
CHAPTER - III

On a subclass of univalent functions

ABSTRACT

In this third chapter of dissertation , we have introduced a new subfamily 

Dn(a,(3,y) of class S , of normalized univalent functions / in the unit disk

U ~{z : I z I < 1} , having Taylor’s series expansion of the form

/(z) = z + £ a, •
/=2

The main theme of the present chapter is to study various properties of 

functions in £),,(a, fi,y), having negative coefficients. We characterize the class 

and obtain distortion theorem, radius of convexity, closure properties and 

extreme points for the class Dn(a,P,y) .

Lastly by making use of known concept of neighborhood of analytic 

function introduced by Ruscheweyh [7], we give several inclusion relation 

involving Ns(e) . Also we define new classes T„( X){a,/3,y) and P'n(X\a,p,y)

and determine the neighborhood for these classes 7^* (a, p,y) and 

P;(A)(a,j3,y).
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1. INTRODUCTION

We introduce a new subfamily of S, of normalized univalent functions / 

that are holomorphic in the unit disk U = {z : | z | < 1}.

Definition . Let a e [ 0,l), (3 € (0,1], y e (1/2,l] and let n e N0, we 

define, the class Dn(a,/3,y) of n -starlike function of order a, type /? and y

by

DM /3,y) = {feH(U):f(0) = f\0)~\=0 and | y,z) \ < p , zzU }

where

(D‘ '/(z))'-l
, z e U .

We note that D0(a, 0,y) is class introduced and studied by Kulkami [5] 

.The class Z)0(0, a, 1) is the class studied by Caplinger [1], The class 

D0( a, 1, fi) is the class of holomorphic functions discussed by Juneja and Mogra

[4].

In this section we are interesting in those members of Dn{a, (3, y) having 

negative coefficients.

Let T denote the subclass of S consisting of functions whose non-zero 

coefficients, from the second on, are negative; that is, an univalent function / is 

in T if and only if it can be expressed in the form

/( z ) = z - £ a, zJ a/ >0, j = 2, 3,... (3.1.1)
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We define the class P'„{a, P,y) by

= Dn(a,/3,y) n T (3.1.2)

and obtain several interesting results for the class Pi {a, (3, y) and study basic

properties , such as characterization, distortion theorems, radius of convexity and 

closure theorem in the line of Guta and Jain [2], Kulkami [5] , Sarangi and 

Uralegaddii [8].

2. CHARACTERIZATION OF CLASS P’„{cc, p, y)

First we state the Characterization theorem, which completely 

characterizes the member of class P'„(a, P,y).

Theorem 1. Let a e [ 0,1 ), p e ( 0,1 ], y e (1/2,1 ] and let n e N0, the 

function f of the form (1.1) is in P’n (a, P,y) if and only if

X f+l[\ + p(2y-\)] Qj < 2Py (l-a) (3.2.1)

The result is sharp.

Proof. We suppose that (3.2.1) holds. Then we have

(Dnm)-1

2y(l-«)-£/+V(2y-l)2'
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Let z = 1. then

00
V"1 •»+! /-IL; a/z
7=2

2r(l-a)-X/+'a/(2r-l)z'-1
7=2

< £ /+1 [1 + p{2y -1)] a, - 2#(1 - a) < 0.

7=2

where we used (3.2.1).

From the last inequality we deduce

\hW,<*,y\z)\< p , |r| = l.

Hence \ln(f,a,y,z) \ < p , zeU and / e P*n(a,p,y).

Conversely, we assume that / e P‘{a,p,y) .Then

| | < P ,zeU. (3.2.2)

For z e [0,1) the inequality (3.2.2) can be written

”+1 aj zJ~x
-P <

2yQ-a)-Zr (2y-\)aJz^
< p . (3.2.3)

We note that E(z) = 2y{\~a)-^_,f*{ {2y-\)aj z1 ' > 0 ze[0,l),
7=2

because E(z) * 0 for z e [0,1) and E(0) = 2y(\-a) > 0 .Upon clearing the

denominator in (3.2.3) and letting z -»1 through real values, we deduce
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fjr'at £ 2/?Kt-a)-/?Erl(2/-l) a,
J=2 j=2

Thus

£ r'[\ + /3(2r-lj\ a7< 2j^(l-a) .
7=2

The extremal functions are

/,0) = z
2^(l-a)

r'[i+/?(2r-i)] 7=2,3,... (3.2.4)

Corollary 1 .Iff e P*(a,j3,y) t/ze«

fl < 2 ^r(l-g)
y “ r1 [i + ^(2r-i)]

7 = 2,3,... .

