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CHAPTER — .

AN EXPOSITION OF ABSTRACT IDEAL THEORY OF COMMUTATIVE RINGS.

§. 1. INTRODUCTION

The theory of multiplicative lattices is classical and has
been an inseparable part of any text book of lattice theory and
universal algebra. In 1939, Ward and Dilworth [10], have
initiated the abstract ideal theory of commutative rings
and defined multiplicative lattice and since then, there has been
a steady development of the theory of multiplicative lattices.
For such multiplicative lattices, abstract analogues of
the Noether Decomposition Theorems for commutative rings and
various ideal theoretical results were formulated and proved
by Ward and Dilworth [10] and Dilworth ([7].

Let R be a commutative ring with unit element. On ideals
I, J of R, aefines the following operations

i) I /NI =1nJ

ii) I \/ J = [T U J] where [I] denotes the ideal of R
generated by I.

It is well known that I(R), the set of ideals of R, forms a
complete modular lattice under the above two operations. On I(R),
we define operation multiplication as follows ;

I3 = { Z¢inite arby / ar€l, byed } for I, JelI(R).

This product IJ of two ideals I and J of I(R), is the ideal
generated by all the product ab with a € I, b € J.

One also notes that the multiplication distributes over



join in the sense I( J \/ K ) = IJ \/ IK. Where I, J, K € I(R).
Moreover IJ €1 N J.
Thus I(R) with these binary operations becomes an algebraic
structure called multiplicative lattices.

Let us now build up the necessary apparatus which needs
to understand the core of this dissertation.

Definition 1.1 :

A multiplicative lattice L is a complete lattice
provided with a commutative, associative and join -
distributive multiplication for which the greatest element 1 acts
as the identity for multiplication. |

Indeed, explicitly, by a multiplicative lattice we mean
a lattice < L; /\, \/ > with a binary operation of multiplication
satisfying the conditions

(1) <L; /\, \/> 1is a complete lattice,
(ii) ab = ba ; a( bc )= (ab ) c ;

a | \/jbj ) = \/j ( ab 4 ).
(iii) a.1 = a. where a, b, ¢, b

J
The product of two lattice element a and b in L is ab.

€ L.

Using this concept, Ward and Dilworth [10] could
abstract the notions of prime ideal, primary ideal, residuation_
etc. However after several years Dilworth [7] succeeded to
introduce a weak concept of " Principal element" by obtaining
satisfactory abstract version of Krull's Principal Ideal theorem.

We shall discuss this briefly.



Definition 1.2 :

Let L be a multiplicative lattice. Let a and b be two
elements of L. The residual of a by b is defined as the element
\/ { zeL / zb < a} and is denoted by a : b.

We note that whenever brackets are not introduced the residuation
and multiplication operations are performed first and then the
lattice operations /\ and \/ are performed.

Definition 1.3

An element x of a multiplicative lattice L is meet
principal if ( a /\ b : x ) x 2 ax /\' b for all a, b € L.

Definition 1.4

An element x of a multiplicative lattice L is join

principal if (a \/ bx ) : x

IA

a:x \/ b for all a, b ¢ L,

Definition 1.5 :

An element x of L is called principal if it is both

meet and join principal.

The following is an example of principal element.

Example :
Let R be a commutative ring with unity. Consider L as
the lattice of ideals of R. Let X = ( x ) be a principal ideal

of R. Denote by I(R), the set of ideals of R,

let A, B € I(R). If z e AX N B then z € AX and z € B so that

z = ax for some a € A. We known that
A:B={reR/IBCA}

Since ax = z € B, where x € X implies that a € B : X and hence

that a e AnNB : X. Thus z = ax € ({ ANB: X ).

=> AX N BE (ANB: X).



Accordingly, X is meet principal, And,

Let B e ( A+ BX ) : X. Then Bz € ( A + BX )
for all =z € X = (x). In particular B8x € ( A + BX ) and
hence Bx = a + bx, where a € A, b € B.

[note that : + denotes the join of ideals].
Thus Bx = a + bx =>a= (B -Db ) x
=> (B ~-~b ) e A : X
and hence 8 = ( B -b ) +beA: X+ B
=> (A+BX): XS (A:X)+B
Accordingly, X is join principal. Hence in lattice of ideal of R

every principal ideal is principal element.



