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4. INVERTIBLE ELEMENTS

§1. INTRODUCTION.

Throughout this chapter, L denotes a weak r-lattice.

In this chapter, we study the concept of invertible elements in 

multiplicative lattices and also study invertible prime elements. Using 

invertible prime elements, we see establishment of some equivalent 

conditions for a weak r-lattice L to be a finite direct product of Dedekind 

domains.

§2. INVERTIBLE ELEMENTS.

Definition 4.1: Regular Element. [3]

An element a of a multiplicative lattice S is said to be regular if there is a 

principal element b£S such that 0:b = 0 and b<a.
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4. Invertible Elements

Definition 4.2: Invertible Element. [3]

An element a of a multiplicative lattice S is said to be invertible if ac = d 

for some cES and for some principal regular element d of S.

Consequently, if an element is a principal regular, then it is regular.

We now turn to some results on invertible elements.

The following theorem gives characterization of invertible elements in 

terms of principal regular elements.

Lemma 4.3 : Let S be a multiplicative lattice. Then an element aE S is an 

invertible element if and only if a is a principal regular element of S. [3]

Proof. The proof of the lemma follows from Lemma 2.2. Since if a is 

invertible, then ac = d, for some c and d is principal regular. As d is principal 

regular, we have 0:e = 0, where e < d. Then e < d < a. Thus, by property 1.7, 

we have 0:a < 0:d < 0:e = 0. That is, 0:a = 0 = 0:d. As d is principal and a is a 

factor of d, we have a is principal (see lemma 2.2).

The converse is obvious.

Now here follows an obvious result in virtue of the above lemma 4.3.
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4. Invertible Elements

Theorem 4.4 : A domain L is a Dedekind domain if and only if every nonzero 

element is invertible. [3]

Proof is obvious due to lemma 4.3, since as Lis a domain, it has zero 

annihilator and conversely, if each element is regular it has zero annihilator 

and hence Lisa domain. Consequently, result follows from theorem 3.24.

We note the following lemma that we need.

Lemma 4.5: Let p be a proper invertible prime element of L. Then

(a) If p = ab, where a, b E L, then either a = 1 or b = 1.

(b) If a is an invertible element of L and a > p, then a = 1.

•» °°

(c) If p' = A n = | p then p' is a prime element and p'p = p' and if p" is a 

prime element and p" <p, then p" <p'. If p' is compact and q is a 

primary element contained in p, then p' <q; in fact p' = q or Vq = p. 

In particular, if p' is compact, then p' is the only prime element 

properly contained in p.

(d) An element q is p-primary if and only if q is a power of p.

(e) The only invertible elements between p and p", where n is a positive 

integer are powers of p.
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4. Invertible Elements

Now we characterize Dedekind domains in terms of invertible 

elements.

Theorem 4.6 : A domain L is a Dedekind domain if and only if every prime 

element is compact and every nonzero maximal element is invertible. [3]

Proof. If L is a Dedekind domain, then by Theorem 3.24, every element is 

principal and hence every prime element is compact and every nonzero 

element is invertible

Conversely, assume that every prime element is compact and every 

nonzero maximal element is invertible. By Lemma 4.5(c), every prime 

element is principal and hence every element is principal. Consequently Lisa 

Dedekind domain.

Definition 4.7: Proper Dedekind domains.. [3]

A multiplicative lattice domain is said to be a proper domain if it is not a 

two element chain.

The following Theorem 4.8 establishes an equivalent condition for L to 

be a finite direct product of proper Dedekind domains.

First we recall the following result.
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4. Invertible Elements

Theorem 4.8 : If L is lattice generated by join principal elements in which 

every semiprimary element is a primary element, then if p is a non-maximal 

prime element of L and q is p-primary, then p = q. [2]

Theorem 4.9 : Suppose L is not a two element chain. Then Lisa finite direct 

product of proper Dedekind domains if and only if every prime element is 

compact and every maximal element is invertible. [3]

Proof. Suppose L = L,x ... xL,„ where each L; is a proper Dedekind domain. 

Then each L, is a principal element domain, by theorem 4.4 and so L is a 

principal element lattice, since principality property preserves in the direct

product of lattices. If m is a maximal element of L, then m = (1,1,....m,.....1).

where m, is a maximal element of L, and so 0 : m = 0. Thus, every maximal

element is a principal regular element. Consequently, by lemma 4.3, every 

maximal element is invertible.

Conversely, assume that every prime element is compact and every 

maximal element is invertible. Then by theorem 4.6, Lisa Dedekind domain 

consequently, L is a principal element lattice and so dim L< 1. As L is a 

Noether lattice, the zero element has a normal decomposition.

Let 0 = q i A ... Aqn be a normal decomposition and let p, = Vq,. Suppose 

for i = 1,2,..., k, the p/s are non-maximal and for i = k + l,..., n, the p,'s are
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4. Invertible Elements

maximal. But by theorem 4.8, q, = p, for i = 1,2,..., k. By Lemma4.5 (c), p,' < q, 

for i = k + 1, ... , n where p,' = is a prime element. But this contradicts the 

hypothesis that a normal decomposition is redundant unless k = n. Hence 

0—p, A ... Apn. Further these prime elements are co-maximal and so L s L/p,x

... xL/p„. Note that each factor is a proper principal element domain, and hence 

Lisa finite direct product of proper Dedekind domains. Q. E. D.
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