
CHAPTER -1
NOTATIONS, DEFLATIONS AND 

PRILIMNARY RESULTS

The best way of overcoming a difficult problem is 
to solve in some particular easy cases. These give much 
light in to the general solution. By this way, Newton says, 
he overcame the most difficult things.

David Gregory



CHAPTER-1

Notations, Definitions and Preliminary results

1.1 Notations, which are used in this dissertation.

Sr. No. Notations Meaning of Notations
1 = Equal to
2 < Strictly less than
3 < Less than or equal to
4 > Strictly greater than
5 > Greater than or equal to
6 Therefore
7 Since
8 => Implies
9 00 Infinity
10 Z Set of integers.
11 R Set of real numbers.
12 su Kronecker Delta
13 r Gamma function.
14 /O) Fourier Transform of function f(x).
15 K(z) Young’s function of order v.
16 ■/,(*) Bessel function of First kind and order v.
17 F(a;b,z) Confluent hypergeometric function.
18 Legendre Function.
19 P(“,b) Beta function.

20 Lp( E)

The class of all measurable functions f 
on R such that the (Lebesgue)

f ® }Up
integralj J|/(x)\pdx\ is finite.
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1.2 Definitions:

1. Fourier Transform:

The Fourier Transform of function fell (R) 

is defined by
QO

/(w)= J e,wx f (x)dx where weM. (1.2-1)
- oo

Let / e Ll (R ) be the Fourier Transform of some function
__  A

/ e Ll (R) , then the inverse Fourier Transform of / is defined by,

/(*) ~ f e-^fMdw2 n J
(1.2-2)

2. Mother wavelet (Basic wavelet):

A function y/eL2 (R) is called basic wavelet if

CO

i) | y/{t) dt = 0
—oo

i.e. function integrates to zero and it also suggests that y is an

oscillatory function.

ii) %/ satisfies admissibility condition

dw <oo

/
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3. Wavelet:

A wavelet is a function y/eL2 (E) such that the family of the functions

¥m,At)=2^W{2mt-n) (1.2-3)

where m and n are arbitrary integers, is an orthonormal basis in the 

space I2(E) .

4. Orthonormal wavelet:

A function fel2(E) is called an orthonormal wavelet if [y/Jk\

satisfies the orthonormality condition

(Vj* ) = 6„ Sk m j ,k ,1 ,me Z (1.2-4)

5. Sampling function (Interpolating function):

A continuous function S e L2 (E) is a sampling function if

1. S interpolates the Kronecker sequence at integers

S(n)=S„ o n - 0 , ± 1, ± 2 ,............ (1.2-5)

2. Their exist a nonnegative constant A and B such that

0<A< 'jrlsiw+lKk)
ifcss-OO

<B < co (1.2-6)

for almost all w g E, where S is Fourier Transform taken in 

the sense of ^ ‘
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6. Young’s Function:

Young’s function of order v (v>0) denoted by Yv defined by

a|(v+2t + i) (1.2-7)

7. Bessel function:

Bessel function of first kind and order v denoted by Jv and defined 

by

(-i yzk Jlk+v

S 2’*uki (v+* + l) (1.2-8)

8. Riesz Basis:

A function y/el} (R) is said to generate a Riesz basis (unconditional 

basis) with sampling rate b0 if

i) The linear span (yho.j k; j,k e Z ^ is dense in L2 (R).

ii) Their exist a constants A and B with 0<A<B<oo such that

for all e L2^2)

here A and B are called Riesz Bounds of }
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9. Scaling function and Multi Resolution Analysis(MRA):

A function e 1} (R) is called scaling function if the subspaces VJ of

1} (R) defined by Fy = c/<w/2(R) (<f>Jk ■.keZ'j j e Z where 

<j>jk (x) = 2jn(f>(2Jx-k) Satisfy the properties

1. Vj a VJ+l for all jeZ

{ \
2. clos. IF,

3. f{x)eVj <*f(2x)eVJ 1

4. f(x) eVj o f x + -
2J

*Vj

and if {<f>(--k):ke Z)\s Riesz basis of F0, then scaling function 

<f> generates MRA {Fy | of L2 (M).

1.3 Preliminary results:

Usually the mother wavelet is constructed from another function called 

the scaling function or ‘father wavelet’ 0(t)eL2(R) .

The farther wavelet € I2(R) is chosen in such a way that

1. JmtO
2. </>(t)='£ck0(2t- k) {c*} el2

k ke Z

3. For each / e / !(R) ,e> 0 there is function 

fm(t) = X amn$(2mt~n) such that ||fm - f ||<e

(1.3-1)
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Sometimes these conditions are expressed in terms of their Fourier 

Transform. We give a sufficient condition for (1.3-1) to hold

1. jUiw + lTtk)

2. Self similarity property or dilation equation 

^(w) = m(w/2)$(w!2) where m(w / 2) = — ^cte"
2 k

A A
3. <f>(w)is continuous atw = 0 and ^(0) = 1.

ikwll
(1.3-2)

The Mother wavelet is obtained from (1.3-1,2) or (1.3-2,2) via <f>(t)

K0 = Z(-i)*+iW(2'-*)
k

V{w) = ei*l2m{^ + K)k^)
(1.3-3)

Example (1.3-1):

The Sine function <j>{t) = satisfies (1.3-1) and we have
nt

4>(w) = X\-nn\ (w)the characteristic function of [-n k\ . 