§. 2. PRELIMINARY CONCEPTS OF MULTIPLICATIVE LATTICES.

We begin with the concept of residuation in a
multiplicative lattice L. All the nice properties of
residuation are quite well known in the context of theory of
multiplicative lattices.

Proposition 2.1 :

Let a, b and ¢ be elements of L. a2(a:b)b.
Proof :
We known that ( a : b ) = \/ { z e L / zb € a }.
Let x e {zeL/zb<a} =>2zxbs<a
=>[\/ {ze€elL/zb<sal}lbszsga
=> (a : b) b g a.

Therefore, az{(a: b) b. l

Proposition 2.2
az2xb <<=>a : b 2 x,.
Proof :

Let x € L such that xb

A

a.

Then x ¢ { z e L / zb € a } => x

A

\/ { ze€eL/ 2zb < ay}
=> x £ a: b.
Therefore, a 2 xb implies a : b 2 x. The converse is obvious.l

Proposition 2.3 :

a 2 b if and only if a : b = 1.
Proof :

First, suppose a 2 b Then xb

A

b £ a, for all x € L
=>x e {z2elL / 2zb<al. for all x € L.
i.e. { x/ xelL }l&e{ zelL / zb<aly}.

=>\/ {x/xelL})s\/ {zelL/ zb<alyl.



Therefore we have 1 <€ a : b. But a : b € 1 implies
a: b=1, Conversely, suppose a : b = 1. To prove b £ a
By proposition (2.1) we have a 2 (a : b ) b=1.b=>a 2 b.|}

Proposition 2.4 :

(a/\b)}):c=((a:c)/\N{(Db:c).

Proof

We known that (( a /\' b ) : c=\/ {2z e L / zc

iA

a/\ b }.
Let x e { 2 e L/ 2c<a/\b}=>3%<a/\b
=> %x¢ € a and xc £ b

=> X

1A

(a:c) /N (Db:c).
Therefore, \/ { x e L / xcsa/\b}<s(a:c)/\N(b:c).
=>(a/\b):c<s(a:tc)/\N(Db:c).
Conversely,
Suppose x € { ze L / zccsa}ln{zelL/zc b}
=> X¢c £ a and xc £ b
=> xc <a/\b

=>x < (a/\b):c

A

a/\b:c and
(a/\b) : c.
(a/\b):c and
(b:c)s(a/\b):c

=> \/ { xeL / xc £ a}

\/ { xelL/ xceb}

A

=> (a : c)

IA

=>(a:c)/\N(b:c)s(a/\b):c
Therefore ( a /\ b ) : c=(a:c)/\N(Db:c). [ ]



Proposition 2.5 :

a: (bc)y=(a:b}):c

Proof :
We know that a : ( be ) =\/ { ze€e L/ z ( bc ) g al.
Let x < ( a : bc ). Then x € \/ { ze L / z ( bc ) £ a}
<=> xbc £ a (by proposition 2.2)
<=> Xc £ a b
<=> x < (a:b):c
This shows that ( a : bc ) € (a: b ) : c. B

Proposition 2.6 :

A

a a : b.

Proof :
Let x £ a. Then =xb £ a and hence
we have x < \/ { ze L / zb<a})=a:b

Therefore we have a £ a : b. .

Proposition 2.7

a:1=a
Proof :

We know that a : 1 = \/ { ze L / 21 < ai.e. 2 £ a}
Since a=\/ {zelL / z < a}l, obviously a : 1 = a. |

Proposition 2.8 -:
a<(ab ) : b

Proof

,s

We know that ( ab }) : b= \/ { z € L / zb € ab }

Let x <€ a. Then xb < ab and hence x e {zeL/ zb £ ab }.



Thus we have x<\/ {zelL/ zb < ab} ( ab ) : b.

