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CHAPTER-III

GAUSSIAN QUADRATURE

3.1 INTRODUCTION

All Newton-Cotes integration formulae developed in

the previous chapter have the féllowinz form.

b n .‘ .
J £(x)dx = ¥ wi(x,) o .. .(3.1)
-a =0 E ] . .

where, the (n+l) values w,_ are known as the ‘weights. These
weights are associated with (n+1l) function values f(xJ.
Here the Qalues of base points x, are equally spaced, and
thus we have no choice in the selection of the base points.
The Gaussian quadrature formulae are also  of the
same type but in Gaussianv quadrature, these base poinfcﬁ X,
are not fixed and also there is no any other restriction on
their selection. Thus, in this' case, we have (2n+2)
undetermined parameters, namely (n+l) values of w, and (n+l1)
values of x, . For these (2n+2) parameters we can define a
polynomial of (2n+1) degree. Further, we select the values
of base points x, so that the sum of the (n+l) appropriately
weighteq functional values given in equation (3.1) gives the
exact value of the integral when f£(x) is a polynomial of
degree (2n+l1) or less. For such determination we require
some baquround knowledge of orthogonal polynomials. For a
given weight Ww(x), it is possible to défine a sequence of
polynomials P,(x).P (x),..., which are orthogonal and in

which Pn(x) i3 of exact degree n; 1l.e
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b

(P,P) = [ w(x)P (x)P (x) =@, m#n
a

Further, by nmultiplying each P (x) by an

appropriate constant we can produce a set of polynomials P*
2}

which are orthonormal,i.e.

X oKy _
(Pm,Pn) =0, ifm#n
=1, ifm=n

Orthogonal polynomials are popular because ofé the
property, that the zeros of real orthogonal polynomials are

real, simple and located in the interior of [a,b]. |
Here, we state the theorem. [4, pp 74] Let wéx)ze

and is defined on [a,b], with corresponding orthonormal

polynomials P*(x). Let the zeros of P* (x) 'be xt,xz,...,x
2} " ™

such that a<x‘<xa<...<xh<b.

Then we can find positive constants WoaWay oo W, such that'
. o ) ’
J w(x)P(x)dx = Ew.P(x,) ‘ ...(3.2)
a k=1

whenever, P(x) is a polynomial of class p, , . The weights

LA have the explicit representation,

1

ne+st

. L o
k. P¥, (x) P* (x,)

WK= I!l(3|3)
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If abscissas and weights are determinded as above
then the resulting integration rule is said to be of GAUSS
type. ue'fe k"' is thé coefficient of thg nt’h degree term in
- the orthonormal polynomial and iv.lﬁkof‘k,; as positive.

3.2 SOME SPECIAL ORTHOGONAL POLYNOMIALS

Just, we have seen that the orthogonal polynomials

play an important role in Gaussian quadrature. There are
sone well known and very common families of orthodonal
polynomials. Their intervals and corresponding wéight

functions are as follows:

3.2.1 Legendre Polynomials

Let P _(x). denote the Legendre polynomial. These
polynomials are orthogonal on the interval ([-1,1] with

respect to the weight function w(x) = 1. Therefore, we ﬁgve

+1

J P (x)P_(x)dx = @, ifném
—t !

=c¢c(n) #0, if n = n ...(3.4)

These polynomials can be obtained from the recursive

relation,
2n-1 n-1
P.(x) = =g~ xP._i(X) - =g Pu_a(X) (n > 2)
with P_(x) = 1, By(x) = x. ©...(3.5)



3.2.2 Chebyshev Polynomials

Let us denote these polynomials by Tﬂ(x). These

polynomials, are orthogonal

on the interval [-1,1] with respect to weight function

1
Ww(x) = ——~—. Thus, we have
Viix®
r-"---—-—--——-zl . - 2, ne#mn ,
i,y T dx = e(n) "M@ ,n=m ...(8.6)
1-.x i

These polynomials have recursion relation given by

T (x)

1

2x T __ . (x) - T, _.(x), (n 2 2)

and To(x)

11

1,  T,(x) = x. L (3.T)

b
'

3.2.3 Hermite polynomials

Let us denote thses ﬁolynomials. by Hn(x). :These

are orthogonal on the interval (-o,®) with respect tg the
B - z '
weight function e = . Thus, we have

® 2
- - 0, n#n
I‘Cf H (x)H_(x)dx = e, (x J* @, n = m. ...(83.8)

The recursion relation for these polynomials is given by.

H(x) = 2x H __(x) -2(n-1)H___(x), (n 2 2).

with Hg(x) =1,  H(x) = 2x, ... (3.9)
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3.2.4 Laguerre Polynomials

Let us denote these polynomials by L (x).
.fthese polynomials are orthogonal on the interval
[@,%) with weight function W(X) = @ . Thus, we have

D . @ n#¥m
- Io e L. (x)L (x)dx = § o (x) o @; n=nm. .. .(3.10)

These polynomials are recursively obtained from the
» i

relations,

L (x) = (2n-x-1) L__(x) - (n-1)*L___(x), (n 3 2)

with L,(x) = 1, L(x) = -x + 1, L..(3.11) -
Remark: |

Any n®" degree arbitrary polynomial P, (x) ';igLo%x‘
can be written in terms of a linear function of any of the
above <families of orthogonal polynomials. Further, any
family of orthogonal polynomials, satisfying its respective
recursion relation, is unique. In these cases, the Gauss
formula is named after the name of the orthogonal

polynomiél.e.g Gauss-~-Legendre formula, Gauss—Laguerre

formula, etc.
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3.3 GAUSS-LEGENDRE QUADRATURE