In (1.3-2,2) m(w/2)is Aperiodic extension of

Therefore m
r w r( W

■+ 7t <p =

V ~2 l { 1 k < w s 2 n
0 olherw ise

which leads to the Shannon wavelet,

sin2/r(f-l/2)-sin/r(/-l/2)¥{t) =
n{t- 1/2)

(1.3-4)
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Lemma (1.3-1):

Let S(t) be a function such that both S and S belong to 1} (R) and S(n)= Sn 0

00

then S(t) is sampling function iff S (w + 2ak)=l a.e.
k = -oo

Moreover if S(w)>0 then S generates an orthonormal family of functions 

{<!>„ (0 = #(*- «)}„eZ in L2 (R) where f (w) = Js(w).

Proof:

If S(t) is sampling function then we have nonnegative constants A and B

w I A 2
such that 0 < A < ^ \S(w+2nk) <B<oo for almost all we

k=-<o

Therefore for A = B = 1

oo

^ S(w + 2/r£)=l a.e.
k=- oo

00

Conversely if ]T S(w + 27rk)=\ a.e.,then obviously their exist nonnegative
k=5-«>

constants A and B such that

0< A < ]T 5’(w+2nk)\ <B<oo for almost all we R
jfc--00 “

Therefore S(t) is sampling function .
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Now consider

£*,o = (x-k)dx
R

By Plancherel theorem (/ g)=—— (^f g^

1 C\ * s x |2^ * llJL „ fkw
rk, 0 2 jt

w)\ e,kwdw

, =0 2</ + 1>*
— Z J <*»
2^ /—« 2,t

2/r

— £ J|^(w + 2hr)
/=-oc 0

e'1'*

= :rr j(Z|^(w + 2/*)
n \ /eZ0 V/eZ 

2/r >

e dw

2 n 0 V'eZ
^■S(w +2/^:) e,lcwdw (v given<j)(w) = ^js(w) )

= 1 a.e.
Thus £*0=1 a.e. k

=> {$, (/) = <p{t - «)} is an orthonormal family of functions.

1.4 Young’s function:

W.H. Young introduced Young’s functions in 1912 [3] in his 

investigation of nonconverging Fourier series. Young’s function can 

be calculated numerically to a high degree of precision. Young’s 

function of integral order is an entire function of exponential type that 

reduced to the cosine and sine function, when its order v is zero and 

one respectively.

Therefore putting v = 0 and v =1 in the formula (1.2-7); we get,
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Y0(z) = Cos Z and Yx(z) = Sin Z.

Also by using formula (1.2-7) we get the relations,

ax

and Yv(x) = y==-Yv_1(x)
Iv — 1

and combining together we get the differential equation for Yv,

xv~2
y*y = r= v>l.

IV — 1

For v = 0 and 1 we have, y'+y = 0.

Another important special function that will be used in subsequent 

chapters is the following integral of Young’s function,

Iv a defined by

7>.a(*)= \^y,(x)dx

k=o (2k + v+a. +1)1 v + 2k +1 

In particular /v 0 (x)= jrv(x)ife = Fv+1(x) and

jVx cosxdx= /q i/2 W
>

jVx sin xdx= /1J/2(x)

(1.4-1)

(1.4-2)
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CHAPTER - II
WAVELET CONSTRUCTION

All depends, then, on finding these easire prob
lems, and solving them by means of devices as perfect as 
possible and concepts capable of generalization.

David Hilbert



CHAPTER-2

WAVELET CONSTRUCTION

2.1 Introduction:

In this chapter we have studied a general procedure for constructing band- 

limited wavelets known as h-construction of wavelets. This is based on 

earlier work by Walter [4].

Lemma (2.1-1):

Let h be a function satisfying the following conditions

1) h € V (R )
2) h > 0

oo

3) J h(x) dx = 1
— oo

4) h{x) is even ; 

5 ) Support h a n
*3

W + 7t

Let <j> (w) = J h(x) dx
W - 71

/

(2.1-1)

then ^(w) is nonnegative, even , continuous function with support in

4 n 4 n
T T and <j>{w)=\on 2n In

T T

Moreover, ^^(w+2nk)=l (2.1-2)
—oO
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Proof:

1) As 0<h We have <fr(w)= j h(x)dx >0
w — x

i.e.<j) is nonnegative function.

