T„(x) = 2x T„.4(x) - T_.(X), (n ^ 2)

and Tc(x) = 1, T4(x) = x . .(3.7)

3.2.3 Hermite polynomials
Let us denote thses polynomials by Hn(x). These

are orthogonal on the interval (-«,«) with respect to the
_ xweight function e”x . Thus, we have

J H„(x)H_(x)dx = { c0(Xn)5 3, n = m. .•,(3.8)

The recursion relation for these polynomials is given by

H (x) = 2x H (x) -2(n-l)H (x), (n > 2).n n-i ■ f)***

with H0(x) = 1, H4(x) = 2x, ..(3.9)



3. 2. 4 Lagurf Polynomials

Let us denote these polynomials by Ln(x).

Tkese polynomials are orthogonal on the interval 

[0,<») with weight function w(x) = e*"*. Thus, we have

e Ln(x)Lw(x)dx = { JJ g. n = m. ...(3.10)
i

These polynomials are recursively obtained from the
* \

relations,

Ln(x) = (2n-x-l) L^x) - (n-l)*Ln_a(x), (n £ 2)

with L0(x) = 1, L4(x) = -x + 1, ...(3.11)

Remark:
■th n v

Any n^11 degree arbitrary polynomial Pn(x) = E «cxv
i aO

can be written in terms of a linear function of any of the 

above families of orthogonal polynomials. Further, any 

family of orthogonal polynomials, satisfying its respective 

recursion relation, is unique. In these cases, the Gauss 

formula is named after the name of the orthogonal 

polynomial.e.g Gauss-Legendre formula, Gauss-Laguerre 

formula, etc.
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3.3 GAUSS-LEGENDRE QUADRATURE
In this case, we find the value of the integral 

b +hJ f(x)dx by approximating the function f(x) with ntn degree
a

interpolating Lagrangian polynomial Pn(x) with corresponding
error term R (x). Thus, we get n

b b bJ f(x)dx s J Pn(x)dx + J Rrt(x)dx. ...(3.12)
a _ _ a a

As the base points xt are unknown, we use the interpolating 
polynomial in that Lagrangian form where arbitrarily spaced 
base points are allowed, viz.

Pn(x) = E Lt(x) f(x.)
l>0

...(3.13)

(X - X.)
" i

where Lt(x) = n -------------- ,j=o (x. - x.) i* i J
with its corresponding error term given by,

fc= 0,1,2, . . ., n.

R"(x) =[v?o(X“Xi)] --- Cn+TT

Therefore, we can write,
f(x) = E L^xJffXi) + f n (x-Xi)l

iso H»0 J

where a < « < b.
. . . (3.14)

C n+i >f (?)
(n+1) 

where a < ? < b (3.15)
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Also, for the sake of convenience, without loss of 
generality, we change the interval of integration to 
[-1.1] by a suitable transformation,

z -
2x - (a+b)tJIJ .. .(3.16)

where, i it a new variable and -1 * a * 1.
(b-a)z + (a+b)

Therefore, x ? ------- 5---------- ...(3.17)
Let us assume that all the base points are in the interval 
[a,b]. i.e. a 5 x ,x .... x $ 6. Also, we define ai newO * n
function F(z) so that,

F(s) = f(x) f (b-a)z + (a+b) ^fl----- 2----- J ...(3.18)

With this convension, equation (3.15) becomes

<nti>
F(a) =t|0U(a)F(zO + [t”0(z-zO] - (n+1)!** . . .(3.19)

where L4(z) = n
(z - z^

j=c (z.-z.) j* v j
and ? «(-l, 1), 
= 0,1,2,... ,n.

Here the base point value xi is simply transformed to zi.
n

Obviously, £ Li(z)F(zi) is a polynomial of at most degree n,
i. =0 n

and n (z-zL) is a polynomial of degree (n+1). Therefore, if c =0
f(x) is assumed as a polynomial of degree (2n+l) then



<n+i>F (*)/(n+l)! roust bo a polynomial of degree n, say
<ln(SS), i.o. I L

q„(a)
£< n-ti J (?)
Tn+rjT

Then equation (3.19) beooroes

F(z) = E Li(z)F(zi) + fn (a-a.)1qn(a) ...(3.20)
v=o **i=0 ■*

On integrating from -1 to 1, the above equation, we get

t in i. j- n -|
J" F(a)da = J £ L.(z)F(z.)dz + j* ] n (z-zt)jqn(z)dz
-i -ii»o -J. L i»o J

...(3.21)
As F(at) are fixed values, we can take summation operator 
outside the integral sign. Also, neglecting the rightmost 
integral, above equation becomes

t r, i
j F(a)dz = E F(at) J ^(ajda

l «o

i.e J F(z)dz * E ^(z.), ...(3.22)
t, »o

where, Wi = S Li(z)dz, 0,1,...,n. (3.23)

