CHAPTER 1

DEFANTIONS AND STATEMENTS OF KNOWN RESULTS


```
DEFINITIONSANDSTATEMENS
```

STATEMENT - We consider throughout the discussion the domain E, as the unit disc, defined by
$E=t z:|z|<1, z$ is any complex number *.
DEFINITION - A complex valued function $f(z)$ is said to be holomorphic in a domain D in the complex plane O if if has a uniquely determined derivative at each point of D. DEFINITION - A single valued function fis said to be univalent (or schlicht) in a domain $D \subset$ (II if it never takes the same value taice, that is, if $f\left(z_{1}\right) x_{i}\left(z_{2}\right)$ for all points z_{1} and z_{2} in D with $z_{1} * z_{2}$.

STATEMENT - Let 5 denote the class of all functions $f(z)$ holomorphic and univalent in E and normalised by the conditions $f(O)=O$ and $f^{\prime}(O)=1$.

DEFINITION - The radius of univalence or the region of univalence is defined to be the largest value of r such that fiz) is holomorphic and univalent for $|z|$ \&

Accordingly the same can be generalised to region of qualence.
We note that in particular region of starlikeness and convexity Can be established.

DEFINITIDN - The domain which contains the origin is said to be starlike with respect to the origin if it is intersected by any straight line through the origin in a linear segment. Gtarlife with respect to origin is referred to as simply starlike.

Remark: - We also note that a starlike function is a conformal mapping of the unit disc onto a domain starlike with respect to the origin.

STATEMENT - Let K be the subclass of S whose members transform every disc $|z| \leq \rho, p \in(0,1)$ onto a conves domain. We note that K. is the family of conver functions in S.

DEFINITION - A function $f(z) \in S$ is said to be close-to-convex with respect to the convex function $e^{i a_{g}(z), ~ w h e r e ~} g(z)$ is convex, $\alpha \in[0,2 \pi, i f$

$$
\operatorname{Re}\left\{\begin{array}{c}
f(z) \\
-i \alpha g^{\prime}(z)
\end{array}\right\}>0, \text { for } z \in E .
$$

This class is denoted by 'C'.
Let $f(z)$ be holomorphic at $z=0$ and $f(0)=0, f^{\prime}(0) \% 0$. We define the region of close-to-convexity as follows DEFINITION - The radius of close-ta-convexity is defined to be the largest value of r such that $f(z)$ is holomorphic and close-to-convex for $|z|<r$.

STATEMENT - Let $p(z)=a \Pi^{n}\left(z-z_{k}\right)$ be a polynomial of degree n, $k=1$
where n is a positive integer, all of whose zeros lie outside or on the unit circle.

The set of all such polynomials, we denote by $Q(z)$.
$P(n, 1)$ denotes a polynomial of degree n and all
the n zeros lie outside or on the circle with centre at origin and unit radius.

DEFINITION - The holomorphic function $f(z)$ in E is said to be subordinate to $g(z)$ if $g(z)$ is univalent in $E, f(0)=g(0)$ and $f(E) \subseteq g(E) . \quad$ We denote this relation by $f(z) \ll g(z)$.

DEFINITION - Suppose that we are given a function $f(z)$ holomorphic in the unit disc E and that the equation $f(z)=w$ has there never more than q-solutions, as moves over the open plane, then $f(z)$ is said to be q-valent in $|z|<1$.

STATEMENT - Let $S_{q}(q$, a fixed integer greater than zero) denote the class of functions $f(z)=z^{q}+\sum^{\infty} a_{k} z^{k}$ which are

$$
k=q+1
$$

holomorphic in $E=\{z:|z| \leqslant 1\}$.
DEFINITION - A function $f(z) \in S_{q}$ is called q-valent starlike function of order α if it satisfies

$$
\operatorname{Re}\left\{\begin{array}{l}
z f^{\prime}(z) \\
-f(z)
\end{array}\right\}>a, 0 \leq a<a
$$

We denote this type of function by $s_{q}^{*}(a)$.
Remark - For $\alpha=0$, we get

$$
\operatorname{Re}\left\{\begin{array}{l}
z f^{\prime}(z) \\
-f(z)
\end{array}\right\}>0
$$

We call these functions , as simply q-valent
starlike functions, denoted by S_{q}^{*}.
DEFINITION - A Function $f(z) \in S_{q}$ is said to be q-valent starlik:e function of order α and type β if the following condition is satisfied,
for $0 \leq \alpha<q, 0<\beta \leq 1, z \in E$,
We denote thim class by $S_{q}^{*}(\alpha, \beta)$. This can be found in Aouf [1]. DEFINITION -Extreme point - The point a ' in a convex set A is called an extreme point of A if and only if ${ }^{\prime}$ a' canngt be expressed as convex combination of any other two distinct points of A.i.e. $t x_{1}+(1-t) x_{2}$ is the convex combination of any two distinct points x_{1}, x_{2} of A then a $x x_{1}+(1-t) x_{2}$ for $0<t<1$.

REFERENCES

1. Aouf. M.K. :

On q-valent starlike functions of order a and type β, Bulletin of the Institute of Mathematics Academia Sinica, Vol 16(3), September 1988. pp 229-245.
2. Barre A. F.:

The radius of univalence of certain classes of analytic functions, Ph.D. dissertation University of Mississipi (1971).
3. Kulkarni S. R. and Thakare N.K. :

Some Problems Connected uith Univalent Functions.Ph.D. thesis, Shivaji University, Kolhapur, 1981 (Unpublished).