~w+x

2) Consider ^(-w)= J h(x)dx
-w-x

Let -t = x + 2w => dx = -dt

Also when x = -w-/r,t = -w+/r and when x = w+ ;r, t = - w - K

-W — Jl

(-w)= J h(-t -2w) {-dt)
-w+x
-w-z

= J h(t + 2w) (-dt) his even function.)
-w+z
-W+X

= J h{t + 2w) dt

Let t + 2w = y ==> dt = dy

When t = - w - jz- , y = w - re and when t = - w + 7r, t = w + n

w+x

:. 0(-w)= | h(y) dy = <j>(w) (v By defmation <j>^)
W-Z

Thus <f>{-w) = (j){w)

=> ^ is even function

3) Let w < - — then w - n< and w + n< - — 
3 3 3

=> [w-;r w+^r]c=[-oo -y

14



w+x
But <p(w)- j h(x)dx and supphcz

w—Jt

TV TV

1 7

=>^(w)=0 forw<- 

Similary <f>(w) = 0 for

4 K
T

, 4 n w> — 
3

:.supp<f>a
4n An
T T

4) Let

-In 2 n
----- < w< —

3 3
. -5 n -n-----< w-n<—

3 3

and n
— <
3

w+n<
5 n
T

co fl"/3
Also Jh{x)dx= J h{x)dx=\

-oo -n/3

J h(x)dx=\ on
w~n

2 n 2 n
T T

5) Let jw, — w21 <8

Consider |^(wl)-^(w2) |

Wi+X w2+x

= J h(x)dx - j h(x)dx
wt-Jt w2 -n

0 w^+zr 0 w2+x

= J h(x)dx+ J h(x)dx - J h(x)dx - J h(x)dx
0 Wj-s 0

w2 -n w2+x

= | h(x)dx - J h(x)dx
wi-x wt+x

Let x + n=tx => dx=dtx 

and whenx- w, -n,t{ =wt 

whenx=w2-n,tx =w2

Let x-n=t2 => dx=dt2 

and whenx= w, +n, t2 = w, 
when x= w2+n,t2 =w2
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•■•|^(wi)-^(w2)|=i ]h{tx-j[)dtx - \h(t2+n)dt2
jw, w.

J[/j(/-2r) -h{t+n)\dt
W|

w2

< ^\h(t-n) -h(t + rc)\\dt\
wi

As heL'(R)

w, )-^(w2) < m\w2 - w,| = mS =e

Thus for given 5 > 0 with |w2 - w,| < 5 their exit e> 0 such that

|^(Wl)“^(W2)|<€

=> <f> is continous function .

6) Consider

^ <f>{M> + 2nk)
k=-<o

oo w+2xk+x

= E J *(*)*
i=-co w+2!ck-!r

<n w+(2i+l)»

= E J M*)*
i=-oo w+(2t-l)ff 

oo

= =1 
—oo
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Theorem (2.1-1):
w+rr

The function defined by &(w)= J Kx) dx
•w-n

eo

Where h e I) (E ) , h > 0 , j/i (x)dx = 1 , h (x) is even and

supp h n n
'T T is both a sampling function and a scaling function of

MRA and corresponding mother wavelet may be given by 

+ I =2^(2 t)-</>{t) (2.1-3)

Proof:

1) The function <j>(t) is sampling function follows from equation (2.1-2) 

and Lemma (1.3-1).

2) Since, by Lemma (2.1-1)

w) =
1 on

0 outside

2 n 2 n
3 r

-An An
~3 T

4 2j

1 on
-An An 
~3 T

0 outside -%n 8n
T~ T

Let m jl be An periodic extension of 0(w).
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m f wA
4>{w)

0

on -An An__ —

An . | %n on—<\w<— 
3 1 1 3

Thus we have <j>{w) = w(w/2)^(w/2), which is the dilation equation.

3) Now to show that [<j>{t-n)) is a Riesz basis we have to show that their

exist 0 < A, B < a> such that A < ]TU(w+2;r£) <B.

Let g(w) = y'U(w + 2;rfc)j

Therefore g(w) is even function and periodic with period 2n.

Thus it is sufficient to consider its behavior on the interval [0 2n].

Since for each w the series contains at most two nonzero terms it is 

bounded above, also 0(w) is positive on [- n n], therefore g(w) is

also bounded below by a constant.

, /(«’/2) - W ) 7( W— + n U —
2 V l 2

As \J/{w) = e{

We have e~^WIT>\}r{xv)-(j> ][<^(w—+ 2tt)J

^ yj <kw-2#) + ^(w+2/r) + ^(w)-^(w)J

i y)[WH]

"<t> J -OH\AJ
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e ^w/2^(w) =$ — -^(w)
J (2.1-4)

Since y | = 1 on support of (f>{w)

By taking inverse Fourier Transform

¥ t + - 
V 2y

= 2<f>(2t)-<f>(t).

Corollary (2.1-1):

The mother wavelet is given by y/ ( 0 t+-
v 2;

:2^(2f)-#(f)

is the sampling function at the half integers y/( 0«+—l 2 J = <?,0,H

Proof:

( n
As y/ n + — = 2^(2«)-^(/z) 

V 2 J

¥
1^+-J = 2£0„-£0n

Therefore the mother wavelet y/ is sampling function at the half integers.