Therefore a < ( ab ) : b. B

Propogition 2.9 :

(a:c )N/ (b:c)s(al\/b):c
Proof :
Let x € { z e L / zc <a}) U {zelL / zc <hb}
=> XC £ a or Xc £ b
=> x¢ £ a\/ b and hence xs({(al\/b):c
=>[\/ {zelL/z2csall \/ [\/{ze¢e
< (a\/b):c

| d
~
N

Q

A
ey
[}
[ ]

i,e. (a:c )\ (b:c)ys(a\/ b):c. B

Proposition 2.10 :

(a/\ANb)cs (ac ) /\ ( bc ).

Proof :

Let x < ( a /\' b ) c. Then x £ ac and X <€ bc
=> X £ (ac ) /\ ( bc ).

Therefore ( a /\ b ) ¢ € ( ac ) /\ ( bc ). B

Proposition 2.11 :

(a/\b) :Db

]
V]
or

Proof :
Let x'e {z/zb<a/\bl}. Then xb < a /\ b < a.

=> x <a:hb i.e. xe€ { zelL / zb < a}.

=>\/ {zeL/zbsa/\b})<\/{zeL/zbs<al.

Hence { a /A b ) : b £ a: b.



For the reserve inequality, let x ¢ { z e L / zb £ a }.
Then xb < a. Also in L, xb < b and hence xb < a /\ b implies
xe{zelL/zbsa/\b}
=>\/{zelL/2zb<al} < \/{zeL/zbsa/\Db}
=> a : b< (a/\Db):b.

Therefore ( a /\ b ) : b =a : b. B

Proposition 2.12 :

a: (a\/b)

1]
oy
o

Proof
Let x e { ze L/ z (a\/b)<al
=>x (a\/ b)) <a
=> xa \/ xb < a
=> Xb £ a and hence x € { z e L / zb < a }.
=>a: (a\/b)<ca:hb.
For the reverse inequality, let x e { z e L / z2b <€ a }.

Then xb

A

a. As in L, xXxa € a we have xa \/ xb <€ a
i.ex (a\/ b ) < a. This gives

xe{zelL/z(a\/b)

IA

a } and we have

a:b<a: (a\ b). Therefore a : ( a \/

o
]
Y
o
m

Proposition 2.13 :

a: (b\/c)=((a:b)/N (a:c).

Proof

Take x € { ze L / z ( b\/ c) < al. This gives
x ( b\/ ¢ ) £ a, which again implies xb € a and xc < a.

Hence x € { z e L / zb < a}) and xe€ { ze L / zc £ a}

leading to x € (a : b ) /\ (a : c ). Therefore

a: (b\/c)y<( a:b)/\N(a:c).



For the reverse inequality, let x € { z e L / zb <€ a }
and x € { z e L / 2¢c £ a }f Then xb € a and Xc < a. This
gives xb \/ xc £ a i.e. x {( b \/ ¢ ) £ a which again implies
xe {zelL/2z(b\/c)<al}l and we have
(a:b)/\N(a:tec) <€ a: {b\ c).

Therefore a : ( b\/ ¢ )=(a:b)/\N(a:c). [ |

By straight forward arguments from elementary concept

in multiplicative lattice L we report the following important

properties.

Proposition 2.14 :

If a\/ ¢c=Db\/ ¢c=1 then ab \/ ¢ =1.
Proof :
Suppose a \/ ¢ =b \/ c=1. Since b\/ c¢c=1,

we have a ( b\/ c )=a1l=a i.e. a

—

b\/ c ) = a.

Also a \/ c£a{(b\/ c) and a\/c 1 establishes
l1ssa{(b\ c). Thus 1 < a ( b \/ ¢ ) implies a = 1.

Now a ( b \/ ¢ ) = ab \/ ac => 1l =ab\/1c.

Therefore we have ab \/ ¢ = 1. [ |

Proposition 2.15 :

If a\/ c=1 then (a/\b )\ ¢c=Db\/

Q

Proof

Suppose a \/ ¢ = 1. Clearly ( a /\ b }) \/ ¢

IA

b \/ c.

For reverse inequality, let x <€ b \/ c.

Then since X € b \/ ¢ and x £ 1 = a \/ ¢, it follows that

x < (b \N c) {(a\l\N c) which gives the inequality
x € ab \/ ac \/ ¢b \/ c, =>b\/  c<(a/\b)\ c.
Therefore ( a /\ b ) \/ ¢ =Db \/ c. l

10



We note the following result.