Actually, the equation (3.22) is in the required form (3.1) 
whereas the error term for this quadrature formula is the 
second integral on the right hand side of (3.21). Now, our 
goal is to select the values zL in such a way that this 
error term,
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1 r nJ n (z-zt)
-i^ v*0

] qn(2)dz, ...(3.24)

vanishes. For this purpose, we make the use of the 
orthogonality property of the Legendre polynomial* as 
follows:

n
First, we write the polynomials q (2) and n (2-2.) in terms!> Vt«o
of the Legendre polynomials. Therefore, let

+ W*’+ + W*0 + b„„Wz>n+1
3 £ b.p. (z). * ...(3.25)i*o * v

and qn(a) = c0p0(z) + eftpfl(z) + ...+cnpn(z) n
= E c.p (a) ...(3.26)

X. tV SO

Next, using equations (3.25) and (3.26) in (3.24), we get

if n -| »f n n
Jr n q„(z)dz = J 1 E El\c P,(a) P,Ca>. +-in»o -i k »o j«o

£ Ci.**t(2)pn+4l(2)ldz. ...(3.£7)
iso J

Now, by orthogonality properties, all terms of this injtegral 
that are of the form !
b. c. J p.(2)p.(2)d2, (i.fk J)*• 4 ** v 4

will vanish. Therefore, the equation (3.27) reduces to
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ip n i inJ I n (z-z^ U (z)dz = j £bioiCpi(a)] dz.
-*'■ i -O J -Si >0

n i
= E bi-v/ CPi(a)3 dz. ...(3.28)i * o -i

To get this expression vanish, let us specify that the

bj= 0, i = 0,1,... ,n.

However, the coefficient b „ of p„(z) remains stillnvi nvi
unspecified, but from equation (3.25), using bt= 0 for 
v = 0,1,....n, we get

n <Ml> = bn+iPn+i<Z)- ...(3.29)
i*0

The important feature of above equation is that, the
h

polynomial n (z-zt) is already in factored form, i.e. it
i so

has the (n+1) roots zt, *• = 0,1,...,n. Further, these roots 
zjnust be the roots of bnHpMi(z) because of equation 
(3.29). That is, these z. are the roots of p_(z). Thus, 
the (n+1) base points, which are to be used so that the 
integration formula (3.22) becomes exact, are the (n+1) 
roots of the Legendre polynomial of degree (n+1). Also, the
corresponding weights assigned to each function value F(z )i
are given by (3.23). Base points and corresponding weights 
for 2,3,4,5,6,7,8,10,12 point formulae are given in the 
Appendix
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b
Remark: In the evaluation of J f(x)dx, where a and b are

a
finite arbitrary, it is convenient to transform the 
Gauss-Legendre quadrature formula from the standard intervalI

i-1 £ z < 1 to the desired interval a S x £ b, using equation 
(3.17). Then, we get

b (b-a) i f z(b-a)+b+a .*Jaf(x)dx = ----g--- J fl---- »r—---Jdz. ...(3.30)

Since the Gauss-Legendre quadrature formula is given by

4 nJ F(z)dz ± E wlF(zi),
-i. i =o

therefore, the equation (3.30) becomes

„ b (b-a) « fJ f(x)dx = -- n-- E wt£f*a 6 iso '•

z.(b-a)+b+a ) •
...(3.31)

The above equation gives the general formulation of the 
Gauss- Legendre quadrature. It is much suitable for computer 
because instead of symbolic transformation of £(x), base 
points z^ are transformed and weight factors wt are modified 
by the constant (b-a)/2.

3.4 GAUSS—LAGUERRE QUADRATURE
This formula can be derived in the similar manner 

to that of Gauss Legendre quadrature. As, base points zc are 
unknown, we use the interpolating polynomial (3.13) and 
error term given by (3.14). Thus, we have
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F(z) = JoWU) F (*J + [ .no(-«1)]-ITJSTT7

0 < K < OD
1-->

(3.32)

n 2 ” Zj
where, K(z) = n [ z _ ,— ]» ‘• = 0,l,...,n

jae'- J
i&

Obviously, if F(z) is a polynomial of degree

(2n+l) then F<n+1>(? )/(n+l) I must be a polynomial of degree 

n, say q (z). Thus, we can rewrite the above equation asn

F(z)
i =0

Lt(z) F(z.) [TS «i

n
isO •*

(3.33)

As the weight function in this case is e"**, we multiply the 
both sides of equation (3.33) by e~* and then intejgrating 

within the limits 0 to ®, we get

00 n 00J e"*F(z)dz = E F(z..) J* e"*Lt(z)dz
o i =o o® _ r n "I

+ S e”Z n <Z-Zi) %,{z)dz.O »* iao J
or equivalently,

00 nJ e"“F(z)dz * E w.F(zt)
O i *0

00
where wt = J e"*Li(z)dz. 