We can use the same construction to obtain an orthonormal scaling function 

by taking non-negative square root of ^(w).

i.e. &(w) = ^(w) (say)

Such a $,(w) satisfies the equation (1.3-2, 1) and dilation equation

(1.3-2, 2).
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The mother wavelet y/a{t) obtain from (1.3-3) will then generate an

orthonormal basis.

Unfortunately except for the example

M*)
sin;r(l-/?)t-4/frcos;r(l + /?)f

nt[l-(4/»)!]
(2.1-5)

Where 0 < B < - and it’s associated mother wavelet 
3

Wx
f Ot+~
\ 2,

sin;r(l + fi)t-4/?tcos;r(l- p)t

nt\

sin27r(l-/?)/+8/frcos7r(l + /?)?

nt^pt)2

(2.1-6)

This does not lead to a closed form expression.

A modification of this approach was introduced by Liu (as reported in [5]) 

where he constructs scaling function, which is simultaneously sampling 

functions and orthonormal. That is 0(w) satisfied both (1.3-2, l)and

(2.1-2). Most scaling functions were not in closed form except for one case 

as reported in [2].

sin;r(l-/?)f+sin;r(l + /?)f 

2nt{\ + 2pt)
(2.1-7)
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Thus we have two raised cosine wavelets $(t) and $,(t) in closed form

expression. In next section we study another approach, which gives many 

additional examples.

2.2 Orthonormal wavelets in closed form:

In the previous section we did not get orthonormal wavelets in closed 

form except in special cases. Therefore we introduce a new approach, which 

is based on modification of an orthonormal scaling function to obtain new 

orthonormal wavelets basis.

Proposition (2.2.-1): Let 6>(w) be real valued, odd measurable, function on 

K continuous at Zero such that e,0(w) is 2n periodic.

Let <f>{i) be an orthonormal scaling function satisfying (1.3-2)

then, <j>e O) = eld{w)0(w) (2.2-1)

is the Fourier Transform of an orthonormal scaling function, <j>g (/) satisfying

!• Z ¥e (w + lltk)
k = - oo

2. (f>e{w) = m(w/2)^(w/2)
A A

3. $0 is continous atO and ^(0) = 1
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Proof:

1. As (j>8{\v) = el0(w)0(w)

A(w)| = 0(w)

• £ |A(w + 2^)| 2= £ |j£ (w+2ak)
k=-h» k-~<io

2=1

2. Again consider <j>e(w) = e'e{w)<j)(w)

( v by 2.2-1,2)

e 1 '/w Vi
,2,

(v by 2.2-2)

= e ml w A 14/*,e>
= OTfl f-1

,2, *<f)
3. Since e • («- is periodic and

\m (w )r + \mg (w + n)\ =1 a.e.
iff |m (w)|2 + |w (w + n )|2 =1 a.e.

Clearly <j>e(w) ls continuous at w = 0 and $e (0 ) = 1 .

Since 9{w) being odd and continuous must have value zero at zero.

To construct Mother wavelet y/e we use relation
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- \ '(f)- ( w 1 - ( w
Mw) = e me\ ^+7r m

i{j-0(*+lx)+e(w+2x)\ _ f w \ 7 f w

m {Tz)Hl

V,
t \ {v2-e(^x)*e(w*in)\ «?[yl f w \2
(w) = eK ’e v !m----- tv <f> w (2.2-2)

we can now construct many new examples based on the three we already 

know, the sine function and the two raised cosine wavelets (2.1-5) and 

(2.1-7).

The simplest case is when <f>{t) is sine function i.e. ^(w) is the characteristic 

function of the interval [-tv tv] and 0(w) is piecewise constant which does

not satisfy continuity hypothesis at the origin.

From this we get the following number of examples.

For fixed nonnegative integer n,

Let L TV

¥ and L TV TV
>n-k+\ tyrt-it k= 1,2,3,........... ,n. (2.2-3)

Let us define 0, (w) on [0 n) as 0, (w) =ek on Ik k = 0,1,2,3,........... ,n.

Where ek are any real numbers.

Let 0(w) be odd extension of 0,(w) to (-tv tv) extended periodically to

whole real line.
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Therefore 6{w) is of the form in proposition (2.2-1) except for continuity at

zero. The resulting is an orthonormal set in Z,2(1R) and Satisfies

the dilation equation for all w .We can ensure that <j>e is real by taking ek to 

be multiplies of ft in particular 0 or ft.

It is easy to see that in this case the function me\^~ is An periodic extension

of the function

m, Wr
•*0

on Ik k =l,2,....,n. 

on[n 2n)

The Fourier Transform of mother wavelet can be found by formula

y/(w) = ev Jm —+n w — and it is 
V 2 ) V 2 )

e ^2^(w) =

e*"ak- if n 2 — i/l-jfe < W\<7t \n-k+1

ee-a0 if x[2-jn 

0 oterwise

\
< w < 2n

where a0 = 1 and ak = k = 1,2,3... ,n.