In this case, we find the value of <the integral

b
J f£(x)dx by approximating the function f(x) with nth degree

a

interpolating Lagrangian polynomial Pn(x) with corresponding

error term Rn(x). Thus, we get

b e b :
J tx)dx = [ P (x)ax + [ R (x)dx. ... (3.12)
-3 . -3 -3 :

As the base points x, are unknown, we use the interpolating
polynomial in that Lagrangian form where arbitrarily spaced

base points are allowed, viz.

n
P (x) = £ L (x) £(x.), ...(3.13)

L20

. (x - x.)

n J .
where L;(x) = n , = 9,1,2,...,n,
ji=o (xt~ xj)
i#g i *

with its corresponding error term given by,

) " fcnj+s)(')
- - L 4 s
R.(x) Lgo(x x,)] €339 1 where a < ¥ < b
...(3.14)
Therefore, we can write,
n f‘n+‘)tt)
£(x) = Ebi(x)f(x;) + [" (x-x.) ,
T =0 ’ (n+1)!
where a<¥f% <b ...(3.185)
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Also, for the sake of convenience, without loss of
generality, we change the interval of "integration to
{-1.1] by a suitable transformation,

2x - (atb)
z = Iy _ ) ' ... (3.16)

where, '.a'A:il & new variable and -~i 'S g S1,

. . (b-a)z + {a+b) | : ;
Therefore, x = 3 o .. (3.17)

Let us assume that all the base points are in the interval
(a,p]. 1.e. a=<x,x,...,x<b Also, we define a  new

function F(z) so that,

(b-a)z + (a+b) ]

F(z) = £(x) = £ 5 ..(3.18)
With this convension, equation (3.15) beconmes
- ) E(h#t) ()
F(z) =B L(2)F(z) + [[B (2-20) ] —trrrty ... (3.19)
n (z - zj) . |
where L. (z) = I ( : , and § «(-1, 1),
j=c 2.-2.) .o
jﬁ. L4 3 A4 fand g)l;Z,no

Here the base point value x‘ is simply transformed . to. 2.

Obviously, E L,(2)F(2) 1is a polynomial of at most dezree n,

L=0
n

and M (z-z,) 1s a polynomial of degree (n+1) Therefore, if
iz=0

f(x) is assumed as a polynomial of degree (2n+l) then
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({437 ¥ .
F (§)/(n+1)! pust be a polynomial of degree n, say

q“(z)' i.0. 10‘:

Then edﬁit.ton (3. 19) becomes

. n n | |
F(z) = £ Li(2)F(z) + [ n (z—zt)]q“(z) ...(3.20)

L=0 iSO

On integrating from -1 to 1, the above equation, we get

S L n i n
J F(z)dz = | EL(2)F(z)dz + | [n (a-zg}q,,(z)dz
-1 -ti=0 -1 i=0

...(3.21)
As F(zi) are fixed values, we can take summation operator

outside the integral sign. Also, neglecting the rightmost

integral, above equation becbmes

1 n . 1
§ F(z)dz = EF(z) § L(z)dz
-1 i=0 -4
S n .
t.e [ F(z)dz = E vF(z), ... (3.22)
'y i=0
1 )
where, W = J'.‘L-‘(z)dz, +=@,1,...,n. ...(3.23)

Actually,-the equation (3.22) is in the required form (3.1)
whereas the error term for this quadrature formula is the
second integral on the right hand side of (3.21). Now, our
goal is to select the values z in such a way that this

error term,
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1 n
i [ n (z-2)) ] q,(2)dz, ...(3.24)
- ) ‘

[ -]

vanishes. For this purpose, we make the use of  the

orthogonality propoity of the Legendre prpolynomials as

follows:

n
First, we write the polynomials q,(2) and il (2-2;) in terns
i=O

of the Legendre polynomials. Therefore, let

n | .
0,(2-2) = bp,(2) + b (2) + ... +bdp,(2) + Db p,(2)
nt+tl '

“=Ebp (2). : ...(3.25)

in0

and q,(2) = ¢,py(2) + ¢,p,(2) + ...+c, p (2)
n

= E ¢ p(2) ...(3.26)

L=0

Next, using equations (3.25) and (3.268) in (3.24), we Eget

4 n s " L)
H { n (z»z.‘)}qh(z)dz = f 1 T L be, p(z) piz) +
-3 i =0 - & w0 im0 :

bvu‘_n 0..";(3)Pn+‘(3)]dz. e (3.27)
L=0 :

Now, by orthogonality properties, all terms of this integral

that are of the form

1
ve, [ p(2)p,(2)dz, (1.#3)
-1

w1ll vanish. Therefore, the equation (3.27) reduces to
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1 n 4 n C
r [ 1 _r - 2
3L n (z-—z.‘)Jq"(z)dz = 3 L belp(2)] da.
-l ';-o. -1i»0
n 1 ‘ L
= B bnd_ [pi(2)1dz. ...(3.28)

To get this expression vanish, let us specify that the

+

b.= @, i=0,1,...,n.

