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2. FINITE BOOLEAN ALGEBRAS

Hypothesis : Throughout this chapter, L denotes a compactly generated 
multiplicative lattice with 1 compact.

Customarily, complemented distributive bounded lattices are 
called Boolean algebras ( after G. Boole ). During the decades 1900- 
1940 Boolean algebras were intensively studied.

In this chapter, using abstract versions of Nakayama’s lemma 
and Krull intersection theorem, some equivalent conditions for a 
multiplicative lattice with 1 compact to be a finite Boolean Algebra are 
studied.

The following lemma provides an important sufficient condition 
for compact primary elements to be maximal.
Lemma 2.1: Suppose L is reduced and every proper compact element of 
L is a zero divisor. Then every compact primary element is maximal. [3] 
Proof : Let x be a compact primary element s. t. x < y< 1, for some yeL.

Inasmuch as, L is compactly generated, we have
y = Vaa , where aa's are compact elements.

To prove x = y, suppose, if possible, x * y.
i. e., x < y.

Hence, aa ^ x, for some a.
=>x<xVaa<l, for some a.

=> xVaa is a proper compact element, for some a.
=> 3 b * 0 in L such that (xVajb = 0, for some a. ( by given data)
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Again, as L is compactly generated, we have

b = vb„ , where b 's are non-zero compact elements.p p p

=> (xVaa)(^bp> = 0-
=> v[(xvaa)bp] = 0.

=» (xVa0)bp = 0, for each p.

=> xbKVa bR = 0, for each B.p Ct p
=» xb„ = 0 = a b„ , for each B.P a p '
=> xbp = 0 & aabp < x, for each p.
=> xbp=0 & (bp)nfi<x, for some npeZ+& each p. (Yx is primary & aa^ x) 

=> (bp)n,?+1< xbp = 0, for each p.

=> bp = 0, for each p. ( Y L is reduced )

Which contradicts bp CL for each p.

Therefore our supposition must be wrong.

Hence, x = y. i. e., every compact primary element is maximal.

A salient feature of the following result is that., a complement 

of a maximal element must be an atom in L.

Lemma 2.2: Suppose L is reduced & xeL is maximal s. t. xy = 0 (y * 0), 

then y is an atom. [3]

Proof: Let 0 < z < y, for some ze L.

As x is maximal, we have either z < x or z ^ x. 

i. e., z < x or xVz = 1.

=> zy < xy or y = y(xVz) = xyVyz.

=^yz = 0 or y = yz<z. ( xy = 0)

=$ z2 < zy = 0 or y = z. ( Y z < y )

=> z2 = 0 or y = z.

=» z = 0 or y = z. ( L is reduced)

Thus, y is an atom.

With this result, now we can easily turn to an important result. 

The original proof of the following lemma uses ZORN's lemma.
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But it seems that the new proof given by us to this theorem is quite simple. 

Lemma 2.3 : L is a finite Boolean algebra with xy = xAy iff every 

maximal element is a complemented element. [3]

Proof: If part : Assume every maximal element is complemented.

We show that, every element of L is complemented.

Let aeL.

Define, b = v{ xeL / ax = 0 }. ------------------------------- <D

If aVb < 1, then aVb < m, for some maximal element meL.

Hence by assumption, 3 m'eL such that mm'=0 & mVm'=l.

=> (aVb)m' < mm' = 0.

am’Vbm' = 0.

=> am' = 0 & bm' = 0.

=> m' < b & bm' = 0. ( by ® )

=» (m')2 < bm' = 0.

=> (m’)2 = 0.

=> m' = 0. ( ■/ by 1.4 )

m = mVO = mVm' = 1, a contradiction.

Hence, aVb = 1.

Obviously, ab = a(V { x / xa = 0 }) = V{ ax / xa = 0 } = 0.

Thus, a is complemented.

i. e., every element of L is complemented.

=> L = C(L) & every element of L is compact. ( by 1.6 & 1.7 )

=> L is a Boolean algebra with, xy = x A y. ( by 1.9 )

Now we show that, L is finite.