o

. . (3.34)

...(3.35)

...(3.36)

|
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The equation (3.35) is in the desired form of 
equation (3.1) where the second term of right hand side of 
equation (3.34) gives the error term of the quadrature 
formula. We now select the values of zi such that this error 
term get vanished by using orthogonality property of 
Laguerre polynomials. First we write q (z) in terms of then

r%
Laguerre polynomials of degree n or less. Now if ni-o*2”2^ 
is (-l)n**Ln+t(z), the error term vanishes; and the roots of 
the Laguerre polynomial Ln+1(z), will be the required base 
points zi for this (n+1) point Gauss-Laguerre quadrature 
formula. Also from equation (3.36), we get the corresponding 
weight factors.

The error for this quadrature is given by 
[(n+1)!]2 <an+a>

K = -.(2n+2)'!~. F (<), * « (0,«) ...(3.37)

Remark:
Using the linear transformation, x = z + a, where 

a is arbitrary but finite, we can use the Gauss-Laguerre 
quadrature to evaluate integrals of the type,

aoJ e-xf(x)dx 
a

Using above transformation, this integration becomes

J e~*f(x)dx = J e“<*'K1>f(z+a)dz. 
a o

00 ' '

- e""* J e"*f(z+a)dz.
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Hence, the Gauss-Laguerre quadrature for arbitrary lower 
limit of integration a is written in general form as

00 nJ e-Kf(x)dx = e”*E wtf(zi+a) 
a t*o

Here wt and zi are the same as that of previous case.

3'5 6AUSS-CHEBYSHEV QUADRATURE & GAlfSS-HERHITE QUADRATURE
Using Chebyshev orthogonal polynomials and its 

properties, we can derive the quadrature formula known as 
Gauss-Chebyshev quadrature formula. The derivation of this 
formula is very similar to that of Gauss-Legendre or 
Gauss-Laguerre quadrature. Here we get

J *-77=- F(a)dz ± E w.F(z.) ...(3.38)
-i V , * «•“©1-z

If F(z) is a polynomial of degree (2n+l) or less 
then this integration is exact. Here the (n+1) base points 
zi are the roots of the (n+l)ih degree Chebyshev polynomial 
T . (z), so thatntl

(2i 1) n
ai = 003 (2n + 2) ’ '• = 0,l,...,n.

n
Here the weights wv are equal and have the vlaue .— .
Therefore, after simplification of (3.38), we get

0v=rF(z)dz ; •••(3.39)l-z
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The error term [3,pp 116] in this case is given by

znE" = ...To;-,. r-W. * * (-1.D ...0.40)
2 (2n+2)!

Similarly, using orthogonality property of the 
Hermite polynomials we can derive another Gaussian formula,

00 2J e-*f(x) dx
-CO

nE w.fCx.)
i so

(3.41)

This is known as the Gauss-Hermite quadrature. The roots of 
Hermite polynomial of degree (n+1) gives the base points x..

X

The error term [3,pp 116] in this case is given by 
(n+l)!V~nE = —— --------- f“~“(*), * « (-1.1) ...(3.42)2 4(2n+2)!

Remark:
By suitable transformation, we can use the Gauss-Chebyshev 
quadrature to evaluate the integral of the form

1 ^ '
J ...... f(x)dx or J f(x)dx ,
a V, * •1-X

where, a and b are finite.



3.6 OTHER GAUSSIAN QUADRATURE FORMULAE
The four Gaussian quadrature formulae discussed up

to this time allow the numerical evaluation of many well
behaved integrals over semi-infinite, finite or infinite
intervals of integration by using a suitable transformation
of the variable of the integration. Sometimes, it is
possible to find the value of integration of the function
which has a singularity in the interval of integration by
adjusting the singular term in the weight function, e.g. If

1
the function to be integrated contains the factor . ,----- z\/
over the integration interval [-1,1] then it can be 
evaluated by the help of Gauss-Chebyshev quadrature.