However, the coefficient bM of p . (2z) remains still

¢ § ned

unspecified, but from equation (3.25), using l%= g for
vz @,1,...,n, we get

n

n (Z-Zi_) =z b

iz0

P

nee

wu(z). ...(3.29)

The impdrtant feature of above equation is that, the
n

' polynomial M (z-z) is already in factored form, i.e. it

i=0
has the (n+1) roots z;, * = @,1,..,.,n. Further, these roots

z must be the roots of b .p

nesPres (Z) Decause of equation

(3.29). That is, these z, are the roots of p .(z). Thus,

the (n+l1l) base points, which are to be used so +that the

n+d

integration formula (3.22) 'becomes exact, are the (n+l1)
roots of the Legendre polynqmial of degree (n+l). Also, the

corresponding weights assigned to each function value F(zt)“

are given by (3.23). Base points and corresponding weiéhts
for 2,3,4,5,6,7,8,19,12 point formulae are given in the
Appendix |



b
Remark: In the evaluation of [ f£(x)dx, where a and b are
. &

finite arbitrary, it 1is convenient to transform the
Gauss-Legendre quadrature formula from the standard ipterval
-1 £ 2 =1 to the desired interval a £ x = b, using eﬁuation

(3.17). Then, we get

b (b-a) 1 . z(b-a)+b+ta :
Ifxax = —5— [ t[—p Jdz. ...(3.30)

Since the Gauss-Legendre gquadrature formula is given by

E 3 n
J F(z)dz = £ wF(z),
-1

t=0

therefore, the equation (3.3@0) becomes

» (-a) o B ey |
I fodx = —5—E wt(——p ] . ...(3.31)

The above equation gives the general formulation of the

Gauss- Legendre quadrature. It is much suitable for computer
because instead of symbolic transformation of f(x); base
points z; are transformed and weight factors w_are modified

by the constant (b-a)/2.

3. 4 GAUSS~LAGUERRE QUADRATURE

This formula can be derived in the similar manner
to that of Gauss Legendre quadrature. As, base points‘z; are
unknown, we use the interpolating polynomial (3.13) and

error term given by (3.14). Thus, we have
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- F(nfi)(t)
F(z) = B L(z) F (20 + [ 0 (=0]—mwryr—

g <% ¢ ..l(3.32)

L% zj -
. = ————— ) + = 02,1,...,n.
where, L;(2) jLL[ z,- 2 ] 2,1 n

j H
i l
Obviously, if F(z) 1is a polynomial of%

H

degree

(843 ¢ §)

(2n+1) then F ({)/(n+l1l)! must be a polynomial of degree

n, say q (z). Thus, we can rewrite the above equation as

n n '
F(z) = £ L,(2) F(z) + [ n (z—zi)'] q.(2). ...(3.33)

Lz=0 i=0

As the weight function in this case is e =, we multiply the
both sides of equation (3.33) by e and then integrating
within the limits @ to ®, we get |

0 n a0
J e7F(z)dz = L F(z) [ e L(2)dz
] =0 o ‘
@ -z n
+f e [ n (z-z,) ] q,(z)dz. . .(3.34)
o im0 ' :
or equivalently,
a>__ n '
J eTF(z)dz = E wF(2) ...(3.35)
o i=0
@ ) ;
where w, = [ e L (z)dz. ...(3.36)
o (A
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The equation (3.35) is in the desired form of
equation (3.1) where the second term of right hand side of
equation (3.34) gives the error term of the quadrature
formula. We now select the values of 2z, such that this error
term get vanished by using orthogonality property of
Laguerre polynomials. First we writé qn(z) in terms of the
Laguerre polynomials of degree n or less. N§w it rizo(z~zt)
is (-1)""'L__(2), the error term vanishes; and the roots of
the Laguerre polynomial L _ (2), will be the required 'basg
points z, for this (n+l) point Gauss-Laguerre quadrature
formula. Also from equation (3.36), we &et the corresponding

weight factors.

The error for this gquadrature is given by

[(n+1)12% .. '
E.= —Gnrzyr — F (%), & e (D@ ... (3.37)
Remark:

Using the linear transformation, x = z + a, where
a is arbitrary but finite, we can use the Gauss-Laguerre
quadrature to evaluate integrals of the type,

@
J e™f(x)dx
a

Using above transformation, this integration becomes

m"‘l ,. w-{s«»
f e™f(x)dx = [ e f(zta)ds.
a o

-

o0
= e [ e "f(zta)da.
©
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Hence, the Gauss-Laguerre guadrature for arbitrary lower

limit of integration a is written in general form as

0)~x m""
J eTt(x)dx = & °C wf(z.+a)
a i=o

Here LA and 2z, are the same as that of previous case.