Proposgition 2.16

(al\/az \/...\/ ap, )k1+k2+...+kn < alkl \/ azkz \/...
\/ a nkn. Where a; € L and ki are integers.

(1 <1

IN

n ).

The concept of associated primes are very important in
the theory of decompositions for lattices, especially in the
investigations of primary decompositions as stated in
Dilworth [7]. We recall the definition of prime element and
primary element.

Definition 2.17

Let L be a multiplicative lattice satisfying the
ascending chain condition. An element p € L is called prime if
ab s p=>as<sporbs¢c<p for all a, b € L.

One notes that, the element 1 is a prime element and
"prime" will normally refer to prime element other than 1. The

prime ideal of I(R) is a prime element.

Definition 2.18

Let L be a multiplicative lattice satisfying the
ascending chain condition. An element q € L is called primary

if ab € q => a £ ¢ or bK < q for some positive integer k.

It can be readily seen that the above definitions are
used for establishing many fruitful results relating prime and
primary ideals in a commutative ring to multiplicative
lattices. We shall assume that the given multiplicative lattice

L. always satisfies the ascending chain condition.

11



Definition 2.19 :

If g is a primary element of L then
\/ { x e L / %% < q, for some integer s } is a minimal prime

containing q and is called the prime element associated with g,

which is denoted by Pq Or iq.

We note the simple properties without proof of Pq:
prime associated with q given by Dilworth [7].
( 2.19:1 ) qu € q < Pq for some integer k.
( 2.19:2 ) ab s g=>asqorbs Pq-
Remark ( 2.20) : Let g be primary element in L.
Then a 4 Py implies q : a = q.
Proof :
Always q : a 2 q ( by proposition 2.6).
Let x € (q : a). Then xa < q, a % Pq = 44
and q is primary imply that X £ q.

Hence q : a £ q. Therefore q : a = q. B

Remark ( 2.21) :
In L, the meet of primary elements with the

associated prime p is also primary element with the same

associated prime element p.

12



§. 3. NORMAL PRIMARY DECOMPOSITION OF MULTIPLICATIVE LATTICES

In 1956, BEHRENS [4] gave the necessary and sufficient
condition for a non associative ring to have a Noetherian ideal
theory. KURATA [13] has continued such study of ideal theory.
This theor& has been strengthened by LESIEUR [14] and
McCARTHY [16] in their study of primary decomposition in
multiplicative lattices. In [2], the concepts of ideals are
abstracted to multiplicative lattice and they investigate
adequate and fruitful results to obtain a necessary condition in
the context of primary decomposition of an element of Lattice L.
For this, we recall the definition of irreducible element
(see,[9]).

Definition 3.1 :

Let L be a lattice. An element q € I is called meet

irreducible if g = x /\ v implies q = X or q=1Y

for x, vy € L.

Definition 3.2 :

In L, a representation a = g1 /\ 43 /\.../\ q,

( where 4y, 493,..., 49 are irreducible ) is called a finite

decomposition of g.

According to Dilworth [8], we report the concept of
normal primary decomposition. We say that an element a has a
primary decomposition if there exist primary element qq,

d3,..-,9n such that g = q1 /\ 43 /\ ... /\ qp.

13



By deleting superfluous primary elements q; and
combining the primaries associated with the same prime, the
original primary decomposition can be refined to primary
decomposition in which district primary elements are associated

with district prime elements. Such a primary decomposi-

tion is called inormal primary decomposition.

The fundamental theorem on normal primary decomposition
states that

" In a lattice L, any two normal decompositions of an
element a have the same number of components and the same set of
associated primes. "

To establish the proof of some fundamental results on
isolated component, first, we need few facts concerning
" isolated component of a ".

Definition 3.3 :

Let a = q; /\ a3 /\ ... /\ q be a normal decomposition
of a, and Pi, Pg, -« , Pp denote the associated prime
elements of a. A subset C of {pq, P2,...,Ppl 18 said to be

isolated set if it satisfies the condition,

p; € C => Py € C whenever Py < pj-

Definition 3.4 :

Let C be an isolated set of associated primes of a.
An element ac=/\{a; / pjy € C} is called an isolated
component of a.

