CHAPTER 0

PRELIMINARIES

CHAPTER 0

PRELIMINARIES

This chapter is devoted to the summary of known concepts and results which will be used in subsequent chapters.

§ 0.1 <u>DEFINITION</u>:

0.1.1 <u>Poset</u> : ([1], Page -1)

Let P be any nonvoid set. A binary relation ' \leq ' on P is called partially ordering relation if it satisfies the following conditions for all a, b, c in L.

$(1) a \leq a$	(Reflexivity)
(2) $a \le b$ and $b \le a \implies a = b$	(Antisymmetricity)
(3) $a \le b$ and $b \le c \Rightarrow a \le c$	(Transitivity)

A non-empty set equipped with the partially ordering relation is called partially ordered set or poset. It is denoted as $< P, \le >$. A poset in which $a \le b$ or $b \le a$ for all a, b in P is called a chain.

0.1.2 <u>Zero element in a poset</u> : ([1], Page-2)

Let $\leq P$, $\leq >$ be a poset .If there exists 0 in P such that $0 \leq x$ for all x in P, then 0 is called zero element in poset P.

0.1.3 Unit element in a poset : ([1], Page-2)

Let $\langle P, \leq \rangle$ be a poset . If there exists 1 in P such that $1 \geq x$ for all x in P, then 1 is called unit (or one) element in poset P.

0.1.4 <u>Bounded poset</u> : ([1], Page-2)

A poset with the zero element and the unit element is called bounded poset.

0.1.5 Lattice (as a poset) : ([1], Page-2)

A poset < L , \leq > is called a lattice if sup{a , b} and inf{a , b} exist for all a and b in L.

0.1.6 <u>Lattice</u> (as an algebra): ([2], Page-3)

Let L be any nonempty set. If ' \wedge ' and ' \vee ' are binary operation defined on L then < L, \wedge , $\vee >$ is called lattice if the following conditions hold for all a, b, c in L

$1) \mathbf{a} \wedge \mathbf{b} = \mathbf{b} \wedge \mathbf{a}$	$1') a \lor b = b \lor a$	(commutativity)
$2) a \wedge (b \wedge c) = (a \wedge b) \wedge c$	$2^{'}) a \vee (b \vee c) = (a \vee b) \vee c$	(associativity)
$3) a \wedge a = a$	$3'$) a \vee a = a	(idempotency)
$4) a \wedge (a \vee b) = a$	4^{\prime}) a v (a \wedge b) = a	(absorption law)

0.1.7 Filter in a lattice : ([2], Page-23)

A nonempty subset F of a lattice L is called a filter if

1) $x \land y \in F$ for all x and y in F,

2) $x \le y$ and $x \in F$ imply that $y \in F$.

0.1.8 Proper filter in a lattice : ([2], Page-23)

A filter F which is different from lattice L is called proper filter.

0.1.9 Prime filter in a lattice : ([2], Page-23)

A proper filter in a lattice is called prime filter if for all x and y in L, $x \lor y \in F$ imply that $x \in F$ or $y \in F$.

0.1.10 Ideal in a lattice : ([2], Page-20)

A nonempty subset I of a lattice L is called an ideal if

- i) $x \lor y \in I$ for all x and y in I
- ii) $x \le y$ and $y \in I$ imply $x \in I$.

0.1.11 Proper ideal in a lattice : ([2], Page-21)

An ideal I which is different from lattice L is called Proper ideal.

0.1.12 Prime ideal in lattice : ([2], Page-21)

A proper ideal I in a lattice L is called a prime ideal if for all x and v in L, $x \land y \in I$ imply that $x \in I$ or $y \in I$.

0.1.13 Moore family in lattice : ([1], Page-111)

Let x be any nonempty set and $\mathcal{F} \subseteq \mathcal{P}(x)$. \mathcal{F} is said to form a Moore family of subsets of x if i) $x \in \mathcal{F}$, ii) $\cap F_{\alpha} \in \mathcal{F}$.

$F_{\alpha} \in \mathfrak{F}$

0.1.14 Principal filter in a lattice : ([2], Page-23)

Given an element a in L, the filter generated by $\{a\}$ denoted by [a) (= {x \in L / x \ge a}) is called principal filter of L.

0.1.15 Principal ideal in a lattice : ([2], Page-21)

Given an element a in L, the ideal generated by $\{a\}$, denoted by $\{a\}$ (a] (= $\{x \in L \mid x \le a\}$) is called principal ideal of L.

0.1.16 <u>Quasicomplemented lattice</u> : ([2], Page-184)

A lattice with 1 is called quasicomplemented if for all x in L there exists x^{\perp} , the smallest element in L such that $x \lor x^{\perp} = 1$, x^{\perp} is called quasicomplement of x in L or dual pseudocomplement of x.