3.5 GAUSS-CHEBYSHEV QUADRATURE & GAUSS-HERMITE QUAbRATURE

Using Chebyshev orthogonal polynomials and its
properties, we can derive the gquadrature formula known as
Gauss-Chebyshev quadrature formula. The derivation of <this
formula is very. similar to that of Gauss-Legendre or
Gauss-~Laguerre quadratu:e.,ﬂere we get

s 1 )
F(z)dz = E wF(z) ...(3.38)

L=0

1--zz

If F(2) is a polynomial of degree (2n+l) or less
then this integration is exact. Here the (n+l) base points

z, are the roots of the (n+1)*" degree Chebyshev polynomial

Tw“(z). 80 that

(2L + 1) n
Z, = Q08 T3 ) , _ t=0,1,...,n.
n
Here the weights w, are equal and have the vliauwe /77— .
Therefore, after simplification of (3.38), we get
1 1 n n
I"—;;:— Fzddz = [y ) EFG) .. .(3.39)
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The error term (3,pp 116] in this case is given by

~2n
Bn = AT oragy] F*"®(¢), € =(-1,1) ...(3.49)

Similarly, using orthogonality property of the

Hermite polynomials we can derive another Gaussian formula,

© ..2 n
J eTf(x) dx = T wif(x) ...(3.41)
-0 i=0

This is known as the Gauss;Hermite quadrature. The roots of
Hermite polynomial Qt degree (n+l) gives the base points X .
The error term {3,pp 116} in this case is given by

(n+1)!V 11 -

E, = —F7 f (%), T &« (-1,1) ...(3.42)
2 (2n+2)!

Remark:

By suitable transformation, we can use the Gauss-Chebyshev

quadrature to evaluate the integral of the form

1Y 1 '

J ——— f(x)ax or [

-3 2 . %
1-x

where, a and b are finite.

o -
£(x)dx ,
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3.6 OTHER GAUSSIAN QUADRATURE FORMULAE

The four Gaussian quadrature formulae discussed up
to this time allow the numerical evaluation of many well
behaved integrals over semi-infinite, finite or infinite
intervals of integration by using a suitable transformation
of the variable of the integration. Sometimes, it is
possible to find the value of integration of the function
which has a singularity in the intefval of integration by

adjusting the singular term in the weight function. e.g. If
. 1

————3

\/ t-x
over the integration interval ([~-1,1] then it can be

the function to be integrated contains the factor

evaluated by the help of Gauss-Chebyshev quadrature.

We can generate a variety of other Gaussian
quadrature formulae for ﬁarticular weight functions, limits
of intégration and sets of orthogonal polynomials. Two
famous particular cases of the Gaussian type are ' developed
in which either or both end points of the interval of
integration are base points. These formulae aré called the
Lobatto quadrature and the Radau quadrature. In Lobatto
quadrature, both the 1limit points are included in Dbase
points, the remaining (n-1) points are found as the roots of
Ln'(x), i.e. the roots of the derivative of the Legendre
polynomial of degree n. This quadrature produces the
integral exactly pro?ided £(x) is # polynomial of degree
(2n-1) or less. In case of Radau quadrature, only one limit
point is included in the set of base points. It produces the
integral exactly when f£(x) is a polynomial of.degree 2n or

less.
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’ ' We can also use the Gaussian quadrature formulae
repeatedly on the subintervals of' the interval of the
integration and create the corresponding composite formulae.
As many Gaussian formulae do not include the end points of
the interval of integration the number of functional
evaluations per subinterval may not be reduced as in the
case of Newton-Cotes closed formulae. On the other hand, due
to the inconvenient form of values of the weight factors and
base points it is impossible to use high order formqlae for
hand calculation. Also, since we reéuire a large amount of
tabular information, it 1is tedious to prepare computer
programs to implement a quadrature for many values of n. In
another'way we may compute base points using well known root
finding methods and then apprppriate weights which will
probably become too wasteﬁul of éobputine time for a

frequently used integration program.

3.7 GAUSSIAN QUADRATURES WITH PREASSIGNED ABSCISSAS

Now, we consider Gauss type integration formulae
with a certain number of preassigned abscissas. Such

formulae are of the type

b

J w0f(x)dx = Eaf(y,) + Ewf(x) ... (3.43)
a k=t k=1

Here y, "s and x,"s are abscissas and y,"s are preassigned
abscissas. Further, there are totaily (m+2n) constants: a, ,
w, and x, . We have to determine these constants~so that the
rule is exact for polynomials of the highest possible
degree (m+2n-1). For this purpose, let us introduce the

polynomials -
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r(x) = (x-y ) (x-y,) ... (x-y_),

S(X) = (X-X)(X-X,) ... (X-X) ...(3.44)
Davis and Rabinowitz [4,pp77] have shown that the
formula (3.43) 1is exact for all polynomials of degree
(m + 2n - 1) or less if and only if .
(1) it is exact for all polynohials of dggree
(m + n - 1) or less,
(i1) every polynomial P(x) of degree (n-1) or less
b

should satisfy, [ w(x)r(x)s(x)p(x)dx = @.
a .

In numerical point of view, clearly we must
determine s(x) = (x-x )...(x-x ) as one of a family of
orthogonal polynomials on [a,b] with respect to tﬁe‘ wéight
function w(x)c(x). At this point, theorem of Christoffel 1is
of much importance which states: "Let P (x), n'= 0,1,... be
orthonormal polynomials on [a,b] with respect to the weight
w(x) 2 @. Let r(x) =2 @ be, as defined in (3.44) on [a,b] and
suppose that the y s arg.distinot. Let q (x), n = 0,1,...
be orthogonal polynomialﬁ over [a,b] with respect to

w{x)r{x). Then
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P_(x) ?M‘(x) coe Pon(x)

P(y,) P (v) ... P (¥)
r(x)q (x) =

Pn(ym) 'Pn-u(ym) s Pnﬂn(ym)

The common examples of the rules of Gauss type
with preassigned abscissas are Radau and Lobatto rules of
integration, as disscussed in +the ' previous section. Here
abscissas at the end points of the interval of the

integration are preassigned abscissas and welght w(x) =1 is

used.