The result is sharp and the extremal functions are given by (3.2.4).

We state following particular cases for Theorem 1.

Corollary 2. A function of the form (3.1.1) is in P)( 0,a,l), if and only if

£ 7 ( 1 + a ) aj < 2 a y .
7=2

This result is sharp. This result is due to Caplinger [1],

Next is the similar characterization for the class of univalent functions 

studied by Juneja and Mogra [4] having negative coefficients.

Corollary 3. A function of the form (3.1.1) is in P((a, 1, J3), if and only if
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Tj a, * (»-«)
7=2

This result is sharp.

In the same vein we also have a corresponding result for univalent 

function proved by Gupta and Jain [2].

Corollary 4. A function of the form (3.1.1) is in P) (a, 0,1), if and only if

X J (X + P ) a, - 20y(\-a )
7=2

This result is sharp.

Next we obtain a theorem which supplies the extreme point of the class 

P){ a, 0,v).

Theorem 2. Let

fit) = 2
and

fi(z) = z-- 2y0(\~a)
jn+x [\ + 0{2y-\)]

Then f e P’(a,0,y) if it can be expressed in the form

/( Z ) = 4 f( 2 ) + X X1 fA Z )
7=2

(3.2.5)

(3.2.6)
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where

ao

Xj >0 (j = 1,2,3,...) and Xl + = 1.
7=2

Proof. Suppose that

/(*) = 4 7i(z) + i
7=2

^y /yU)

= Z I
2y/3{\-a)XJ

rl [ i + p (2/-i) ]

Since

I
7=2

/+,[i + A2r-D] 2^g(l-«)
/’+' [l + /?(2y-l)]

= 2#(l-a)X Xs
7=2

<2 py (\-a) .

By Theorem 1, / e P'n{a,f3,y).

Conversely, we suppose that / e P^(a,/3,y). 
Since

< 2r/?(i-<*)
' r'li + P(2r-i)]

7 = 2,3,

(3.2.7)

setting
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x = r\ l + yg(2r-l)3 fl
7 2yP(l-a) j

and
a = >-£•*/

/=2

Then we have

/o) = a /i(z) + X ^ /,o)
./=2

This completes the proof of Theorem 2.

Corollary 1. The extreme points of (a, /?, y) are the functions

and

f(z)=z-~

Mz) = z

2yj3(l-a)
7 [ 1 + /? (2y -1) ]

zy 7 = 2,3,.

We give the following particular cases for above theorem. 

Corollary 2. The extreme points of Pj(0,a, 1) are the functions

f(z) = Z
and

f,(z) = z
2 a

j ( 1 + a )
z7 (7 = 1,2,3,...)

This result is due to Caplinger [1].
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Corollary 3. The extreme points of P0*( a, P,y) are the functions

fi(z) = 2

and

f(z)=z- 2yP(l-a)
j [\ + p(2y-\)]

(j = 1,2,3,...)

This is due to the class studied by Kulkami [5].

Lastly we also state the corollary for the class of the functions introduced 

by Jain and Gupta [2].

Corollary 4. The extreme points of ?0*( a, fi, 1) are the functions

M2) = ^

and
., . 2 Z?(1 -a) , , . , „ „
fiz) = Z---------- —------------- ZJ (j = 1,2,3,...)Jt •»+1 / ] + p \ w •>■>■> /

3. SOME PROPERTIES OF CLASS P'„{a,p,y)

Now we prove some properties of class P'n{a,p,y), like distortion 

theorem , radius of convexity and closure theorems.