In light of this we have the theorem, in which the
relationship between isolated component of a and normal primary

decomposition is discussed in a lattice.

14



Theorem : 3.5 :

The isolated component a, of a is dependent on a and c¢
but not on any particular normal decomposition of a.
Proof :

Let a = q; /\ a3 /\ ... /\ q, be 3 normal decomposition
of a and suppose py, Py, ... , P, are the associated primes of a

(where p; = {qy.)

Let a = ql' /\ qz' /N oo /N qn' be second normal
decomposition. Also { pq., Py, --. . Pp } is the set of
associated primes of a with respect to second primary
decomposiion

a=ay /\Nday /\ ... /\ay

Letac'=/\{qi'/PiEC}-
N A qj' / pjy¢Clh.
Then q; 2 a = ac' /\ b2 ac'b'

Take b

1 ¥ _ k 4

If pj € C then b # Py because b < p; => pj < a5 - and
hence Py £ pj since p;j is prime. This implies Py € C which is a
contradiction to Pj ¢ C.

. 1 -
Thus, if pj € C then b :ﬁ p;
Also from (3.5.1) aC' b' € q; and b' < pj-
( where q; is primary and p; € C ) implies that aC' < qi

for all i such that pj € C.

1
Therefore ao < /\ { q;4 / p; € C}

= a c
Similarly ap < aCl and hence ag = ac'
This complete the proof. [ |

15



§. 4. ROETHER LATTICES

INTRODUCTION :

Noether lattices were introduced by Dilworth R.P. [8].
Noether lattices constitute a natural abstraction of the lattice

of ideals of a Noetherian commutative ring.

In [10], Ward and Dilworth extended the Noether
decomposition theory to suitable defined multiplicative lattices.
In [7] Dilworth defined a principal element and extended the
Krull Intersection Theorem and Principal Ideal Theorem to what
they called a Noether lattice. The theory of Noether lattices

is also developed in papers [2], [6], [12].

Let us report the concept of Noether lattice.

Definition 4.1 : (Noether Lattice)

" A Noether lattice is modular, multiplicative lattice
satisfying the ascending chain condition in which every
element is the join of principal elements. "

It is known that every element of a lattice satisfying
the ascending chain condition has a decomposition into meet
irreducible elements.b In some multiplicative lattices
satisfying ascending chain condition, elements do not have
primary decomposition (see ward and Dilworth [10]). A meet
irreducible element can have a primary decomposition only if it
is itself primary, so the elements of L will have the primary

decomposition if and only if every meet irreducible element is

primary.

16



Several properties of ©principal element play
important role in the theory of Noether lattice. For that we
report the following lemmas
Lemma 4.2 :

An element m is meet principal if and only if
(a/\b:m)m=am/\Db for all a, b € L.
Proof

Suppose m € L is meet principal element. Then by
definition 1.4, we have (a/\A\b:m)m 2 am /\ b,
for all a, b e L. By proposition 2.10 and proposition 2.1, it
follows that (a /\ b : m J)m<am /\ (b :m )m< am /\ b and
therefore (a /\'b :m ) m=am /\ b, for all a, b € L.
Clearly, the conversion is obvious. |
Lemma 4.3 :

An element m is join principal if and only if
(a\/bm):m=a:m\/b for all a, b € L.

Proof

Suppose m € L is join principal element. Then by
definition 1.5, we have ({a\/bm) :m £ a:m\/ b
for‘all a, b e L. By proposition 2.9 and 2.8, it follows
that (a\/bm):m2a:m\/ (bm):m=2a:m\/ b.
Therefore ( a \/f bm ) : m =a : m \/ b, for all a, b € L.

The converse is obvious. |

17



Lemma 4.4 :
If m is meet principal element of L then
(b:m)m=¢(Db/\ m) for all b € L.

Proof

(X}

Since m is meet principal element of L by Lemma 4.2 it
follows that ( a /\' b :m ) m=am /\ b for all a, b in L.
Putting a = 1, we have ( b : m ) m=m /\ b=Db /\ m
for all b in L. [ |
Lemma 4.5 : |

If m is join principal element of L then

{ bm ) : m b\/ (0 :m) for all b in L.