3.8 THE ALGEBRAIC APPROACH TO THE GAUSSIAN QUADRATURES

Here we shall gee the algebraic‘approach for the

Gaussian gquadratures. As usual, take w(x) 2 @ as a weight

function. We want to find 2n values: WM oW
X,,X,,...,X_So that for £(x)= 1,x,x,...,x ', we have
b "
J w(x)f(x)dx = Ew £(x). ...(3.45)
a . i=1 .
: ' b .

Using the apbreviation, J w(x)x'dx = m, and writing out
. M -

' : 2 ~  _2n-
equation (3.45) for f(x) = 1,x,%x,...,X successively, we



get the following systen,

m, = W, + W, + LS + ... + L
{0‘ = vtxt + w:xa + w.x. AR wnxn’
2 2 2 2
mz = w‘x‘ + waxz + w.x' + ... ¢+ W“X" ’
_ 2n-1 2n~1 2n-1 Zn-1
m, ., T WXt WX L% S A &
. ...(3.46)
Let us define
P(x) = (x-x‘)(x-xz)...(xqu)
n X
:Eckx ] c: 1- --0(3-47)
n
k=0

Now multiplying first n - equations of system (3.46)

succesgively by Cy1C.1Cp1 . C WO get the following system

BsCo

= ‘V‘Oo- + waco + W.Oo‘l". — ﬂ“@}o.

= WeX, tW,ex, +twWcx +..+twex. ,

4wcx2
- 7

142

= W‘Q

xn
n 1

+ W C

2 n

2
+ wcx +

2

N
+
xz

-

2 2
w.czx' +...+ w“c;x“ ’

. n n
wex + ... twex .
an 8 n NN

...(3.48)



Adding all these equations in the above system (3.48) we get

: +
m,c, + mc,+ mc, mc, + ... + mc

2 "
+ w.(c_+ + o %+ + "y
wy(c t e, x, c,X, . c X,
+ (c_+ + z 4 + "y 4
Wy (et e,.x, CXg ‘e c Xg cee
2 n
+ wn(co +ex + cx. + ...t cnxn).

n
The terms in parenthesis above have typical form ¢ ckx: ,
: k=0
i =2@,1,...,n. and from equation (3.47), its value is P(xi)

which in turn becomes zero. Hence above equation reduces to
m,c, + mec, +mec, + ... +me_ = 0.

Once again we do the samg procedure for second, third,
.,(n+1)‘h equations of the system (3.46), i.e. multiplying
second, third, ..., (n+1)th equations of the system (3.46) by

co,c‘,{..,cn successively and then adding and using equation

(3.47) ,we get

+ + ... + = .
mtco mzc!. mn-o-tcn 9

In this way, since ¢ = 1 we obtain the system of n

equations in n quantities Cq3Cy1Cps e+ sC . i which is
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BeCq tme, tme, vt 0, =0,

BCe *+ M, + M, + ... +MeC, = -D, ,

mCo + Me, * mC, + ... M C T B,
mn-sco M m.c, + mnﬂ.cz oot mzn—zcn-1 -7 mtn——:'

...(3.49)

The determinant D of this system is given by

D= | m_]| : b i+j = b i
iej S u(x)x ‘dx ' l £ w(x)x x'dx
[- % £- 3
This is the Gram determinant of the functions
l,x,xz,...,x”4. In fact, these functions are linearly

independent and hence it follows that D # @&. Hence the
system (3.49) have a unique solution for the constants
Cp1Cy1Cps e+ +sC we

From the values of c¢,,¢ c

n-g’ a? 002 n-a’

X from equation (3.47).

can get the abscissas X sXKgsooor X

Clearly these abscissas will be real, simple and located in
(a,b). After determined +the abscissas, we c¢an find <the
weights using system (3.46).

Remarks - (1) To obtain formulae of Gauss type with one or
more fixed points, Qe can use the ’modification of this

device.
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(2). Very often, the relevant matrices are
ill-conditioned. Hence, from numerical point of view this
method of determining Gauss integration formulae 1is not

mostly recommended. Also the evaluation of a polynomial in

n
the form E ckxk may be an 1ll- conditioned process for
k=0

large n so that accurate deterhinétion of its zeros becomes

impossible.

3.0 CONVERGENCE OF GUASSIAN RULES

To study the behavior of a segquence of
approximations generated by a specific Gaussian quadrature
as the number n, of ordinates is increased, we express the

error for the n-point Guassian rulg in the form,'

b n
E, = RI£(x)] = [ w(x)f(x)dx - £ w£(x, ) ...(3.50)
k=4 .

(-]

where the weights and abscissas are supplied with the

earlier implied index n.