Theorem 3. Let a e [0,1), p e ( 0,1 ], y € (1/2,1 ] and let n e N0, if 

f e Pj(a,P,y), then for 0 < Izl = r < 1, we have

py(l~a)
2" [ 1 + P (2y-\) ]

^ I f(z) I ^ r + Pr( l-a)
2" [ \ + P (2y -1) ]

(3.3.1)

and
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f3y(\-a)
2”" [! + /?( 2/-1)]

r < | f\z) | < 1 + Pr (i-«)
2”-![l + i0(2r-l)]

(3.3.2)

The bounds in (3.3.1) and (3.3.2) are sharp. 

Proof. From (3.2.1) we have

2“« [l + /?(2;'-l)] £ j‘o, S Er'[ l + /?(2r-1) ] < 2/^d-a)
7=2 7=2

and

I 7
7=2

aj *
Pr( i-«)

2""* [! + /?(2y-l)]
(3.3.3)

Using (3.3.3) with k = 0, for 0 < I z I = r < 1 we obtain

I /(Z) | ^ r + S fl7- r>

7=2

< r + r2

< r + Pr (i-«)
2n[\ + P(2y-l)]

and

| /CO I ^ r - py{\-a)
2" [ 1 + /? ( 2y -1) ]

r2

Similarly using (3.3.3) with k = 1, for 0 < I z I = r < 1 we obtain

I 7
7=2

|/'(z)| < 1 + r



66

< 1 +
Py{\-a)

2-'[l + P(2y-l))
r ,

and

f\z) \ > 1
py{\-a)

2”1 [ i + ^(2r-i)]

This completes the proof of Theorem 3. Sharpness are attained by the function

/(*) = *-.. (* = ±r)
2" [ 1 + /? (2y -1) ]

(3.3.4)

Keeping our intension in view, we go to state some special cases of 

Theorem 3.

Corollary 1.^4 function f e PQ'(a,p,y), then for 0 < \z\ = r < 1, we have

r _ Pr^-a) p
[\ + P(2y-\)]

* m py(\-a) p 
[\ + P(2y-\)]

and

2py(\-a) r < 
[\ + j3(2y-l))

/’(*) | * 1 + 2 Py (l-«) r
[i+^(2r-i>]

The result is sharp. This result is due to Kulkami [5],

Corollary 2. A function f e P0'(a,p, 1), then for 0 < Izl = r < 1, we have

r PQ-«) p 
(i + P)

f(z) < r + PO-a)
i' + P)

■>r~
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and

2/?(l-q)
(1 + 0)

r i | /'(2)
2/?( 1-g)

(1 + 0)
r .

The result is sharp. This result is due to Gupta and Jain [2].

Corollary 3. A function f e P0'(0,a,\), then for 0 < |z| = r < l, we have

and

a
(l + a )

£ /(z) r +
a

('+«)

2 a
(l+a)

r < /'(z) < 1 +
2a

(l + a)
r .

The result is sharp. This is due to the class studied by Caplinger [1].

We now state the theorem which gives the disk contained in the range set 

of functions in class P* (a, p,y) .

Theorem 4. The disk \z\ < 1 is mapped onto a domain that contains the disk

w < Yp (i-a0
2" [l + /?(2y-l)]

by any f e P*(a,p,y).

Proof. The result follows upon by letting r -»1 in (3.3.1).
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In the next theorem we determine the radius of convexity for the functions 

in P*{a,p,y).

Theorem 5. If the function f e P* {a, P,y) , then f is convex in the disk

z <r = r (a, p,y,n) = inf
j

' r'[\+P(2y-D] y->

l 2py(l-a) , O’ = 2,3,...). (3.3.5)

This result is sharp, with the extremal function as given in (3.2.4). 

Proof. It suffices to show that

zf'Xz)
/'(*)

< I in \z\<r(a,P,y,n). (3.3.6)

In view of (3.2.1), we have

f'(z)
<

I

1

j U-l)aj\z\-'

-Ij*, i*r
7=2

Thus (3.3.6) follows if

x
7=2

yo'-iH i./-i < '-T.J a<

or

I f I z r 2 1 ■ (3.3.7)

Also by Theorem 1, we have
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f jn+' [l + /?(2y-l)] 
h 2 Py (\-a)

(3.3.8)

Hence / is convex if

, y*1 [i+/ff(2r-n]
/ z < ------1i1 1 2py(\-a)

Solving for \z\, we obtain

' r'v+por-m y-1
, 2yp(\-a) J U = 2,3,...)

setting Izl = r(a, P, y, ri) , the result follows.