We can generate a variety of other Gaussian 
quadrature formulae for particular weight functions, limits 
of integration and sets of orthogonal polynomials. Two 
famous particular cases of the Gaussian type are developed 
in which either or both end points of the interval of 
integration are base points. These formulae are callted the 
Lobatto quadrature and the Badau quadrature. In Lobatto 
quadrature, both the limit points are included in base 
points, the remaining (n-1) points are found as the roots of 
L *(x), i.e. the roots of the derivative of the Legendre 
polynomial of degree n. This quadrature produces the 
integral exactly provided f(x) is a polynomial of degree 
(2n-l) or less. In case of Badau quadrature, only one limit 
point is included in the set of base points. It produces the 
integral exactly when f(x) is a polynomial of degree 2n or

C5
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Ne can also use the Gaussian quadrature formulae 
repeatedly on the subintervals of the Interval of the 
integration and create the corresponding composite formulae. 
As many Gaussian formulae do not include the end points of 
the interval of integration the number of functional 
evaluations per subinterval may not be reduced as in the 
case of Newton-Cotes closed formulae. On the other hand, due 
to the inconvenient form of values of the weight factors and 
base points it is impossible to use high order formulae for 
hand calculation. Also, since we require a large amount of 
tabular information, it is tedious to prepare computer 
programs to implement a quadrature for many values of n. In 
another way we may compute base points using well known root 
finding methods and then appropriate weights which will 
probably become too wasteful of computing time for a 
frequently used integration program.

3.7 GAUSSIAN QUADRATURES WITH PREASSIGNED ABSCISSAS
Now, we consider Gauss type integration formulae 

with a certain number of preassigned abscissas. Such 
formulae are of the type

J w(x)f(x)dx % Eakf(yk) t Ewk£(xk) ...(3.43) a k si k=l

Here yk's and xk's are abscissas attd yk's are preassigned 
abscissas. Further, there are totally (m+2n) constants: ak , 
w. and x. . We have to determine these constants so that thek k
rule is exact for polynomials of the highest possible 
degree (m+2n-l). For this purpose, let us introduce the 
polynomials



...(3.44)
r(x) = (x-y4)(x-y2) ... (x-ym), 
s(x) = (x-x ) (x-x ) ... (x—x )l I n

Davis and Rabinowitz [4,pp77] have shown that the 
formula (3.43) is exact for all polynomials of degree 
(m + 2n - 1) or less if and only if 
(i) it is exact for all polynomials of degree 

(m + n - 1) or less,
(ii) every polynomial P(x) of degree (n-1) or less

b
should satisfy, J w(x)r(x)s(x)p(x)dx = 0.

a

In numerical point of view, clearly we must 
determine s(x) = (x-x„). . . (x-x ) as one of a family of 
orthogonal polynomials on [a,b] with respect to the weight 
function w(x)c(x). At this point, theorem of Christoffel is 
of much importance which states: "Let P(x),n=0,l,... beA

orthonormal polynomials on [a,b] with respect to the weight 
w(x) ^ 0. Let r(x) £ 0 be, as defined in (3.44) on [a,b] and 
suppose that the y^s are distinct. Let q^x), n = 0,1,...
be orthogonal polynomials over [a,b] with respect to 
w(x)r(x). Then
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Pn(x) P~i<*> Pn*m<X>

WV

Pn <*m> Pn+m(^

The common examples of the rules of Gauss type 
with preassigned abscissas are Radau and Lobatto rules of 
Integration, as dlsscussed in the previous section. Here 
abscissas at the end points of the interval of the 
integration are preassigned abscissas and weight w(x) s l is 
used.

3.8 THE ALGEBRAIC APPROACH TO THE GAUSSIAN QUADRATURES

Here we shall gee the algebraic approach for the 
Gaussian quadratures. As usual, take w(x) k 0 as a weight 
function. We want to find 2n values: w,w,,. . - ,w ;l z n
x„,x.,...,x so that for f(x)= 1 ,x,x*,... ,x*n_i, we have
» 2 Ti

b n
J w(x)f(x)dx = Ew-f^).

a. i si
(3.45)

Using the abbreviation, J w(x)xJdx = m^ and writing out 

equation (3.45) for f(x) = 1 ,x,jf*,. .. .x2"’* successively, we



get the following system

m.

w.

wt + wa + w# + .... + wn ,

VA + "A + «A + ■ ■ • + "A>
2 . 2 , 2 A ^ 2 W X + W„X. + W.X. + . . . + W X , It 22 28 n n

m,2n-i
Zn-1

= W*Xi 2n-tW2X2 + w_x.2n-i , 2r*-l+ Wn*n

Let us define
P(x) = (x-xi)(x-x#)...(x^xn)

" k
= tV' °n= 1-

k =0

Now multiplying first n ' equations of system 
successively by c0,c4,c2,.. . ,cnwe get the following

. . (3.46)

.(3.47)

(3.46)
system



Adding all these equations in the above system (3.48) we get

V. + *.V n.°. + + • • • +

1 H.(°o+ °.x,+ c,x* + • • • + 'A'

+ wa(c0+ Ctxa + Cafc* + ... + Cnxa )

+ wa (C0+ C4x9 + Ctx* + .. . + Cnx9 ) + ...
+ wn(cG + ctxn + Ctx* + . . . + cnx").

n kThe terms in parenthesis above have typical form E ckxv ,k = o
x = 0.1,...,n. and from equation (3.47), its value is P(xt) 
which in turn becomes zero. Hence above equation reduces to

rn c + me + m.c. + .. . + m c =0.