We restrict our attention first to the cases where
{a,b] is finite. Also, we suppose here that the weight
function w(x) is non-negative in (a,b) and all the weights

W, are positive so that many cases 8o far considered will

be included. 1.e.vLet
wix) 298 (a=<x=Db),w, >0 ' ...(3.51)
We also suppose that the degree of precision of
the Gaussian formula under consideration is positive and
increasing with m . Let f(x) be continuous on [a,b].
With these as!umptions,' for given any ¢ > @

(however small) by the Welerstrass approximation theorem, we

can find a polynomial p(x) for whiehv



|[£(x)-p(x)]| < ¢ , (as<xsb) ... (3.52)
If p(x) has degree M, we next take n sufficiently large so
that the degree of precision of the Gaussian quadrature
formula under consideration exceeds M, and hence
R [(p(x)] = @. ‘
Now, from the linearity of the operator R , we havej
| R[£] = R [£-p] + R [p)
Hence for all sufficiently large m , we obtain

|

|

b n
|BaLE3] = | I., RO CE(x)-p(x)1dx - B W [£(xy)- P(x,,)]

b n
< 5wl £0x)-p(x) ldx + Bundf(xm) - (k) |

b

n
2 ¢ [_f wix)dx + t.w“k] (by 3.52)
o k=1 :

b .
2 e [ w(x)dx ...(3.53)

Here we have used the assumed properties of w(x) and W
The last step appears due to the fact that Rn[ll = @ implies

the relation,

: b n
J wix) ax = gEw_, .
a k=1

Thus, accordingly |E | can be made smaller than  any
preassigned positive quantity ¢ by taking n sufficiently
large. Hence we conclude that E“ + @ as n -+ ® or

lim E = 0.
n

n-+00



When the interval of integration is not finite, we
need a less simple approach because the Weierstrass theorem
is not available. However, convergence has been established
in the cases of Gauss-Laguerre and Gauss-Hermite quadrature
provided f(x) is continuous in every finite subinterval of

[@,o) [or (—m,w)]' and f(x) is such that

1
wix) |£(x)] < YeS
for sufficiently large x (or |x]) and for some p > @. Also,
we have the following results about convergence of Gaussian
Rules. [4,pp 100].
(1) If ; is a bounded Riemann iq}ézrable function on {-1,1]

i.e. 1f £ € R [(-1,1] then lim E = @.

N0

" (11i) If £(x) is piecewise constant function on ([-1,1] then

also 1lim En =a.
n-+00

A most general theorem about the convergence of a family of
rules is given by Polya. [4,pp 103] The statement of this

theorem is as follows:

IA
™

1A
o

" Let L (£) = Lw_f(x ) a

k=g nk

b .
Then 1lim L _(f) = | £(x)dx , V £ « Cla,b]

n->0

if and only if

b

umL(x*) = [ xax . k= @,1,2,..
n->m [- T
and
n
Llw,l sH , n=1,2,3,.
lemg
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where, M is some constant.”

It should be noted that a family of approximate

integration formulsae,
n
L (f) =k£a w o E(x ) asx, =b ...(3.54)
which converges for all functions which are continuous on
[a,b] will not converge automatically for all functions
which are Riemann integrable on [a,b]. For example, select

the weights and abscissas as follows:

X .= (i-1)/n , i = 1.2,...,n.
LA 1,

LAV -1,
w. = 1/n, i=3,4,...,n.

n

This family of rules integrates all functions which are
continuous in (©@,1] properly in the 1limit but cannot

integrate the function,

£(9)

1
-

£(x)

1
s
s
A
%
IA
-

Polya has given the‘ necessary and sufficient
conditiohs for convergence for all functions of class
R{a,b]. Let I denote the sum of a finite number of inéervais
(intervals may or may not be disjoint) situated in (a,b).
Let m(I) denote the sum of the 1lengths of the individual

intervals of I. Let ¥ Iwhkllwill be the sum taken over those
) _

W, for which x <« I. Set



A\ (I) = 1lim sup & |w |

n-»00 I

It can be shown that, the set function A\(I) is
non-negative, monotone: A(L) = NI +L), and
subadditive: A(I+I,) S A(I)+/\(I)). If for any sequence,

I= Izé ... and m(I) + @, we have

lim A (1) =9

N0

then /\ (I) is called semicontinuoGs.

Now, the necessary and sufficient condition given by Polya
for convergence for all functions of class R{a,b] is as
follows:

" If

b w
J f(x)ax = 1im Ew_ f(x

)
k
n»00 k=g n

holds for all f € C[a,b] then it alsc holds for all
f € R[a,b] if and only if /\ (I) is semicontinuous."”

3.10 ERROR ANALYSIS

b :
In approximate integration, the value of [ f(x)dx
(-3

n
is replaced by a finite sum Ew. f(x.). In this process, two
i=1

sorts of errors involve. First, there is the truncation

error E which arises due to the fact that the sum 1is 'only

74



approximately equal to the integral:

b n
J fx)dx = Ewf(x) + E ... (3.55)
a |

i=g
In the another place, there is the roundoff error R and it

is due to the limitation of accuracy of the computer. Hence

. n
we compute the finite sum Ewf(x;) approximately. Let c*

L=1

denote this produced value, therefore,

* n
L =ZEwif(x) +R.
L=1

Thus, the estimate of total error is

b
S f(x)dx - &

a

*I = 1E1+1R]|

Of course, we have assumed that f is a function defined
mathematically. Hence it does nét consist of experimental
data. Therefore we can compute f within the accuracy of the
computer word length.

Usually roundoff error is negligible, but it
becomes significant when we take large values of n in the
sum (3.55). First we shall discuss the effect of roundoff

error in the computation of the rule

b n
J f(x)dx = Ewif(x) ...(3.56)
< .