0.1.17 Lattice homomorphism : ([2], Page-19)

Let L and L be any two lattices. A function $f : L \longrightarrow L$ is called homomorphism if for all x and y in L

$$f(x \wedge y) = f(x) \wedge f(y)$$
 and

$$\mathbf{f}(\mathbf{x} \lor \mathbf{y}) = \mathbf{f}(\mathbf{x}) \lor \mathbf{f}(\mathbf{y})$$

0.1.18 <u>Pseudocomplemented lattice</u> : ([2], Page-58)

A lattice with 0 is called pseudocomplemented if for all x in L there exists x^* , the largest element in L such that $x \wedge x^* = 0$, x^* is called the pseudocomplement of x in L.

0.1.19 Distributive lattice : ([2], Page-36)

A lattice L is said to be distributive lattice if for all x, y, z in L

 $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

0.1.20 Equivalence relation in a lattice : ([2], Page-24)

A relation ' θ ' defined on a lattice L is called an equivalence relation if the following conditions hold for all x, y, z in L

1) $\mathbf{x} = \mathbf{x}(\boldsymbol{\theta})$	[Reflexivity]
2) $x = y(\theta) \Rightarrow y = x(\theta)$	[symmetrivity]
3) $x \equiv y(\theta)$ and $y \equiv z(\theta) \Rightarrow x \equiv z(\theta)$	[Transitivity]

0.1.21 Congruence relation in a lattice : ([2], Page-24)

An equivalence relation ' θ ' defined on a lattice L is called a congruence relation on L if for all x_1 , x_2 , y_1 , y_2 in L,

$$x_1 = y_1(\theta) \quad \text{and} \quad x_2 = y_2(\theta) \quad \text{imply that}$$
$$x_1 \wedge x_2 = y_1 \wedge y_2(\theta) \quad \text{and} \quad x_1 \vee x_2 = y_1 \vee y_2(\theta)$$

0.1.22 Congruence class in a lattice : ([2], Page-24)

Let ' θ ' be a congruence relation on a lattice $\ L$. For any x in L we define congruence class containing x as

$$[x]^{\theta} = \{y \in L / x = y(\theta)\}$$

0.1.23 Quotient lattice : ([2], Page-26)

Let ' θ ' be a congruence relation on a lattice L. Define

 $L/\theta = \{ [x]^{\theta} / x \in L \}$

Define π and ψ on L/θ as $[x]^{\theta} \pi [y]^{\theta} = [x \wedge y]^{\theta}$ and $[x]^{\theta} \psi [y]^{\theta} = [x \vee y]^{\theta}$ for all x, y in L. The lattice $\langle L/\theta, \pi, \psi \rangle$ is called quotient lattice of a lattice $\langle L, \wedge, \psi \rangle$.

0.1.24 Cokernel of homomorphism of L :

Let $f : L \to L'$ be a homomorphism of lattice L onto a lattice L'. We define co-kernel of f as coker $f = \{x \in L/f(x) = 1'\} = \{1\}$.

0.1.25 Maximal ideal in a lattice : ([1], Page-28)

A proper ideal M in a lattice L is called a maximal ideal in L if there does not exist any proper ideal J in L such that $M \subset J \subset L$.

0.1.26 Maximal filter in a lattice : ([1], Page-28)

A proper filter F in a lattice L is called maximal filter in L if there does not exist any proper filter J in L such that $M \supset J \supset L$.

 \Box

§ 0.2 <u>Results</u> :

0.2.1 <u>Result</u> :([2], Page-30) Let $h : L \to L'$ be an onto homomorphism. Let P be prime ideal in L'. Inverse image of a prime ideal P is a prime ideal in L.

0.2.2 Zorn's lemma : ([2], Page-74)

Let A be any nonvoid set . Let $\phi \neq K \subseteq \mathcal{P}(A)$. Let \mathcal{C} be any chain

in K . If $\bigcup x \in K$ then K contains a maximal element . $x \in \partial$

0.2.3 Stone's (Separation) theorem : ([2], Page-74)

Let L be distributive lattice. If I is an ideal in L and F is a filter in L such that $I \cap F = \phi$, then there exists a prime ideal P in L such that $I \subseteq P$ and $P \cap F = \phi$.

0.2.4 <u>Fundamental theorem of homomorphism</u>:([2], P-26 theorem 11)

Every homomorphic image of a lattice L is isomorphic with some suitable quotient lattice L/θ .

0.2.5 <u>Result</u> : ([2], Page-21) Intersection of all filters in L is a filter.

0.2.6 <u>Result</u> : ([], Page-) Intersection of all prime filters in a lattice need not be prime.