Once again we do the samq procedure for second, third, 
...,(n+l)th equations of the system (3.46), i.e. multiplying 
second,third,..., (n+l)lh equations of the system (3.46) by 
co’ci’*'',cn successively and then adding and using equation 
(3.47),we get

me + m_c +1 O 2 1 m „cml n = 0.

In this way, since cn= 1 we obtain the system of n 
equations in n quantities c. ,c. ,c_, . .. ,c . ; which is

O * Z n“*
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“oco + “A + maca ♦ • •

m*co + “.c* + m.c. + • •

m2co + m»c* + m4Ca + • •

4 -m 9

m cn » >-A
-mrv*i. 9

+ m.nH n-4 = -m.r»+2

m + m cn-4 O n 1 + ® .<3* +n+4 2 2n-2 n-t m2n-i.‘
...(3.49)

The determinant D of this system is given by

D = I “^1 = | A.(x)x~Jdx |

This is the Gram determinant of the functions
1 ,x,x*, ... ,xn_4. In fact, these functions are linearly 

independent and hence it follows that D 0. Hence the
system (3.49) have a unique solution for the constants
co’ci,C2’• ' •’cn-i’ ®’rom ‘b*ie values of c0,c1,..., cn-1, we
can get the abscissas x„,x_,...,x from equation (3.47). 
Clearly these abscissas will be real, simple and located in 
(a,b). After determined the abscissas, we can find the
weights using system (3.46).
Remarks - (1) To obtain formulae of Gauss type with one or 
more fixed points, we can use the modification of this 
device.

* w(x)xVdx
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(2). Very often, the relevant matrices are 
ill-conditioned. Hence, from numerical point of view this 
method of determining Gauss integration formulae is not
mostly recommended. Also the evaluation of a polynomial in

n kthe form E c.x may be an ill- conditioned process for
k =0

large n so that accurate determination of its zeros becomes 
impossible.
3.0 CONVERGENCE OF GUASSIAN RULES

To study the behavior of a sequence of 
approximations generated by a specific Gaussian quadrature 
as the number n, of ordinates is increased, we express the 
error for the n-point Guassian rule in the form,

E = Rn[f(x)] = J w(x)f(x)dx - E ...(3.50)
a k = i “

where the weights and abscissas are supplied with the 
earlier implied index n.

We restrict our attention first to the cases where 
[a,b] is finite. Also, we suppose here that the weight 
function w(x) is non-negative in (a,b) and all the weights 
w^ are positive so that many cases so far considered will 
be included, i.e. Let

w(x) i 0 (a s x S b) , w^ > 0 ...(3.51)
We also suppose that the degree of precision of 

the Gaussian formula under consideration is positive and 
increasing with m . Let f(x) be continuous on [a,b].

With these assumptions, for given any c > 0 

(however small) by the Weierstrass approximation theorem, we 
can find a polynomial p(x) for which



( a £ x £ b )|f(x)-p(x)| < * , ( a £ x £ b ) ...(3.52)

If p(x) has degree M, we next take n sufficiently large so 

that the degree of precision of the Gaussian quadrature 

formula under consideration exceeds M, and hence 

Rn[p(x)] =0.
How, from the linearity of the operator R , we have 

R„£f] = R„Cf-p] + R„CP]
Hence for all sufficiently large n , we obtain

|H„[fl| = | w(x)[f(x)-p(x)]<Jx -E WnfcCfU^)- P(xrtIf)]k=i nkJ

b n* S w(x) I f(x)~p(x) Idx •+ Ew^klfCXnk) - p(Xnk) I
<x k«i

1 « fJ w(x)dx + EwJ
*■ ci k=i (by 3.52)

=2 * J w(x) dx ...(3.53)

Here we have used the assumed properties of w(x) and wnk. 
The last step appears due to the fact that Rn[l] = 0 implies 
the relation,

b n
J w(x) dx = Ewnk .
a k=i

Thus, accordingly |En| can be made smaller than any 

preassigned positive quantity e by taking n sufficiently 

large. Hence we conclude that E *♦ 0 as n + ® orY%

lim E = 0.nn-wo

i



When the interval of integration is not finite, we 
need a less simple approach because the Weierstrass theorem 
is not available. However, convergence has been established 
in the cases of Gauss-Laguerre and Gauss-Hermite quadrature 
provided f(x) is continuous in every finite subinterval of 
[0,oo) [or (-oo,cd)] and f(x) is such that

w(x) If(x) I < ..,|x|
for sufficiently large x (or |x|) and for some p > 0. Also, 
we have the following results about convergence of Gaussian 
Rules. [4,pp 1003.
(i) If f is a bounded Riemann integrable function on [-1,1] 

i.e. if f « R [-1,1] then lim E = 0.n(Vtttt
(ii) If f(x) is piecewise constant function on [-1,1] then 

also lim E =0.
fin-«»