Now we state some particular case of above theorem.

Corollary 1. If the function f e P’ (a, P,y) , then f is convex in the disk

1

z <r = r(a,P,y, 0) = inf
j

r 1 + I(2r-1) y-1
V. 2;-/?y(l-a) ,

a=2,3,...).

This result is sharp.

Next corollary gives the radius of convexity for the class introduced and 

studied by Gupta and Jain [2].

Corollary 2. If the function f e P0*( a, P, 1) , then f is convex in the disk

z <r = r(a,P, 1,0) = inf
J

C+/?)
ii P{ 1-2 )

J-l
U = 2,3,...).

7Ms- result is sharp.
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Corollary 3. If the function f e P0'(0, a, 1) , then f is convex in the disk

V -3 ~ / --------- ^ . \J 3-3-- /

i V 2Ja

This result is sharp. This is due to Caplinger [1].

In [8] Sarangi and Uralegaddi obtained the radius of univalence of 

holomorphic functions with negative coefficients under the different conditions, 

on the same line we also obtain results for the class Pn*(a, /3,y).

Theorem 6. If the function F{ z) = z - ]jT a tzJ, aj > 0 ,j = 2,3,... is in

Pn‘(a,j3,y) and f(z) = — [ z F{z) ]' then f(z) is n-starlike function of order 

X, type 8 in

z\<r = r(a,f,y,S,X,n) = inf ' f+> [\ + f(2y-\)] (28-X-Y) V-*

0 = 2,3,...). (3.3.9)

Proof. It suffices to show that for

\z\<r = r(a,j3,y,8,X,n) , by definition of /(z) we have

now
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d”+1/(z) VS) ~ Z 7‘"+l
7=2

f7' + Ill 2 J ' (7-^)
D”f(z) 00

1-Z/ -7 zJ~l
7=2 V /

<

(I-*) -z /*' kr‘0-^)
7=2

1-Z/
7=2

7 + 1 <3, 12 7-1

Hence, £n+7(*)
0"/OO

< (S-X) if

a-*) +i r1 0‘+iN
\ ± j

a, (j-S) \z\-'< (S-X)

f r' + O

Z
7=2

v 2 ;
(;'-A) |z|'“ <*7

(2^-A-l)

CO

1 -z 7"

+ 
c

L 7=2 V 2, j

VIi

a} \z,

On account of coefficient inequality , we have

Z
7=2

-#i+1 fy+n 0'-^) H 7-1

(2<y- i)
a < Z

*»+! [l + ^(2y-l)]
2 Py(\~a) - a.

solving for |z| , we get

' 7,,+'[l + /g(2y-l)] (2S-A-1) V-' 

V J" /^O-a) (7+ 0(7'-^) 7
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We state some particular cases for above theorem.

Corollary 1. If the function F g P0\a,P,y) and /(z) = -^[zF(z)]\ then 

f(z) is starlike function of order A, type d in

z\<r - r(a,p,y,8,A, 0) = inf
/

' i [l + /8(2r-l)l (28-A-l) V-'
^ 0y(\-a)(J + l)(J-X) ,

0 = 2,3,...).
This result is due to Joshi [3].

Corollary 2. If the function F e P*(a,p, 1) and /(z) = |[zf(z)]', t/zen 

/ (z) z's starlike function of order A, type 8 in

\z\<r - r{a,p,\,8,A,t)) =
lf ( J (1 + yg) (28-A-i) V*
V [ P(\-a)(j + \)(j-A) y

0 = 2,3,...).

This is the result for the class studied by Gupta and Jain [2] .

Corollary 3. If the function F e P0*(0, a, 1) and f{z) = |[zf(z)]' then 

f{z) is Starlike function of order A, type 8 in

z < r = r(0,a,\,8,A,0) = inf
j

' 2 j (l+«) (£-1) V*
, a (j + \)(j-A) j

This is due to Caplinger [1] .
0 = 2,3,...).