By R50, we get 1 = V a , where a's are atoms.

But, 1 is compact.

Hence, 3 aa e{a }, ( i = 1,—, n ) such that 1 = aa V—- Vaa
1 1 n

This shows that, L contains a finite number of atoms. Consequently, 

L is finite, since by R50, every non-zero element of L is a join of atoms.
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Thus, L is a finite Boolean algebra with xy = xAy.

Only if part : Assume, L is a finite Boolean algebra with xy = xAy 
Then evidently, every maximal element of L is complemented.

Now here follows its obvious consequence.
Corollary 2.4 : L is a Boolean algebra with xy = xAy iff every element 

of L is complemented. [3]
Proof: If part : Assume, every element of L is complemented.

Then, every maximal element of L is complemented.
So by lemma 2.3, L is a Boolean algebra with xy = xAy,

Only if part : Assume, L is a Boolean algebra with xy = xAy.
Then clearly, every element of L is complemented.

The following lemma develops an important equivalent 
condition for L to be a finite Boolean algebra.
Lemma 2.5 : L is a finite Boolean algebra with xy = xAy iff for every 
maximal element m, there is some complemented atom aeL s.t. a^m. [3] 
Proof: If part : Assume, for every maximal element meL, there is a 
complemented atom aeL such that a £ m.

Let m be a maximal element.
Then, 3 an complemented atom aeL such that a ^ m.

Claim : m = a', where a' is a complement of a.
Since every maximal element is prime & aa' = 0 < m with a $ m,

we have a' < m. —................-............-...........-........©
But, 0 < am < a & a is an atom.

=> am = 0 or am = a.
=> am = 0. ( v am < aAm < a, as a ^ m)

=> m = m. 1 = m(aVa') = maVma' = ma' < a'.

=> m = a'. ( by © )

Thus, every maximal element is complemented.

Hence by lemma 2.3, L is a finite Boolean algebra with xy = xAy.
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Only if part: Assume, L is a finite Boolean algebra with xy = xAy.

Let m be any maximal element of L.
As L is a Boolean algebra, m is complemented.
Hence, 3 aeL s. t. am = 0 and aVm = 1. 
i. e., am = 0 & a AO with a m.
Thus, a is a complemented atom such that a ^ m. (by 2.2 ) 

Here now we have another useful theorem, which gives an 

equivalent condition for the lattice L to be a finite Boolean algebra.
The following theorem is little bit proved in different manner. 

Theorem 2.6 : L is a finite Boolean algebra with xy = xAy iff L satisfies 
the conditions : [3]

(i) L is reduced,
(ii) Every proper compact element of L is a zero divisor,

(iii) 0 is the product of a finite number of compact primary elements. 
Proof: If part : Assume, L satisfies the given conditions.

Then we have, 0 = a,a^...an,where a.'s are compact primary elements. 
But by 2.1, each at is a compact maximal element.
So by the condition (ii), for each a; 3 b; ^ 0 in L such that ajbi = 0 
Hence, each bi is an atom. ( by 2.2 )
Clearly, b( £ bf < a; => b2< a^ = 0 E = 0, by (i))

=> a^vb, = 1, for each i, as a, is maximal.
=> each E is a complemented atom.

Of course, these are the only maximal elements of L. Since, if there 
is any another maximal element m0eL s. t. m0 ^ ai? for each i = 1,2,—, n, 
then a1a2...an = 0 < m0 & hence by R1 & R28, we have a; = m0, a 
contradiction.

Thus for each maximal element a;eL, there is some complemented
atom b e L s. t. b a.1 1^1

Consequently, by 2.5, L is finite Boolean algebra with xy = xAy.
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Only if part : Assume, L is a finite Boolean algebra with xy= xAy.—© 
Hence, x2 = xAx = x, for each xeL.
Thus, every element of L is idempotent.