A most general theorem about the convergence of a family of 
rules is given by Polya. [4,pp 103] The statement of this 
theorem is as follows:

<
" Let Lh(f) = Ew^fU,*) , a S xnk < b .k>i

b
Then lim Ln(f) = J f(x)dx , v f « C[a,b]

n-»00 a

if and only if

lim L(xk) = J xkdx , k = 0,1,2,
n-»®

and
Z l»„kl S M

k* 1
n = 1,2,3,.



where, M is some constant."
It should be noted that a family of approximate 

integration formulae,

L„<f> = i • aSlUSb ...(3.54)
k=l

which converges for all functions which are continuous on 

[a,b] will not converge automatically for all functions 
which are Riemann integrable on [a,b]. For example, select 

the weights and abscissas as follows:

x .= (i-l)/n , i = l,2,...,n.rlv

Wr*= l»

Wr%2 -i,

w . = 1/n,
m. ' ’ i = 3,4,...,n.

This family of rules integrates all functions which are 

continuous in [0,1] properly in the limit but cannot 

integrate the function,

f(0) = 1,

f(x) =0, 0 < x ^ 1.

Polya has given the necessary and sufficient

conditions for convergence for all functions of class

R[a,b]. Let I denote the sum of a finite number of intervals

(intervals may or may not be disjoint) situated in (a,b).

Let m(I) denote the sum of the lengths of the individual

intervals of I. Let £ lwnJcl will be the sum taken over those
x

wnk for which xnk« I. Set



ZX(I) is

ZX (I) = lim sup E |w . |
n-*00 Z

It can be shown that, the set function
non-negative, monotone: ZXCIJ ^ /\(I+I ), and
subadditive: ZX(I4+I#) £ ZX(It)+ZX(Ia). If for any sequence, 
It2 1*2 ... and m(In) 0, we have

litt ZX CIn) = 0
n-W»

then ZX (I) is called semicontinuoCis.

Now, the necessary and sufficient condition given by Polya 
for convergence for all functions of class R[a,b] is as 
follows:

" If
V> 00

J f (x)dx = lim Ew^fCx^)
a, n->00 k = 1

holds for all f « C[a,b] then it also holds for all 
f « R[a,b] if and only if ZX (I) is semicontinuous."

3.10 ERROR ANALYSIS
b

In approximate integration, the value of J f(x)dx
an

is replaced by a finite sum Ewif(xl). In this process, twoi si
sorts of errors involve. First, there is the truncation 
error E which arises due to the fact that the sum is only

~IL



approximately equal to the integral:

b nJ f(x)dx = fcw-fU^ ♦ E ...(3.55)
a i si

In the another place, there is the roundoff error R and it 
is due to the limitation of accuracy of the computer. Hence

n
we compute the finite sum C w;.f (xO approximately. Let IT

i si

denote this produced value, therefore,

E * = EWifCx^ + R.
i. =1

Thus, the estimate of total error is

U f(x)dx - E * I £ | E j + | R |
* a ■

Of course, we have assumed that f is a function defined 
mathematically. Hence it does not consist of experimental 

data. Therefore we can compute f within the accuracy of the 

computer word length.

Usually roundoff error is negligible, but it 

becomes significant when we take large values of n in the 
sum (3.55). First we shall discuss the effect of roundoff 

error in the computation of the rule

b n
J f(x)dx sj Ew^C*^) ...(3.56)
a i =1
the analysis given below is based on analysis of 

Wilkinson. [4,pp 208]. Suppose that the computation of right 
hand sum in (3.56) is carried out in floating point 
arithmetic on a computer which works with t binary digits. 

Also suppose that our computer has a single precision 

accumulator. Let fl(x+ x„), fl(x„x.) denote the addition 

and multiplication of x4 and xa in the floating point mode,



then it can be shown that

fl(x4+xa) = x4(l+*') + x#(l + *") 
and fl(x4xa) = x4xa(l +*"' ) ...(3.57)

where | c' \, \e"\ < (3/2)2_i and | *'" | S 2_t ...(3.58)
Now we are able to analyse the error made in computing a sum 
of products. We shall use these basic inequalities in 
(3.56).
Let sk = fl(a4b4 + a#ba ■*• ... + ak*>k) ...(3.59)
The meaning of sk is that we compute the products aibl in 
floating and then add them in floating in the indicated 
order. In fact the computation (3.59) is the abbreviation 
for the computation of following steps indicated 
recursively.

s4 = t4 = fl(a4bt) , 

tr = fl(arbr),

sp = V’ r > 1

With the help of (3.57), (3.58), we obtain the above
equations as

st = t4 = fl(a4bt)

t. = ab (1 + Kr),r r W T

K - ®_*(l +<) + M 1. ♦ n" ), ...(3.60)

78



where
K|> |""| 4 -n-. • | «,| * ■•■(3.604)

alongwith = (3/2) 2_t and _/■»_, = 2~\ Using (3.60)

recurrsively in (3.59), we find

sk = + + cm) +•••'♦' ftfcbj.d + ^jj.)

