CHAPTER - III

Inversion Theorem

CIIAPTER - III

INVERSION THEOREM

3.1 Introduction:

In the preceding chapter we have derived some important properties and results concerning the mixed Stieltjes transform $m(t, z)$ at a function $f(x)$. Our objective in this chapter is to derive the inversion formula for the mixed Stieltjes transform.

Transform analysis deals with different kind of integral transforms and corresponding to each integral transforms there must be inversion formula for the transform. To derive the inversion formula for the mixed Stieltjes transform, we shall consider converse problem that of deriving information about the original function $f(x)$, when we have known its mixed Stieltjes transform. When $m(t, z)$ is prescribed any formula enabling us to derive the form of the original function $f(x)$ is called inversion formula for the mixed Stieltjes transform. The mixed Stieltjes transform defined by
M. Giona and O. Patierno [1] by the equation

$$
m[f(x)]=\int_{0}^{\infty} \frac{e^{-z x}}{1+t x} f(x) \cdot d x \ldots(3.1 .1)
$$

where $f(x)$ is piecewise continuous and locally integeable function over interval $0<\mathrm{x}<\infty, \mathrm{z}$ is complex variable and t is real variable on interval $0<t<\infty$. To derive the inversion formula for the mixed Stieltjes transform (3.1.1), we need some transforms and their inversion formulae. The Laplace Transform is defined by the equation,

$$
L[f(x)]=\int_{0}^{\infty} e^{-z x} f(x) d x
$$

where z is a complex number.

The inversion formula is given by

$$
f(x)=\frac{1}{2 \pi i} c \int_{-i \infty}^{c+i \infty} e^{z x} \phi(z) \cdot d /
$$

where $f(x)$ is continuos and exponential order in the interval $0<x<\infty$ and $\phi(z)$ is the Laplace transform of $f(x)$.

The Stieltjes transform is defined by the equation.

$$
S[f(x)]=\int_{0}^{\infty} \frac{f(x)}{t+x} f(x) d x
$$

where t is a real or complex valuable and $f(x)$ is locally integrable function in interval $0<x<\infty$.

The inversion formula for the Stieltjes transform [2|, is given by the equation,

$$
f(x)=\frac{1}{2 \pi i_{c-i \infty}} \int_{i \infty}^{+i \infty} \frac{S(t) \cdot x-t}{\Gamma t \Gamma(1-i)} d t
$$

where $S(t)$ is the Stieltjes transform of the function $f(x)$.

Also the Mellin transform is defined by the equation,

$$
M[f(x)]=\int_{0}^{\infty} x^{p} p l_{f}(x) d x
$$

and its inversion is given by,

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} M(p) \cdot x^{-p} d p . \tag{3.1.2}
\end{equation*}
$$

where c is a positive constant and $M(p)$ denotes the Mellin transform of $f(x)$.

To give derivation of an inversion formula we have been use the methods of inversion formulae for the Laplace transform and the Stieltjes transform. The method of an inversion of the Laplace transform is given by Sneddon [3]. We use this method to give the proof inversion formula for the mixed Stieltjes transform.

3.2 Inversion Theorem.

Statement: Let $f(x)$ be continuous and $x^{-1} I(x)$ be a locally integrable function in the interval $0<x<\infty$, If $m \mid f(x)]=m(1, \gamma)$
then,

$$
f(x)=\frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{c-i \infty} \int_{c-i \infty}^{i \infty} m(t, z) \cdot c^{z x} x^{-t} d t \cdot d z
$$

where ' c ' is positive constant

Proof: To prove the theorem, we have to show that the interal

$$
\begin{aligned}
& \frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{c-i \tau c-i \tau}^{c+i \tau} m(t, z) \cdot c^{z x} x^{-t} d t \cdot d z \\
& \text { converges to } f(x) \text { as } \tau \longrightarrow \infty
\end{aligned}
$$

Consider the integral

$$
\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{c-i \tau c+i \tau} \int^{c+i \tau} m(t, z) \cdot e^{x} x^{l} d t \cdot d z
$$

Substituting value of the mixed Stieltjes transform from the equation

$$
\begin{array}{r}
\text { L.H.S. }=\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{c-i \tau c-i \tau}^{(2+i \tau}\left\{\int_{0}^{\infty} \frac{i^{-z y}}{1+i y} \cdot f(y) \cdot d y\right\} \\
\\
e^{z x} \cdot x^{-1} \cdot d t \cdot d z
\end{array}
$$

Since function $f(x)$ is continuos

$$
\begin{array}{r}
\text { L.H.S. }=\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{c-i \tau c-i \tau} \int_{0}^{i t} \frac{(x-y) z}{1+t y} \\
x^{-t}(y) d y \cdot d t \cdot d z
\end{array}
$$

Since the limits of integration are not the function of variables t, y, z and the integrand is continuous.
by using change of order of integrations (0.2.11)

We have,
L.H.S. $=\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{0}^{\infty} \int_{c-i \tau}^{c+i \tau}\left\{\int_{c-i \tau}^{c+i \tau} e^{(x-y) z} d z\right\}$

$$
\cdot \frac{x^{-t} f(y)}{1+t y} d t \cdot d y
$$

Carring out inner integration.

