CHAPTER - O

Notations and Definitions

CHAPTER - 0

NOTATIONS AND DEFINITIONS

Notations which are used in this dissertation.

Sr.No.	Notations	Meaning of Notation
1	$=$	Equal to
2	$<$	Strictly less than
3	\leq	Less than Equal to
4	$>$	Strictly greater than
5	\geq	Greater than equal to
6	\therefore	Therefore
7	\because	Since
8	\rightarrow	Tends to
9	\Rightarrow	Implies
10	∞	Infinity

11	C	Set of complex numbers
12	L	Operator of the Lapace transform
13	S	Operator of the Stieltjes transforms
14	m	Operator of the mixed Stieltjes transform
15	M	Operator of the Mellin transform
17	$\phi(\mathrm{z})$	Laplace transform of function $\mathrm{f}(\mathrm{x})$
18	$\mathrm{~S}(\mathrm{t})$	Stieltjes transform of function $\mathrm{f}(\mathrm{x})$
19	$\mathrm{~m}(\mathrm{t}, \mathrm{z})$	Mixed Stieltjes transform of
20	function $\mathrm{f}(\mathrm{x})$	
$\mathrm{M}(\mathrm{p})$	Mellin transform of function $\mathrm{f}(\mathrm{x})$.	

0.2 Definitions :

I) Integral transform

Let $k(z, x)$ be a function of two variables z and x, where z is parameter (may be real or complex) independent of t, the function $F(z)$ defined by the integral,

$$
\begin{equation*}
F(z)=\int_{-\infty}^{\infty} k(z, x) \cdot f(x) \cdot d x . \tag{0.2.1}
\end{equation*}
$$ is called the integral transform of the function $f(x)$ and is denoted by $\quad T[f(x)]$. The function $k(z, x)$ is called the kernel of the transformation.

II) Laplace Transform:

If $f(x)$ is piecewise continuous and is of exponential order in the interval $\mathrm{o}<\mathrm{x}<\infty$, then Laplace transform of $\mathrm{f}(\mathrm{x})$ is denoted as $\phi(\mathrm{z})$ and defined by the equation,

$$
\begin{equation*}
L[f(x)]=\int_{0}^{\infty} e^{-z x} f(x) d x . \tag{0.2.2}
\end{equation*}
$$

where z is complex number.

III) Stieltjes Transform:

If $f(x)$ piecewise continuous and locally integrable function in the interval $0<\mathrm{x}<\infty$, then Stieltjes Transform is denoted as $S(t)$ and defined by the equation,

$$
\begin{aligned}
& S(t)=\int_{0}^{\infty} \frac{f(x)}{t+x} \cdot d x \\
& 0<t<\infty
\end{aligned}
$$

is called the Stieltjes transform of function $f(x)$. It is denoted by $S(t)$ or $S[f(x)]$.

IV) Mellin Transform

The Mellin transform of function $f(x)$, over the interval $0<x<\infty$ is defined by the equation as

$$
\begin{equation*}
M[f(x)]=\int_{0}^{\infty} x^{p-1} \cdot f(x) d x \tag{0.2.4}
\end{equation*}
$$

It is denoted by $\mathrm{M}(\mathrm{p})$ or $\mathrm{M}[\mathrm{f}(\mathrm{x})]$.

V) Piecewise continuous function.

A function $f(x)$ is said to be piecewise continuous on a closed interval $a \leq t \leq b$, if it is defined on that interval and is such that the interval can be subdivided into finite number of intervals, in each of which $f(x)$ is continuous and has finite right and left hand limits.

VI) Absolutely integrable function.

A function $f(x)$ is said to be absolutely integrable over the interval 1 if the integral

$$
\int_{1}|f(x)| d x \ldots \ldots \ldots \ldots \ldots \ldots(0.2 .5)
$$

is finite.

VII) Localization lemma.

If $f(x)$ is piecewise continuous function over $0 \leq x \leq a$ where ' a ' is finite then,

$$
\begin{aligned}
& \int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \frac{\sin \lambda \mathrm{x}}{\mathrm{x}} \mathrm{dx} \rightarrow \frac{1}{2} \pi \mathrm{f}\left(0^{+}\right) . \\
& \text {as } \lambda \longrightarrow \infty
\end{aligned}
$$

VIII) Dirichlet's integral formula

If $f(x)$ is piecewise continuous function and $\quad x^{-1} f(x)$ is absolutely integrable over interval $0<x<\infty$, then

$$
\begin{aligned}
& \int_{0}^{\infty} \mathrm{f}(\mathrm{x}) \frac{\sin \lambda \mathrm{x}}{\mathrm{x}} \mathrm{dx} \rightarrow \frac{1}{2} \pi \mathrm{f}\left(0^{+}\right) \ldots(0.2 .7) \\
& \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

IX) Lemma

If $f(x)$ is piecewise continuous and absolutely integrable over the whole real line R then,

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x+u) \frac{\sin \lambda u}{u} d u \rightarrow \frac{1}{2} \pi\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right] . . x \in R . . \tag{0.2.8}
\end{equation*}
$$

as $\lambda \rightarrow \infty$

X) Lebnitz's rule:

If $f(x, \alpha)$ is a continuous function of x and α in the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$, where a and b are functions of parameter α and

$$
I(\propto)=\int_{a(\propto)}^{b(\infty)} \underset{f(x, \propto) d x}{ }
$$

then,

$$
\begin{array}{r}
\frac{d I}{d \propto}=\frac{d}{d \propto} \int_{a}^{b} f(x, \propto) d x \\
= \tag{0.2.9}\\
\int_{a}^{b} \frac{\partial x}{\partial \alpha} f(x, \propto) d x+f(b, \propto) \frac{d b}{d \propto}-f(a, \propto) \frac{d a}{d \propto}
\end{array}
$$

\& if a and b are not the functions of parameter, then

$$
\begin{align*}
& \frac{d I}{d \propto}=\frac{d}{d \propto} \int_{a}^{b} f(x, \propto) d \propto \\
& =\int_{a}^{b} \frac{\partial}{\partial \propto} f(x, \propto) d \propto \ldots \ldots \ldots(0.2 .10) \tag{0.2.10}
\end{align*}
$$

XI) Change of order of integration.

If function $f(x, y)$ is integrated with two variables x and y, and if limits of integration are function of variables x or y, also $y_{1}(x), y_{2}(x)$ are functions of x and $x_{1}(y), x_{2}(y)$ are functions of y then,

$$
\int_{a}^{b} d x \int_{y_{1}}^{y_{2}(x)} f(x, y) d y=\int_{c}^{d d y} \int_{x_{1}}^{(y)} f_{2}(x, y) d x .
$$

\＆if limits of integration are not the functions of x and y ，then

$$
\int_{a}^{b} d x \int_{c}^{d} f(x, y) d y=\int_{c}^{d} d y \int_{a}^{b} f(x, y) d x \ldots(0.2 .12)
$$

Where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants numbers．

XII ）Gamma Functions：

The gamma function of＇t＇is defined by

$$
\begin{equation*}
\Gamma \mathrm{t}=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}} \mathrm{x}^{\mathrm{t}-1} \mathrm{dx} . \tag{0.2.13}
\end{equation*}
$$

It＇t＇non－integral i．e．real number，then we have

$$
\begin{equation*}
\Gamma t \cdot \Gamma(1-t)=\frac{\pi}{\sin \pi t} . \tag{0.2.14}
\end{equation*}
$$