.. . (3.61)
where, (1 + *4) = (1 + f4) (1 + ns) ... (1 +njc),

(1 + *r) = (l + Kr) (1 + n”) (1 + n*+1) ... (1 + n'),

r = 2,...,k~l
and (1 + *k) = (1 + ?k) (1 + \) --- (3.62)

Using (3.$0A) and (3.62), we have

(1 (1 - _^)k'1 * l+*4 * d + -/>_,)( 1 + _^_4)k-i ,

(1 -_n_,)( 1- _n_#)k_r+i < l+*p < (l + _n_a)(l + _n_^)k_r+1,

r = 2,3,...,k.
This gives the uniform estimate for r = l,2,...,k:

(1 - _0-*)(l -_^_t)k-r+‘ S l+*p £ (1 + j\,)(l + _P_u)k r+1

. . .(3.63)

79



Now, (1 + _/\Jm = 1 + m _/>_ + m(m—1) 
21 +. . . ,

1 + m _0_ 1 + .21. ' -n- + (m-1)(m—2) 
3l

f m^ 1 + m __0_jl + £ j - + .

1 + m _r>_ ...(3.64)

Similarly we can show th$t

(1- * 1 - m _T>_ ...(3.65)

If we suppose that kJ\_4 S 0.1 then as (eo,i-l)/0.1 £ 1.06,

we have from (3.63),(3.64),(3.65),

(1 - HI - (k-r+l)_r> (1.06)] S l+<
* (1 ♦ -n-a)Cl + (k-r+D.n^d.06)]

Therefore,

|®p| ^ -A., + (k-r+l)_TU1(l +-A-J) (1.06), r = l,2,...,k.
. ..(3.66)

Now, from (3.59) & (3.61), we get

. . .(3.67)

r%
We will apply this identity to Ewlf(xi). Let ft denote the



result of computing f(xt) in the floating point mode,
suppose that f. = f(x. )(1 + e.),t l X

with |®t| £ © , *■ • 1,2, . . . § n

1,2, 

...(J 

. . .(5
where © is a email quantity litye . We have

R = E^fU.) - flf Jw.f. 1
i=l ' isi '

R = E w.f (x.)l • Xi si - Ew.r. + E vie., (using 3.67)
.XX . XXX
X*1 vsl

|R| * *E |wt||f(x.)| + (1+0)E IwJlfCx^ll^l,
i =iv Si

Let M = max
(using3.68,3.69) . ..(;

^{f(x) | / a S x 5 b Then (3.70) becomes

|R| s « m £ |wj + (1 + o) H E IwJkJ181 x *4

Further usihg (3.66) we get

|R| 5 e M £ |wt| + (1 + ©) M E |w.| +
i. *♦ i si

(1.06) (1+-) M _j7-i(l + _^_a) «S lwil(n-i+l) ...(3
i *1

Let us have some assumptions:
n A

Ws. * 0 , EWi = b - a, w,. *
V8i n 1,2,

and 
. . . ,n 
.68) 
.69)

.70)

71)

. ,n.

where A is a constant independent of n. Many rules satisfy 
these assumptions. With these, we estimate (3.71) as



|R| < ©(b-a)M + (1+e) M«fL^(b-a) +

(n+1)
1.06 (l+«) M (1+_TL.) A——

= M(b-a)t*+(l+e)_JX.] + 1.06 (1+0) +^*> A
(n+1) 

2
...(3.72)

Here exact weights are assumed. If ©* is bound on relative 

error in each weight, then the term Md + e)n©' is to added 

to the right hand side of (3.72) as well as (3.71).

fjrom this analysis, we gee that the roundoff error 

in approximate integration can be expected to increase as 

the first power of n. Hence these errors will not harm more 
because, in general, n varies within the range 101 to 10*. 

These errors become still less if double precision computing 

is used. However we have to take care when vast numbers of 

abscissas are used.