$$
\begin{gathered}
\frac{1}{2 i} \int_{c-i \tau}^{c+i \tau} e^{(x-y) z} d z=\frac{\sin \tau(x-y)}{(x-y)} \cdot e^{(x-y) c} \\
\text { L.H.S. }=\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{0}^{\infty} \int_{c-i \tau}^{c+i \tau}\left\{\frac{2 i \cdot \sin \tau(x-y)}{(x-y)} \cdot e^{(x-y) c}\right\} . \\
\frac{x^{-1} f(y)}{1+t y} d t \cdot d y
\end{gathered}
$$

$$
\begin{aligned}
& \cdot f(y) \cdot d t \cdot d y \\
& \text { L.H.S. }=\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{2 i \pi^{2}} \int_{0}^{\infty}\left\{\lim _{\tau \rightarrow \infty} \int_{c-i \tau}^{c+i \tau t} x-1\left[\frac{1}{\frac{1}{y}+t}\right] \cdot d t\right\} \\
& \frac{e^{(x-y) c} \sin \tau(x-y)}{y(x-y)} \cdot f(y) \cdot d y
\end{aligned}
$$

Carrying out inner integration,

$$
\therefore \lim _{\tau \rightarrow \infty} \frac{1}{2 \pi i} \int_{c-i \tau}^{c+i \tau} x^{-1}\left[\frac{1}{\frac{1}{y}+1}\right] \cdot d t=x^{\frac{1}{y}}
$$

[Since by definition of inverse of Mellin transformation 1.312]

$$
\begin{gathered}
\text { L.H.S. }=\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{2 i \pi^{2}} \int_{0}^{\infty}\left\{2 \pi i x^{\frac{1}{y}}\right\} \frac{e^{(x-y) c}}{y(x-y)} \\
\cdot \sin \tau(x-y) \cdot f(y) \cdot d y
\end{gathered}
$$

$$
\begin{aligned}
\text { L.H.S. }= & \lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{\pi} \int_{0}^{\infty} \frac{x^{y_{e}}(x-y)}{y(x-y)} \\
& \cdot \sin \tau(x-y) \cdot f(y) d
\end{aligned}
$$

$$
\begin{aligned}
& \text { Put } y-x=u \Rightarrow d y=d u \\
& y=0 \Rightarrow u=-x \\
& y=\infty \Rightarrow u=\infty
\end{aligned}
$$

$$
\text { L.H.S. }=\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{\pi} \int_{-x}^{\infty} \frac{x^{(x+u)}}{(x+u)} \frac{e^{-c u}}{u} \cdot \sin \tau u \cdot f(x+u) \cdot d u
$$

$$
=\lim _{\tau \rightarrow \infty} \frac{x^{\left(1-\frac{1}{x}\right)}}{\pi} \int_{-x}^{\infty}\left\{\frac{x^{\left(\frac{1}{x+u}\right)} e^{-c u} f(x+u)}{x+u}\right\} \cdot \sin \tau u \cdot d u
$$

$$
=x^{\left(x-\frac{1}{x}\right)} \lim _{\tau \rightarrow \infty} \frac{1}{\pi} \int_{-x}^{\infty}\left\{\frac{x^{\left(\frac{1}{x+u}\right)} e^{-c u} f(x+u)}{x+u}\right) \sin _{u} d u
$$

Let,

$$
g(x+u)=\frac{x^{(x+u)} f(x+u)}{x+u}
$$

Since we can write the integral.

$$
\begin{aligned}
& \frac{1}{\pi} \int_{-x}^{\infty} e^{-c u} g(x+u) \cdot \frac{\sin \tau u}{u} \cdot d u \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} e^{-c u} g(x+u) \cdot \frac{\sin \tau u}{u} \cdot d u
\end{aligned}
$$

We have,

$$
\text { L.H.S. }=x^{\left(1-\frac{1}{x}\right)} \lim _{\tau \rightarrow \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} e^{-c u} g(x+u) \cdot \frac{\sin \tau u}{u} \cdot d u
$$

The function $g(x+u)$ is continuous on $-\infty<x<\infty$,
\therefore we have the result [0.2.8] and [3]

$$
\lim _{\tau \rightarrow \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} e^{-c u} g(x+u) \cdot \frac{\sin \tau u}{u} \cdot d u=g(x)
$$

where ' c ' is positive constant.
therefore, we have,

$$
\begin{aligned}
& L \cdot H \cdot S \cdot=x^{\left(1-\frac{1}{x}\right)} \cdot g(x) \\
& =x^{\left(1-\frac{1}{x}\right)}\left[\frac{x^{\prime} / x}{x} \cdot f(x)\right] \\
& =x^{\left(1-\frac{1}{x}\right)}\left[x\left(\frac{1}{x} \cdots 1\right)\right] \cdot f(x) \\
& =f(x)
\end{aligned}
$$

Therefore, the integral,

$$
\frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{c-i \tau}^{c-i \tau c-i \tau} \int_{m} m(t, z) \cdot e^{z x} \cdot x^{-1} \cdot d t \cdot d z
$$

Converges to $f(x)$ as $\tau \longrightarrow \infty$

$$
\therefore f(x)=\frac{x^{\left(1-\frac{1}{x}\right)}}{(2 \pi i)^{2}} \int_{c-i \infty c-i \infty}^{c+i \infty c+i \infty} m(t, z) \cdot e^{z x} \cdot x^{-i} \cdot d t \cdot d z
$$

where c is positive constant,

Which is inversion formula for the mixed Stieltjes transformation.

REFERENCES:

Sr.No.	Authors	Publications
[1]	Giona M. and	Integral Transforms of multifractal
	Patierno O.	measures. Fractals In İngineering, by
		J. L. Vehel and Evelyne lutton and
		C. Tricot, Springer 1907.
[2]	Srivastava H. M	Some remarks on a generalization of
		the Stieltjes transform,
		Publi. Math. Debrecen, 23(1976)
		No.1-2, 119-122.
[3]	Sneddon I. H.	The Use of Integral Transforms,
		Tata McGraw Hill. Publishing Co.,
		New York, 1979.p.34, 174.