=> Only nilpotent element is zero.
=> L is reduced. ----- --------------------------- --------— ©

Further, let xeL be a proper compact element.
Then, 3 yeL s. t. xy = 0 & xVy = 1. ( by © )
Clearly, y ^ 0, since if y = 0, then 1 = xVy = xV0 = x, a contradiction. 

Thus, for any compact element xeL, 3 y ^ 0 in L s. t. xy = 0. 

i. e., every proper compact element of L is a zero divisor.

As L is finite, L satisfies DCC & hence r* is nilpotent. ( by R35)
But L is reduced. Hence r* = 0.
i. e., 0 = A {m.eL / m. is a maximal element}

n
= A {m.eL / m. is a maximal element} ( L is finite )

i=l 1 1
= m, m2 ,...mn ( V xy = xA y)

Of course, as L is finite, each m. is compact & hence by R28 & R24, 
each m. is compact primary element.

Thus, 0 is the finite product of compact primary elements.
Interestingly, the following theorem focuses on the fact that, if 

L is a Boolean algebra, then L must be a finite lattice. ( i. e., L has a 
finite number of elements ).
Theorem 2.7 : The following statements on L are equivalent :

(i) L is a finite Boolean algebra with xy = xAy.
(ii) L is a Boolean algebra with xy = xAy.

(iii) L is reduced and every proper element of L is a zero divisor. [3] 
Proof: (i) => (ii) is obvious.

(ii) => (Hi) : Assume, L is a Boolean algebra with xy = xAy.
Then, x_ — xAx — x, for each xe L.
Thus, every element of L is idempotent.
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i. e., only nilpotent element is zero.

Thus, L is reduced.

Now, let xeL be a proper element.

Then, 3 yeL s. t. xy = 0 & xVy = 1.

Clearly y * 0, since if y = 0, then l=xVy = xvO = x, a contradiction. 

Thus, every proper element of L is a zero divisor.

(Hi) =>(i): Assume, L is reduced & every proper element is a zero divisor. 

Let ae L.

Define, b = V{xeL / ax = 0}. ............... .......©

Then, ab = a(V{x€L / ax = 0}) = v{ axeL / ax = 0 } = 0.

We now claim that, avb = 1.

Suppose, if possible, avb < 1.

Then by assumption, 3 c 0 in L s. t. (avb)c = 0.

=> 3 c a0 s. t. acVbc = 0.

3 c ^ 0 s. t. ac = 0 = be.

=> 3 c * o s. t. c < b & be = 0. ( by © )

=> 3 c * 0 s. t. c2 < be = 0.

=> 3 c ^ 0 s. t. c = 0. ( Y L is reduced )

Which is a contradiction .

Thus, ab = 0 and avb = 1. 

i. e., a is complemented.

Thus, every element of L is complemented.

=> every maximal element of L is complemented.

=> L is a finite Boolean algebra with xy = xAy. ( by 2.3 )

Theorem 2.8 : If S is a semisimple lattice with 1 compact and satisfies 

the descending chain condition (DCC), S is a finite Boolean algebra. [2] 

Proof: By 1.19, S contains only a finite number of maximal elements, 

say, m., —, mn such that /sm. = 0.
0 i=l 1

Let aeS.
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Define, a* = A{ nieS / a :£ m. }.
Then, aAa* = 0
To prove, aVa* = 1, suppose, if possible, aVa*< 1.
Then aVa*< m , for some maximal element m eS.

=> a < m & a*< mo o

=> a < m & D\{ \n eS / a ^ m.} < m
O 1 1 1 } o

=> a. < m & m. < m , for some i, such that a £ m. (by R28, R1 )
==> a < m & m. = m , for some i, such that a £ m. ( Y m. is maximal)O 1 o’ ’ 1 v 1

=> a < m & a ^ mo o

Which is a contradiction.
Hence, aVa* = 1.
i. e., a* is a complement of a, in S.
Thus, every element of S is complemented.