In the approximation (3.56), the total error 

committed consists of both types of the errors: roundoff 

error as well as truncation error. The truncation error is 
~ n~* or better in case of usual employed rules. As n 

increases, roundoff error also increases but truncation 
error decreases. Hence n should be properly selected at some 
intermediate value.
Trunctlon•ffrror Through Peano's Theorem
Let the truncation error be designated as

b n
E = E(f) = J f (x)dx - Ew.f(x.).

a i*i



We shall treat E(f) as a linear functional defined over a 
certain class of functions for the sake of convenience.
Linear functional E have the following property,

E(af(x) + bg(x)) = a E £f(x)) + b E(g(x))

for some constants a and b. Let f be a function whose n-th 
derivative exists and is absolutely continuous on [a,b]. How 
the Peano's Theorem is as follows:

"Let E(P£x)) = 0 whenever P(x) « pn.
Then for all f(x) « Cml[a,b],

where

and

Here the symbol Ex means that the linear functional E is 
applied to the variable x in (x-t)”. The function k(t) is 
known as the Peano Kernel for E or influence function for E. 
If k(t) does not change its sign on [a,b] then we get

f<nH>‘n
E(f) = ^n+i)• E(x ), ? * (a,b).

For an arbitrary rule of approximate integration (3.56) 
there is no reason for k(t) to have one sign.

b
E(f) = J. f <TVI*>(t)k(t)dt

k(t) =
1

Eh[(x-t)+ ]n!

(x-t)^ = { (X-t)n x > t
0 X < t

£1



Peano's Kernels for Gaussian Rules.

4 r>
Let E(f) = J w(x)f(x) dx - Ew.f(xb), x,. m [-1,1]

-* kmt * *

and E(f) = 0 for f « p„ then k(t), Peano Kernel, for E isr

given explicitly by

K_(t) = fj— E. [(x-t);i
or equivalently,

1
r!kp(t) = J w(x)(x-t)' dx - E wkCxk-t)r.

-1 «k>i

As a special case, when w(x) = 1, we have

(l-t)r*4
rikR(t) = -—---- - E Wj.CXj.-t>

Here x£s and w’ s are abscissas and weights for the Gaussian 
rules. Further if this rule is exact for f « P. „ then for 
each r, [ r = 0,1,..., (2n-l)J we can find a kernel of order 
r and corresponding error estimate. Also the constants

. i
er = J |kri(t) | dt, r = l,2,...,2n

-i

are computed by Stroud and Secrest. These constants are 
usually called as Peano error constants [4,pp 223]. Stroud
has given the following result which is useful in computing 
error for Gaussian n-point formula :

(2n)
“If f(x) is continuous on [a,b] then there is a point 

K « (a.b) so that

S4



E Cf] = T2nTT- f bw(x)tPn(x)3*dx,
where Pn(x) is the orthogonal polynomial (with leading 
coefficient unity)."

3,11 CRITICAL EVALUATION OF GAUSSIAN QUADRATURE
There are many point* of merit for Gaussian 

quadrature, First we have freedom in the selection of base 
points. In other words base points are not pre-aasigned. It 
is found that [10,pp 187; 4,pp 75] Gauss rules are best in 
the sense that n—point Gauss rule gives the more accurate 
result than the corresponding n-point Newton-Cotes formula 
for quadrature. Also for large n, say for n>20, the 
Newton-Cotes formulae fail to give the good results but 
Gaussian quadrature formulae can compute the integral more 
accurately when n is large. In fact, they integrate 
polynomials of much higher degrees exactly. The Gauss rule 
contains positive weights which are Useful in keeping down 
the round-off errors. Another important thing is that the 
Gauss rules are Riepann sums. Hence continuous functions are 
exactly integrated by Gauss Rules. In most cases, a sequence 
of Gaussian quadratures converges to the true value of the 
integral. However, it is not true that a Gauss formula is 
always the best. For example, for the evaluation of

^ i 2^ ______ dx

the n-point trapezoidal rule is much better than the n-point 
Gauss Legenfdre formula. Also, in general, the weights and



absissas of the Gauss rules are irrational numbers,
therefore , it is difficult as well as an error prone
nuisance to deal with many digits, in case of hand
computation. On the other hand, the digitial computers do 
not make difference between 'simple' numbers like 0.6000000 
and more "complicated" numbers as 0.598250269.

Now a days, because of the use of computers, Gauss 
rules are tfery popular. But, the old difficulty of rational 
versus irrational is still present. Hence program should be 
prepared with the requirements of the typing up and checking 
of many irrational numbers. Further, the weights and 
abscissas of any Gaussian rule of one order are different 
from those of any other order (except that aero is an 
abscissa in each rule of odd order). Therefore, in the 
computation of m-point formula from n-point formula (m > n), 
almost all the information obtained in the case of n-point 
formula will get discarded. Kronrod has a device [4,pp 82] 
which is developed further by Patterson which solves this 
difficulty up to some extent. Due to this device we are able 
to add nev abscissas to a given set of abscissas to create a 
new rule of higher accuracy, but still we can't get 
optimally higher accuracy.