=1

The analysis given below is based on analysis of
Wilkinson. [4,pp 208]. Suppose that the computation of right
hand sum in (3.56) 1s carried out in floating point
arithmetic on a computer which works with t binary digits.
Alsé suppose that our computer has a single precision
accumulator. Let fl(x;+ x,), fl(x,x)) denote the addition

and multiplication of X, and X, in the floating pointA mode,

e )



then it can be shown that

fl(xl+xa) = x‘(1+¢') + x,(l + €”)
and fl(x‘xz) = x‘x,(l +£*') ...(3.587)
where | ' |, [e”] S (3/2)2™" and | | s 27 ...(3.58)

Now we are able to analyse the error made in computing a sum
of products. We shall usé these basic inequalitieé in
(3.58). | |

Let s, = fl(ab, + ab, + ... + ab) «..(3.59)
The meaning of s, ié that we éompute‘ the“products aJ% in
floating and then add them in floating in the indicated
order. In fact the computation (3.59) is the abbreviation

for the computation of following steps indicated
recursively.
s, =t _= fl(ab,) ,
t, = fl(arb,),

s, = fl(s _+ t)), r > 1

With the help of (3.57), (3.58),. we obtain the above

equations as

s, =t = fl(a‘b‘)
t, = arb' (1 + tr),
s, = s (1 +0)) + t( L+ ng), ...(3.60)

-
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where

o] el | @] = " ...(3.604)
alongwith _n_ = (3/2) 2 and _n_ = 2. Using (3.60)

recurrsively in (3.59), we find

s = ab(l+e) +ab(l+e) +...+abll+e)
| ...(3.61)
where, (1 + &) = (1 + &) (1+n,) ... (1),

L4

(1+e)=(1+&)(L+n)(1L+n_) ... (1L+n),

r+i
r=2,...,k-1

(1 + &) (1+mn) ...(3.62)

Using (3.§0A) and (3.62), we have

and (1 + )

(1 -_n_)(1 - __n__t)k-a < l+e, S (1 + )1+ _h_!)k-a ,
(1 -__ﬁ_a)(l- _ﬁ__‘)k—t-ﬂ = 1+cr < (1 + ‘_n__:)(l + -h_‘)k—r-rt,

r = 2,3,...,k.
This gives the uniform estimate for r = 1,2,...,k:

k-r+4 < k-r+1

(1- NP0 -n D™ s 14e 21+ N DA+ N

...(3.63)
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Now, (1 + ™ _Eiflil_

)™ =1+ m _n_ =7 s
m-1 (m-1)(m-2) a
:1+m__ﬁ__1+' 21 s 31 o+
m n*
=1 +n _ﬁ.[l t I Nt "t s ]
em __ﬁ__,_ 1
= 1+m _N_ T ...(3.64)
Similarly ue'can show that,
- e - -1
{l- ) 2 1 - m N ﬁ —~ ...(3.65)

If we suppose that k_rL1 < @.1 then as (e°'?-1)/0.1 = 1.06,
we have from (3.63),(3.64),(3.65),

(1 - "0 - (k-r+1)_N_(1.06)] < 1+s
S (1 + _n 01+ (k-r+1)_n_(1.26)]

Therefore,
fe | £ N, + (k-r+1)_n_ (1 +_N_,)(1.06), r=1,2,...,k.
...(3.68)
Now, from (3.59) & (3.61), we get
k k ; k
Eab - £1 Tap] = Eaps, ...(3.67)
L= =1 =1

" —
We will apply this identity to Ewtf(x.t). Let £, denote the

img
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result of computing f(xi) in the floating point mode, and

suppose that fi = £(x)(1 + e), t = 1,2,...,n
| ...(3.68)
with e | s e, i=21,2,,..,n ...(3.69)
where © is 3 small quantity 1likes ._N_. We have
n . n —
R = Ewitx) - 1 Ewf, .
o i=g i=4 -
= > L
+ R = IEwf(x) - 8"11'5, + 3 'w.‘i'.tc.t, (using 3.67).

i=1 L=y iL=1

n n
+ (Rl = eF |wllf(x)]| + (1+0)E fw | 12(x) | <],
i=4 i

i=4

(using3.68,3.69) ...(3.79)
Let M = max {If(x)l /a<x<b }.Then (3.72) becomes

n n
IRl s oM Efwl + (1 +e) MEIw]|lel

=1 L8

Further using (3.66) we get

n n
IRl seME|w|+(1+e)H.n, Elw] +

i=g img
n
(1.06) (1+=) M _"_4(1 + _ng).lilwtl(n~i+1) ... (3.71)
[ B

Let us have some assumptions:

A

n
w">0, EW“:b‘a, W;‘T, b = 1;2,:--,n-
i=s

where A is a constant independent of n. Many rules satisfy

these assumptions. With these, we estimate (3.71) as
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[R| £ o(b-a)M + (1+e) M_n_(b-a) +

(n+l)
1.06(1+0)M_N_, (1+ M )A 2

| (n+1)
M(b-a)[e+(1+@) ] + 1.26(1+@)M N (1 +. N D A 5

... (3.72)

Here exact weights are assumed. If &' is bound on relative
error in each weight, then the term M(1 + @)ne’ is to added
to the right hand side of (3{72) as well as (3.71).