Therefore by inverse Fourier Transform we get
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K')=Z^ltsin2^'‘^+-(ak -ak_l)sinak
/ I/--|-a„sman+1
V ^

rt_v
< 2,

where ak=n
^ 2^"^^ | ^ 

'jn-k+1
V z J

where k = 1,2,3,... .,n+1 (2.2-4)

Example 2.2-1 :

For n = 1

---
-1

o h and /. = K ) --  K
L 2 J i L2 J

a, =;r '22-0 3k

~2 , a2= k
r2 -0

v 1 J
■K

Let e0=0

Case I : e,= 0

. aQ = 1 and a, = 1

-1 -I
( i \

K
1^

l' 2.

sin 2k
( 1t— -sin/r 
V 2)

H.

which is the sine function as shown in figure below
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Case II: e,=;r

then a0 = 1 and ax = -1

-i

K\ t
usin2#^/- + (a, -a0)sina, - a, sma2

n

2;

:.v(t) = -1

7Z\ t
sin In( H _ . 3nf H .I f-—l-2sm—Ij + sm^-

f

v
n
2

/
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Example 2.2-2

For n = 2
---

--
1

o Ji
S

II and I2 =
L 4j 1 L4 2) 2 L

n— n 
2

:.a, In "in
,a2 =n

4 2

Let e0=0 then we have three possible cases

Case I :e,= 0,s2=;r

then a0 = 1, a, = 1 and a2 = -1

= ^_|sin2J/-I
n\t— ^l 2)

n „. 3 n( n .-2 sin— t— + sin;r2 l 2) t —

which is same as example 2.2-1, case II

Case II: et=n ,e2=n

then a0 = 1, ax = -1 and a2 = 1

■M<) -i ! sin In
P

t —

'4>l ^ 2;
2 sin In

(■4)
o • 3*rf, n .+ 2 sin— t— -suwr2 l 2

( 1 
t —l 2
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Case III: e, = k ,e 2 = 0

a0 = 1, a, = -1 a«c/ a2 = -1

^(/)= 1 |sin2^^-l

Fig. 2.2-4
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Example 2.2-3 :

For n = 3
---

1

o i**
"1

ii

\ee\i = n n'
and L =

L 8J ' [8 4) 2 .42, j

15 n In 3n ,a.----- ,a7 =—,«i=— and a. =n
1 8 2 4 3 2 4

Let e0=0 then we have seven possible cases 

Case I :e,=0,e2=0 and e3=;r

a0 = 1, a, = 1, a2 = 1 and a, = -1 

-1-M&

7t ( 0 
l 2)

sin 2n( ^ t — -2 sin—
r
t- r f

+ sin;r
V 2) 2 \ 2j V

which is same as example 2.2-1, case II

Case II: 6, = 0,e2-^and e3=0

then aQ = 1, a. = 1, a2 = -land a, = -1

,^(f) = —7 cl sin 2^-f t~ -2sin—|/

4,-11 r t
l 2)

. In 1
4 l 2

+sin^r U

which is same as example 2.2-2, case III.

Casein: e,= 0,e2=;rand e3=;r
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then a0 = 1, a, = 1,a2 = -landa3 = 1

■M<)= sin 2/r^f- 1-2*31ft r + 2sin—|^ r
-sin* f n

) 4 i * 2, 2 / 2, l 2)

which is same as example 2.2-2, case II. 

Case IV: e,=*,G2=0,e3=0

a0 =\,al= -1,a2 --landa3 = 1

-1 f . „ (
xu-'-n l 2

\ „ . 15*1 _ . 3* f n • f n
-2 sin----- + 2sm— t- -sin* t —) 8l< 2) 2 \

2J

l 2)

0.6

15

Fig. 2.2-5

Case V: e,=7r,e2=0 and e3=*

a0 = 1, a, = -1, a2 = -land a3=-1

,„(<)=■
-i

n\ t —

[sin 2*jj- r •2 sin
15 n t —P

2,
+sm* t
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-15

Fig. 2.2-6

Case VI: e,= n, e2= n and e3= 0 

a0 = 1, at = -1, a2 = 1 and a3 = -1

y/{t) = ^ *- N |sin2;rf/-j- -Isin^^

K t- II V 2 8
f n 
l 2 +

V
.\

4 l 2
. 3/rf H .-2sin— t— +sin;r t —2 l 2) l 2
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Case VII: e,= e2=e3=;r

a0 = 1, a, = -1, a2 = \and a3 = 1

n 4)1u
sin 2 nit-—

l 2
^ . 15#|' r\ ^ . In f n (
-2sm----- + 2sm— t -sin#J 8 , 2,) 4 V V

t —

Fig. 2.2-8

Example 2.2-4 :

For n = 4

*1o1___

i

> ii £-V3= [££U= — #
L 16J Li6 8; ‘ L 8 4 J 3 L4 2) 4 L2 J

31/r \5n In 3 na, =---- ,a7 =----- ,a,= — ,a. = — , a, =/r
1 16 2 8 3 4 4 2 5

Let €0=0 then we have, fifteen possible cases .
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Case I : e, = 0, e2=0,e3=0,G4=/r

/. aQ = 1, a, = 1, a2 = 1, a3 = 1 and a4=-l 

-1

K ( 0t-~l 2)

sin 2 nr,-I' -2 sin—1 ' r f
+ sinzr

2; 2 / 2, V

which is same as example 2.2-1, case II 

Case II: e, = 0, G2=0,e3=/r ,g4=0

aQ -1, a, = 1, a2 = 1, a3 = -1 and a4 = -1

y/{t) = ——*—r-isin2^[ t- 1
. n i"n\t— '• 

2)

-2 sin. In
\ *-)

. f n
.2) l 2.

which is same as example 2.2-2, case III. 