Proof
Since m is join principal element of L, by Lemma 4.3,
it follows that ( a \/ bm ) : m=a : m\/ b for 11 a, b in L.
Putting a = 0, we have ( bm ) : m= ( 0 : m ) \/ b
=b\/ (0 :m) for all b in L. [
By glueing together Lemma 4.4 and Lemma 4.5, we have an

easy consequences as given below.
Remark 4.6: If m is meet principal then

bsm=(b:m)m=b.

Since m is meet principal, by Lemma 4.4, we have
{( b :m Jm=>b/\'m for all b € L.
If b<m, (b:m)ms=D>b/\m=D>» B
Remark 4.7 : If m is join principal then
(a:m) £b=>(bm: m) = b.

Proof : Since m is join principal, by Lemma 4.5, we have

18



( bm ) : m

b\/ (0 :m) for all b € L.
Let ( 0 : m ) £ b. Then ( bm ) : m = b. [ |
Lemma 4.8 :

The product mym, of meet principal elements my; and m,
is also meet principal.
Proof :

Using proposition 2.5 we have
[ a/\b: (mmy) ] mmnm,
=([a/\(Db: my ) mq ] ml)mz.
By using Lemma 4.2 and for that setting b : my; as b and m as my
we conclude that ( [ a /AN (b :m 5 ) :m I m ) my

= [ amgy /\ ( b :my ) ] my. Again by using

Lemma 4.2 this yields
[a/\b: (mmy )] mymy, = amymy /\ b for all a, b in L.
Therefore mym; is meet principal. [ ]
Lemma 4.9 :

The product mym, of join principal elements my and my
is also join principal.
Proof

By proposition 2.5, we have ( a : bc ) =(a : b ) : c.
Using this, it follows that
( a\/ b mq My ) s mmy = [( a \/ bmymy ) : my 1 : my.
By using Lemma 4.3, we conclude that
( a\/ bmymy ) : mymy = ( a : my \/ bmg ) : my. Again by using
Lemma 4.3, we have ( a : my \/ bm4 ) my = ( a : my ) : mg \/ b.
And hence by applying proposition 2.5 this yields
(a\/ bmmy ) : mmy =(a:mm ) \/ b for all a, b in L.

Therefore mym, is join principal. |

19



We shall see that the above Lemma 4.8 and Lemma 4.9
lead us to a pleasant result as follows
Remark 4.10 : If my and my are principal then mym, is also

principal.

For a modular, multiplicative lattice L satisfying the
ascending chain condition we discuss the suitable condition which
insures that the meet irreducible element is primary. First,
we recall the definition of modular lattice.

Definition 4.11

In a lattice L, a pair of elements a, b is called
modular when the following condition holds
(c\/a)/\Nb=c\ (a/\b) for every ¢ < b.

A modular pair ( a, b ) is denoted by ( a, b M.

A lattice L is called modular if and only if ( a, b )M for all

a, b e L.

These concepts are very important in the lattice theory
especially in the investigations of symmetric lattices as report-
ed in Maeda and Maeda [19701, (see [15]).

Theorem 4.12

Let L be a modular, multiplicative lattice satisfying
the ascending chain condition. If every element of L is a join
of meet principal elements then every meet irreducible element of
L is primary.

Proof :

Let q be a meet irreducible element of L suppose am < q

when a t.q and m is meet principal.

20



By wusing proposition ( 2.13 ), we have
(a\N/ g):m<s(a\N q): m2 < ... < ( a\/ q): mK <

As the ascending chain condition holds in L, there exists k such

that (a\/ q) :mf = (a\/ q) : mtl = | (4.12.1)
Let ¢ = (a\/ q) /\ ( m¥*1 \/ q ). Then
c:m*l = [(a\/q) /N ( mEtY A/ q )1 : mK¥?