" ‘From this analysis, we se¢ that the roundoff error
in approximate integration can be expected to increase as
thé first §OWer of n. Hence these‘eriors will not harm more
because, in general, n varies within the range 18 to 10°.
These errors become still less if double precision computing
is used. However we have to take care ﬁhen vast numbeis‘ of
abscissas are used.

In the approximation (3.56), the total error
committed consists of both types of the errors: roundoff
error as well as truncation error. The‘truncation error - is
. n ' or better in case of usual ‘employed rules. As n
increases, roundoff error also increases but truncation
errér decreases. Hence n should be properly selected at some

intermediate value.

Trunction'KError Through Peano’s Theorem

Let the truncation error be designated as

b n
E=E(f) = [ £(x)dx - Ew f(x).

S i=g
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We shall treat E(f) as a linear functional defined over a
certain class of functions for the sake of convenience.

Linear functional E have the following property,
E(af(x) + bg(x)) = a E (£(x)) + b E(g(x))

for some constants a and b. Let f be a function whose n-th
derivative exists and 1is absplutely continuous on {a,bl. Now

the Peano’s Theorem is as follows:

"Let E(P(x)) = @ whenever P(x) e p".

ned

Then for all £(x) € C""*[a,b],

b
E(f) = [ £ (0k(t)dt
1 »
where k(t) = |~ E l(x-%t), ]
and (x-t)] = { (;‘t) ; f E !

Here the symbol Ex means that the 1linear functional E is
applied to the variable x in (xht):, The function k(t) |is
known as the Peano Kernel for E or influence function for E.

If k(t) does not change its sign on [&,b] then we get

E(f) = — (n+1)! ‘ 'E(xﬁ“)s ¥ « (a,b).

For an arbitrary rule of approximate integration (3.56)

there is no reason for k(t) to have one sign.
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Peano’'s Ke;nels for Gaussian Ru;es.

‘ 1 n
Let E(£) = [ w(x)f(x) dx - Ew,£(x,), x, «[-1,1]
-2 k=xs
and E(f) = © for £ € p  then k(t), Peano Kernel, for E is

given explicitly by

1 ,
K(t) = FT E_ [(x—t);]
or equivalently,

1
rik (t) = [ w(x)(x-t)] dx - E w(x -t)".
-l xku.

As a special case, when w(x) = 1, we have

r+s

(1-t) .
rik (t) = — 07 - T wx,-t)

Here x;s and w; s are abscissas and weights for the Gaussian
rules. Further if this rule is exact for f € P, _ then for

each r, [ r = 0,1,...,(2n-1)] we can find a kernel of order

r and corresponding error estimate. Also the constants

: .1 ' .
el‘ = j.-‘|kr-‘(t)l dt’ r = 1’2’c:-,2n

are compuﬁéd by Stroud and Secresé. These constants are
usually called as Peano error constants [4,pp 223]. Stroud
has given the following result which is useful in computing
error for Gaussian n-point formula :
(z2n) : ‘
“If £(x) is continuous on [a,b] then there 1is a point

{ € (a,b) so that
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E [£] L 23§ WP (x1%
= wix x X,
!Zni! o "
where Pn(x) is the orthogonal polynomial (with leading
coefficient unity).” |

3.11 CRITICAL EVALUATION OF GAUSSIAN QUADRATURE

There are many. pointe of merit for Gaussian
. quadrature, First we have freedom in the selection of base
poihts. In other words base points afg7n9t pre-assigned. It
is found that [10,pp 187; 4,pp 75] Gauss rules are best in
the sense that n—point Gauss rule gives the more accurate
result than the corresponding n-point Newton-Cotes formula
for quadrature. Also for large n, say for n>20, the
Newton-Cotes formulae fail to give the good results but
Gaussian quadrature formulae can compute the integral more
accurately when n 1is large. In fact, they integ?gte
polynomials of much higher degrees exactly.:The Gauss rule
contains positive weights which are useful iﬂ keeping down
the round-off errors. Another important thing - is that the
Gauss rulea are Riemann sums. Hence continuous functions are

exactly integrated by Gauss Rules. In most cases, a sequence’
| of Gaussian quadratures converges to the true value of the
integrall However, it is no£ trué-that a Gauss formﬁla ié
always the'best. For example, for the evaluation of

1 2
I, Zvsincigex) 9%

the n-point trapezoidal rule is much better than the n-point

Gauss Legendre formula. Also, in general, the weights and
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absissas of the Gauss rules are irrational numbers,
therefore, it 1is difficult as well as an error prone
nuisance to deal with many digits, 1in case of hand
computation. On the other hand, the digitial computers do
not make difference between “simple” numbers like 0.6000000
and more “"complicated” numbers as ©.598250269.

Now a days, because of the use of éomputers, Gauss
rules are very popular. But, the old difficulty of rational
versus irrational is still present; Hence program should be
preparedjwith the‘fequirements of the typing up and checking
of many irrational numbers. Further, the weights and
abscissas of any Gaussian rule of one order are different
from:those of any other order (except that zerc 1is an
abscissa in each rule of odd order). Therefore, 1in the
computation of m-point formula from n-point formula (m > n),
almost all the information obtained in the case of n-point
formula will get discarded. Kronrod has a device [4,pp 82]
which is developed further by Patterson which solves this '
difficulty up to some extent. Due to this device we are able
to add new abscissas to a given set of abscissas to create a
new rule of higher accuracy, but st;ll we can’'t get

optimally higher accuracy.
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