=> every element of S is compact s. t. S = C(S), ( by 1.6 )
=> S is a compactly generated Boolean algebra with xy = xAy. (by 1.9 ) 
=> S is a finite Boolean algebra. ( by 2.7 )

This result leads us to understand the following.
It is well-known that, if R is a commutative ring with identity, 

then L(R) is a Boolean algebra iffR is reduced and satisfies the descending 
chain condition. The coming theorem offers just an abstract version of 
this result.
Theorem 2.9 : Suppose S is a join principally generated lattice with 1 
compact. S is finite Boolean algebra iff S is reduced & satisfies DCC. [2] 
Proof: If Part : Assume, S is reduced and satisfies DCC.

By R35, r* is nilpotent.
=> r* = 0. ( S is reduced)
=> S is semisimple.

Thus, S is semisimple and satisfying DCC.
Consequently, S is a finite Boolean algebra. ( by 2.8 )
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Only if Part : Assume, S is a finite Boolean algebra.
Then, every element of S is complemented.

=> every element of S is idempotent. (by 1.4 )

0 is the only nilpotent.
=> S is reduced.

To prove, S satisfies DCC. suppose, if possible, S does not.
Then, 3 a descending chain of distinct elements {aj Q S s. t. 

a3 > a2 > a3 >----  which does not terminate anywhere.
Then clearly, {a;} is an infinite set in S.
Which contradicts the finiteness of S.
Hence, S satisfies DCC.

R. P. Dilworth [9] proved that, a Noether lattice in which 
multiplication is the meet operation, is a finite Boolean algebra. K P. 
Bogart [6] has also proved, if a Noether lattice in which every maximal 
element is idempotent, then it is Boolean algebra. A generalization of 
these two results is given by Anderson and others [2]. Here it is.
Theorem 2.10 : Suppose S is a join principally generated multiplicative 
lattice with 1 compact. If every maximal element of S is a compact 
idempotent element, then S is a finite Boolean algebra. [2]
Proof: Let m be a maximal element of S.

Then, m is a compact idempotent element.
=> m is a finite join of join principal elements and m2 = m.
=> mV(0:m) =1. (by 1.12)

Thus, for every maximal element meS, mV0:m = 1. —............. ©
We prove that, every element of S is complemented.
Suppose, if possible, some elements are not complemented.---- ©
Define, ^F={xeS/xis not complemented }.
Then by ©, J * 0.
Let {aj be an ascending chain in J. ...... ............ ...... ............- (D
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If Vai is complemented, then by 1.4, yai is compact.

Hence, Va. < Va. Va. < v a., for some a.e {a.}.
i 1 i 1 i 1 j=i j J 1

=> Va. = va. ........................ —----- ------ ©
i 1 j=l J

But by (D, 3 a e {a.}n. such that a < a, for each j = 1,—, n.
• m 1 jJj=l j m' J

=> V a. = v a. = a ( by © )

=> Va; is not complemented, which is a contradiction. ( Y am€ jF )

Thus, every chain in J7 has an upper bound in J.

Hence, by Zorn's lemma, J7 contains a maximal element, say ac J7. 

If 0:a ^ a, then a < aV0:a & hence avO:a € J7.

=> aV0:a is complemented.

=> 3 beS such that (aV0:a)b = 0 & (aV0:a)vb = 1.

abv(0:a)b = 0 & aVO:aVb = 1.

=> ab = 0 = (0:a)b & aVOraVb = 1.

=> a(0:avb) = a(0:a)vab = 0V0 = 0 & av(0:avb) = 1.

=> a is complemented, which is impossible.

Hence, 0:a < a.

As a is not complemented, a < 1.

Hence a < m0, for some maximal element m0e S.

=> O:m0 < 0:a < a < m0.

=> m0VO:m0 = m0 ^ 1.

Which is a contradiction to ©.

Hence every element of S is a complemented element.

=> S = C(S).

=> S is a Boolean algebra with xy = xAy. ( by 1.9 )

S is a finite Boolean algebra with xy = xAy. ( by 2.7 )
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