Case III: e, = 0, e2= 0,e3= ;r ,g4= ;r

a0 = 1, a. = 1, a, = 1, a, = -1 and a, = 1

-1
f 1't —
V 2y

sin 2 n
n

f 11 „ • ln( 0 _ . 3n f O /
t — - 2sm— t — + 2sm— -sin/rl 2) 4 l 2) 2 l 2J V

which is same as example 2.2-2, case II 

Case IV: e,= 0,e2=^,e3=0,e4=0 

.*. a0 = 1, ax ~ 1, a2 = -1, a3 = -1 and a4 = 1
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which is same as example 2.2-3, case IV.

Case V: G,= 0,G2=7r,G3=0,G4=;r

.*. a0 = 1, a, = 1, a2 = -1, a3 = -1 and a4 = -1

■'■¥{*)
7t\ t 1

! sin 2n( n . . 15s- f r . f n-2 sin----- t- + sin/r t —l 2 J 8 \ 2, l V

which is same as example 2.2-3, case V 

Case VI: G,= 0,G2=;r,G3=;r,G4=0 

/. a0 = 1, a, = 1, a2 = -1, a3 = 1 and a4 = -1

•' ¥(t)
(

sin2/r
1 . I5n( Ist~— I — 2sin----- t-\ 2) 8 i, 2, +

2 sin
In
4

^ . 3;ri f 0-2sm— .+ sin^) 2 ! 2, l 2)

which is same as example 2.2-3, case VI 

CaseVII: G,= 0,G2=?r,G3=;r,G4=?r

. a0 = 1, a, = 1, a2 = -1, a3 = 1 and a, = 1

y/(t) = ? - v isin2n(t- — |-2sin^-[/- —j + 2sin
^ 2> 8 v 2)

In
4~

f, 0 • f nt— -sin# t —

l 2) \ 2)

which is same as example 2.2-3, case VII. 

Case VIII: Gt=n,e2=0,€3=0,e4=0 

a0 = 1, a, = -1, a2 = -1, a3 = 1 and a4 = 1
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-1

n t-

, j n
sin 2/r t —

l V -2 sin
31;r
16

0 . Itc + 2sm— 4 -siwr

Case IX : , e2=0,e3=0,e4=7r

a0 = 1, a, = -1, a2 = -1, a3 = 1 and a4 = -1

-1
( 1 "\

n 1t-~
v 2)

sin 2/r
f ot —
v 2,

■2 sin
. 3lft( 1

16 (* 2)

2 sin— 4
( 0 -2sin—f/ 1) .

— + sin/r ( 0
l 2) 2 l 2) l 2 J

Fig. 2.2-10
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CaseX: et = zr, e2 = 0,e3= 7r ,e4= 0

/. a0 = 1, a, =-\,a2 = -l,n3 =-l and a4=-1

n\ t-

jsin 2 n ( p _ . 31zr f n . f n-2 sin---- t- + sin;r t—l 2; 16 \ 2 J l 2 J

Case XI: e, = ;r,e2 = 0,e3=?r,e4=?r

. a0 = 1, a. = -1, a2 = -1, a, = -1 and a4 = 1

V(t).
n\ ,4)i , f n<sin2;r t —

V L) 16 l 2
+

3/rf 1 (
2 sin— t— -sinzr2 l 2 t —

V
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Fig. 2.2-12

Case XII: e, = ;r, e., = ;r,e3=:0,e4=0

a0 = 1, a, = -1, a2 = 1, a3 = -1 and a4 = 1

■M<)

n\ t

( nsin2^ t— -2sin- {{ 2) 16
3\n( 1 . 15#t— +2sin-

V 2 J 8
(

V

2sin—
4

r o . 3 n f \) . f
+ 2 sin— t- — -sin# tl 2) 2 \ 2) \

n
2>

2j

0

c

\ A (

.6

4

2 r
n 1 nil f\Al\f

-is -iV v y * \
V v

-0 .4 -

1 1 p\jW Vo

Fig. 2.2-13

CaseXIII: e,= #,e2=#,e3=0,e4=#

/. a0 =1, a, =-l,a2 =l,a3 =-l and a4=-l
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-1 sin2;rU--M-2sin^^| /- n . . 15/r
— + 2sm------
2 8

+sin;r

CaseXIV: e,=;r,e2=?r,e3=/r,G4=0 

a0 = 1, a, = -1, a2 = 1, a3 = 1 and a4 = -1

■M<h-
n

sin 2 n ( n _ . 31/r r n „ . 15;r r nt— -2 sin---- t- + 2 sin----
V V 16 2j 8 l 2)

2 sin 3 n ]_
2

+sin;r
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Case XV: e,=e2=€3=€4=7r

a0 = 1, a, = -1,a2 = l,a3 = 1 and a4 = 1

Fig. 2.2-16

Many other examples of this type are possible, but all share the shortcoming 

of the Shannon wavelet, that they have very poor time localization.