Theorem 7. If the function F(z) = z - aj zJ cy > 0, j = 2,3,... is in Pt‘ {a, P, y)
7=2

and f(z) ~ z F(z) ]' > t/zen Re f'if) > & for 0 < A < 1 of order A, type 

8 in
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\z\<r = r{a,P,y,X,n) = inf
/

' f'[l + P(2y~\)] (1 -A) V-' 
, {j + \)PrQ-a)

a = 2,3,...).

(3.3.10)

Proof. We show that |/'(z)-l | < 1-A for |z|<r = r(a,/?,y,A,«). 

We have

|/w-i flill
v 2 ,

a.

Hence |/'(z)-l | < 1-A if

Z ;
is)

full

l 2 J zjJ ' a/ < 1 - X .

On account of coefficient inequality, we have

/ f j+1) i-r1
f JV 2 J H j , y. r'{\+/3(2r-D] 
U (l-A) ' Vi 2 Py (I -«)

solving for |z|, we get

' /[! + /?(2y-l)] (1-A) y-*
v (y+ i)/?/(i-«)

Hence the Theorem 7.

Now we put some particular cases .
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Corollary 1. If the function F e P0'(a,fi,y) and /(z) = |[zF(z)]' then 

Re f\z) > X for 0 < X < 1 of order X, type S in

\z\<r = r{a,p,y,X,§) = inf
' J

' [l + /?(2y-l)] (l-X) V> 

l O + i) Py 0_«) ,
(7 = 2,3,...).

This result is due Joshi [3].

Corollary 2. If the function F e P0\a,fi, 1) and f(z) = |[zf(z)]' then

Re f'(z) > X for 0 < X < 1 of order X, type 8 in

z ,<r = r(a,/3,1,71,0) „f f 0+/?) a-*) V' (7 = 2,3,...).

This is new result obtained for class defined by Gupta and Jain [2].

Corollary 3. If the function F e P0*(0,a,l) and f(z) = -[zf(z)]' then

Re f\z) > X for 0 < X < 1 of order X, type 8 in

z <r = r(0,a,\,X,0) inf
J

(1 + g ) (1-7L) 
(j + l)a

j-i

(7 = 2,3,...).

This is due to Caplinger [1] .

Theorem 8. The class Pn*(a, f, y) is convex.

CO oo

Proof. Let _/j(z) = z- ^ aj zJ and /2( z) = z-blz1 be in P*{ a, /?, y ).
/=2 7=2

For 0 < X < I, we shall prove that F{ z) = X f{ z) + (1 - X) f2( z) is also in 

class Pj(a,j3,y).
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Since for 0 < X < 1,

F(z)= z~Yj[AaJ+(\-A)b/]zJ , (3.3.11)
y=2

we observe that

f;r'[i+y8(2y-i)] {Aa^+d-Aji,}
7=2

A £ /,+1 [1 + P(2r -1)] ay + (1 - A) £ /+1 [1 + 0(2y -1)] 6,
7=2 7=2

< 2 py (1 - a).

Hence F(z) e Pn'(a, p,y). This completes the proof of Theorem 8.

4. NEIGHBORHOODS OF UNIVALENT FUNCTIONS

The main object of present section is to investigate the S -neighborhoods 

of the classes Tn(a,p,y) and P’ (a,p,y) subclasses of the class T of

normalized analytic and univalent functions in unit disk U with negative 

coefficients

We define the 8 -neighborhood of a function f e T by

Ns(f) = {g e T:g{z) = z-'YjbJz1 and j\aj-b]\<8 ). (3.4.1)
J=2 j=2



76

In particular, for the identity function

e(z) = z, (3.4.2)

we immediately have

Ns(e) = { g e r :g(z) = 2-£ b} zJ and £ Abj\~5 }• (3-4-3)
M j=2

Motivated by Ruscheweyh [7], Orhan and Kamali [6], we now prove 

some inclusion relations involving Ns(e)

Theorem 9. Let

s = 2yP(\-a)
2”"’ [ \ + P {Ay - 2ya -1) ]

then

(3.4.4)

Tn(cc,p,y) c Ns(e) . (3.4.5)

Proof. Let f e Tn(a, p,y), then using characterization theorem of 

P'tt (a, p,y) , it follows that

2"“‘ [ \ + P (Ay- 2ya -1) ] ^ J aj * 2yP(\-a).
./=2

Thus

f ja <---- 2-lP(±:aJ------
jZ J 2"'1 [ \ + P (Ay - 2ya -1) ]

that is

f ja <---------IMUzEL— = s
6 1 T-'[\ + P{Ay-2ya-\))

(3.4.6)

(3.4.7)

which in view of definition (3.4.3), proves the Theorem 9.
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Theorem 10. Let

S = 2 #?(!-«)
2" [ 1 + /? ( -1) ]

then

Proof. Let / e P’ (a, fi,y), then using chacterization theorem of 

P* (a, p,y) , it follows that

T[\ + P{2y-\)]fjjaj < 2yj3{\-a).
7=2

Thus

I 7
7=2

fl. <
2#7(l-g) 

2"[l + ^(2y-l)]

that is

^ ^ 2yp{ l-a)
2u Jaj £ —------------------ ■------------------------------------? = 8
7=2 2"[l + /?(2r-l)]

which in view of definition (3.4.3), proves the Theorem 10.

Now , we determine the neighborhood for each classes

T^(a,{3,y) and P;w(a,j3,y)

which we define as follows. A function f e T is said to be in class 

A} (a, (3, y ), if there exists a function g e Tn(a, 0,y) such that

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)
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/ O) _ ,
g(z)

< \-X (0 < A < 1). (3.4.12)

Analogously, a function / e T is said to be in class P‘U)(a, ft, y), if there 

exists a function g e P‘ (a, ft, y) such that inequality (3.4.12) holds.

Theorem 11 .If g e Tn(a, ft,y) and

A - 1
8 2"~x [ \ + ft(4y-2ya-\) ]

2" [ 1 + /? (4 y- 2 ya-\)-2yft {\-a)\
(3.4.13)

then

Ns(g) e T(nx\a,ft,y) (3.4.14)

Proof. Suppose that / e JV^ (g), then

/=2
(3.4.15)

which implies

,/=2
(3.4.16)

Since g e Tn(a, ft, y) from characterization theorem of Tn{a, ft,y), we have

I 2yft(l-a)

2"{\ + ft(4y~2ya-l)Y
(3.4.17)

so that
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Z
/=2

< 2 j _ 2^g(l-«)

2"[ l + /?(4y-2ya-l) ]

[ l + /g(4y-2^q-l) ]
2”[\ + P(Ay-2ya-\)-2yP{\-a)]

= 1-2,

provided that 2 is given precisely by (3.4.13). Thus by definition ,

/ eT^X)(a,p,y) for 2 given by (3.4.13), which completes the proof of 

Theorem 11.

Theorem 12. If g e P' (a, ft, y) and

2= 1-
<5 2" [ 1 + /? (2y -1) ]

2"+l[l + /?(2y-l)-2r/?(l-a)]
(3.4.18)

then
^(g) c P;(X){cc,P,y) . (3.4.19)

Proof. Suppose that / e A^(g),then

Z j 1 aj~bj 1 * 5 >
7=2

(3.4.20)

which implies

^M
8

js 1 IA
 

| C
n

(3.4.21)

/(*)
g(z)

- 1 <
Z7=2

1 -

Since g e P* (a, ft, y) from characterization theorem of P* (a, /?, y), we have
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so that

y . < 2yp(\-cc)
U J - 2"t,[i+/?(2r-i)]’

/(£)
g(z)

Z I arb,
< 1=2

■ - £ *,
j=2

s
< — 

2
1

1 -
2”+1 [ 1 + /? (2y -1) ]

(5 2" [ \ + p {Ay- 2ya -1) ]
2”+l [ \ + ft (2y - \)-2 y(3 ( \ -a ) ]

= 1-/1,

(3.4.22)

provided that X is given precisely by (3.4.18). Thus by definition ,

/ e P*(X) (a, fi,y) for X given by (3.4.18), which completes the proof of 

Theorem 12.
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