To improve the time localization, we begin with the raised-cosine Scaling 

function and require that 0(w) be continuous.
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Example 2.2-5 : Let 9{w) be 2 n periodic extension of the function

9{w)

w M <n(\-p)
l-P
;rsgn(w) n(\-f3)<\w\<7t whereQ<P<^

Let <f>(t) be the scaling function arising from the raised cosine wavelet 

(2.1-4) or in other words

Let <j>{w) =

l 0<|w|</r(l-/7)

w| — ^r(l — /?)
cos

0
4 P

n (l - p) < jwj < n (l + /?) 

7r{\ + P)<\w\

As by (2.2-2) f9 (w) = ei6(w)i (w)

H £*(!-/?)
w|-/r(l-/?)

<t>0{w) = I- cos 

0
4P /r(l -p) < jw| < /r(l + P) 

otherwise

Let a
1 ~P

For the time domain, taking inverse Fourier Transform again we get

M‘)=~ i *f e^dw-- f, 71 ,
COS

*(!-/?)

W-7t{\~P)
cos (wt)dw
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1 ‘ e<w(a-() *0-*) /r(i+/») j f f 1)
rr — — J —scos w t H-------

2ft Lf(«-Oj -*(!-/?) * «(M) 2 1
-

l 4fi)

+ COS
ft 1 ]

+ Afi J dw

___ [
it (a

■ g (I 0 -/»)(«- 1 ) _ g - it (1 - P )(« - ! ) 1
+ 2n

sin IF f • 1
l 4 fi J

* 0 ~ P )
4 P

0 2 i f 1 1
l 4 p J

sin
4 P J 4 p

-i/r(l+^)

I ~
1

4 P

dw

*0-fi)

sin[;r(l-/?)(/-a)] ^ 4/? sin *(! + /?) f 1 > 
l 4/?J 4 P

-sin *('-/»)
f 1 ^
l Afi)

*(»-/>)]

4/?
/r(f-a) 2/r 4/ft + I

/r(l + /3) f • 1 ,*('-/>)]
-sin n(\-P) r 1 ]

l 4 p) 4 P \ 4y5 J
Apt-\

l-at(Apf 4/?cos[;r(l + /?)/]

Fig. 2.2-17 (j>9 (/) of example 2.2-5 with ft =1/3)
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The mother wavelet can similarly be calculated but becomes quite complex 

and therefore looses the advantages of a closed form expression.

This Mother wavelet has better time localization than the ones given in the 

previous examples.

Lemma (2.2-1) :

Let F(a;b;z) denote the confluent hypergeometric function

F,(a;6;z) defined by F(a;b;z):=X^IaL77 w^ere (a)*
* W* »■ Va

with b*-n, n = 0,1,2, then

F (1; v;iz)+ F (l;v;-/z) = 2fv----j^ and

F (1; v;/z)- F (l;v;-/z)= 2/17—MO

where Yv is the Young’s function .

Proof: By definition

F(l;v;&)+F(l;v;-fe) = |;^-[l + (-l)‘]
* =0 I vj. L J

2S

w.
(fe)‘

“ (v);.
(->)* _2 *

fzo Iv + 2A:

2f7 MW

42



ThusF(l;v;/z)+ F(l;v; -iz) = 2fv (*)
z v-1 (2.2-5)

Similarly

(1 ;v;iz)-F (1 ;v;-/z) = £ ^-[l -(-l)‘ ]
Vv/*

._ 00
2il^E (-0* z2*.l

4=0 (V)24+i
■ 2,^ K

4=0 |v + 2k + 1
9.rn(0= 2/iv—^

=> F(l;v;/z)~ F(l;v;-/'z)= 2ifv ^
* (2.2-6)

Now we obtain an orthonormal wavelet basis using the procedure described

in Lemmas (1.3-1) and (2.1-1) and Theorem (2.1-1).

Example 2.2-6:

The function

sin f 2nt

m= \ 3 V3
nt n(2t)i -

Y*212
' 2nt\ ( 2 nt----  cos ----
l 3 J [ 3 .

-K5/2
r 2 nt'
<~3~,

( 2 nt sm ----l 3 , (2.2-7)

is an orthogonal scaling function and the set \y/mn (t) = 2mny/{lmt - «)j°° is 

an orthonormal wavelet basis of L2 (R)

43



where,

Proof:

and

w+xg(w)= J h(t)dt
w-x

Therefore by Lemma (2.1-1)

g{w)

if |w>| > 4 n

f i \

\2nj
w + 2 4;r ^ „ -Inif----- < w <-----

3 3

if U < 2 n

f 'X \
\fln j

~ .. In . ^ Anw + 2 if — < w < — 
3 3

Then g(t) is a sampling function and a scaling function of MRA

Since g(w) is non-negative, by Lemma (1.3-1)

We define ^(w) = ViT w) 

Moreover since

(2.2-8)
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k=~<x>

£ \<j>{w + 2k7t) = g(w + 2kn)
*:»—to

ao w^Jur+jr

i f *(0*
*“-® w+2kx-x

\h{t)dt

{^(r — «)} is an orthonormal in 1?

Let m w be the 4# periodic extension of ^(w)then 0(w) satisfies the

dilation equation <j>(w)= m[In "J

Therefore (f>{t) is an orthogonal scaling function of MRA.

As <j{w) is even function to obtain <f>(t) in closed form, by inverse Fourier 

Transform 0 0)
2k

J 0'(w)< “Wdw

1 Ax 13

K
J 0 (w)cos (xvt}dw

1 \2*n 4x12 I 3w
n

J cos(wt)dw+ J ^|2- —cos(wt)dv
2x13

. 2ntsin----
3

nt
1 f U 3w / \ j+ xJJ2-^COS^dW

t , 3 w 2k ,Let — = x => dw = —dx 
2k 3

.-.when w = — then x = 1 and 
3
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Attwhen w = — then x-2 
3

. 2 nt
, SmT" 2 2f rz  (2ntx}

:.<!>{t) =-----—+ _ JV2-XC0S
nt 3 )

\dx

setting w = x - 1 and c 2 nt

sin 2 nt

••• *(<■) =....nf-+- JVT^cos(c(w + l))dw

. 27Tt
sin— _ i __ 1

cosc jVl-w cos (cw) <Av-sin e^-Jl-w sin (cw) dw (2.2-9)

Using the equations (2.2-5) and (2.2-6) in the formulae (From[2] formula 11 

and 12, P.425)

1   j / 2 ^
jVl - w cos (cw) dw= — P 1,—
0 2 v 2j

1   I
jvl - w sin (cw) dw= — ft

\ 5 ) „ (t 5Fx 1 ;-;/c + 1 ;-/cv 2 J l 2 JJ

( 5 ^ ' 5 VFx l;4;ic -,/? 1;—;-/c
2 1 ^ 2 JJ

and

where,/?(a,6) stands for the Beta function ,we get

r„, (c)JVT wcos (cw)d1w=
2 c3/2

and jVl - w sin (cw)dw= ^ ^
n 2 C

(2.2-10)

(2.2-11)

Therefore substituting (2.2-10) and (2.2-11) in equation (2.2-9) we get
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To derive y/(t) explicitly,

A A Qtt
Since the relations <t>(w-2n) = \-<j>{w) for — <w< — and

^(w + 2/r) = 1 -^(w) for—-- < w < —— are not satisfied .we can not use

V
f O 
/ + - 

V 2y
2<j>{2i)-(j){t). Therefore we consider e i(w/2)^(>v) = — J — (6(w).

because of symmetry of e~i{y,n)y/{w) it is sufficient to consider it’s restriction 

to the positive real axis.

Therefore from definition of 0(w) we have

<j{yv-2n):

if w< 2 it

3 w 
2n,

. f 2* . Anif—<w< — 
3 3

.An 8 nif — <w< — 
3 3

3w>^ ..8n ^ 10#+ 5 if—<w<----
3 32 n

.,10# ^if—-<w
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Therefore the restriction of e"(wn)y/{w) to positive real axis is given by

In j

2k
ifO<W<=y 

1 - A11 s• 1 if <W< —
3 3

3vv^ 4n 8 n---- - +2 if — <w< —
In J 3 3

.,8n,fT<»

Therefore by taking inverse Fourier Transform of <f'(w/2)y>(w)

¥ J e~^w,2^ijf(w)cos(tw)dw
&*n

0051^j, J(-9f 2 ■“('■'H

2 2r I 7 (2nyt\ 4 \ rz  (4nyt\,=TjVr-lcos —- \dy + -y2-/cos \-2~- dy
j. \ j j j. \ j j

2 V r / x . 41=— JVw cos (aw + a)du + — jVl - u cos(/?w + 0)du

where a = —, B = 2a 
3

¥U\— =—icosa jVwcosawt/w-sinaJVwsinawdw +
v ■ 3( o o

i _____ i _____ 1
2 cos p jVl-« cos Pudu -2 sin p jVl -wsin pudu

Therefore using (1.4-2)
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, 1 ^ 2
a

3 12 cos a I , (a )- sin a j 

[cos fiY,n
o 3/2 3/2

Therefore

^ VJ72 f f 2;r A r 2/zy ^

J «21 cos 3 J^i l 3 J
. (2nt 

-sin - - - - -l 3

C0\TT3/2
(4xt) . (Ant') f 4at\

- sin ---- ^5/2 —{ 3 J l 3 J 1 3 )\

'.(«) +
'2

(/»)-sin(/»)l'>,,(/»)]}
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