By using proposition 2.4, it follows that

c: ko[ (a/q ) mkt ekt v/ g ) :omktY

We use the proposition 2.3 i.e. b < a if and only if a : b = 1.
and therefore mf*l < ( mK*l \/ q ) => ( m¥*1 \/ q) : mE*Y = 1

Hence ¢ : m**1 = [(a \/ q ) : m¥*1] /\ 1 implies

k+1

¢ :m ( a\/ q ) : mk+tl, By using 4.12.1 we have

c mk+1

(a\/ q) :nmk c...(4.12.2)
Also by Lemma 4.8 it follows that mK and mK*l are meet
principal elements and hence by using Lemma 4.4 we conclude that
(¢ : mk+1 ) mk+1 = ¢ /\ mk+1 and
[(a\/ q):mf1mk=(a\/q)/\ ok ...(4.12.3)
Also q € ¢ because we have q € a \/ ¢q and q £ mk+1 \/ q
implies g € ( a \/ q ) /\ ( m¥*1 \/ q) = c.

By the modularity condition of L, we have

(c/AmK*l Yy \/ygq=c/\ (mk*1 \/ q) as ¢

v
TR

Also we have ¢ /\ ( mk+l \y q) <c and

c=(a\.q)/\ (m*1l \/ q ) implies that ¢ < mk*1l \/ q.
Therefore ¢ =c¢ /\ ( m¥*1 \/ g ) = (¢ /\ m¥*1 ) \/ q.

By using Lemma 4.2, it follows that ¢ = gq \/ ( ¢ : mk+1 ) mK+1
=>c=q\/ [(a\/ q) : mKk ] mktl ( by using 4.12.2).
Hence ¢ = g \/ [( a \/ g} /\ mk] m { by using 4.12.3)

Therefore ¢ < q \/ (a\/ @ )m=q\/ am \/ am £ q 2 c,

21



This shows g = c = ( a \/ q ) /\ ( m¥*1 \/ q ).

Since q is meet irreducible element and a $ q implies q ¥ a \/ q,
it follows that gq = mk+1 \/ q, which gives mk+1 < q. Thus we
have shown that if ¢ is meet irreducible element and m is meet
principal then am £ q, where a § g implies mK*l < q for some
positive integer k. Let ab < q where a $ q. As every

element of L is a join of meet principal elements, we have

b=m \/ my\/ ... \/ m, where mj is meet principal
(1 <1i<71). Since ab £ ¢, we have
a(m \/mpy\/ ... \/ mp ) sq-=>am £gq for each i = 1,2,...r

But a # q, so there exists ki such that miki € q.
Let k = k1 + k2 +...+ kr. By using proposition 2.16.
pX = ((my \/ my \/...\/ mp)K

( mqg \/ my \/...\/ m, yk1+k2+. . . +kr

IA

m KL v/ m%2 v/ Lo\ m KT < q.
Therefore ab € g and a # q implies bk < q for some

positive integer k. This conclude that every meet irreducible
element is primary. |
This helps us to understand the following conclusion.
Remark 4.13 : Every meet irreducible element of a Noether
lattice 1is primary.
Using the propositions of § 2, we can state a nice

corollary that

Every element of a Noether lattice has a normal primary

decomposition.



The next result is useful for abstract version of inter
section theorem.

Lemma 4.14 :

Let L be a Noether lattice.
Let a = g7 /\ 493 /\.../\ q, be a normal decomposition a and let {
P1:, Pgs..., Pp } be the set of associated primes. If b is an
arbitrary element of L then the set C = { p; / p; \/ b + 11} is

isolated set of primes.

proof :

Suppose pj € C = { p; /Py \/ b+ 1} and py < pj;.
Then pj \/ b + 1 = P j \/ b $ 1. Otherwise, Py < pj
=> Pj \/ b <£p; \/ Db. And hence p; \/ b $ 1 implies

Py € C when p; 2 Py-

Therefore C is an isolated set of primes. l

If be L and ¢ = { py / P; \/ b4 1} is isolates set
of primes of a, we denote the corresponding isolated component
of a by symbol a,,. So that ap = /\ {q; / pj€eC}

=/N{a /pi \/ bDFf1l}
where C is 1isolated set of prime. We now prove an
abstract form of intersection theorem.

Theorem 4.15 : [Intersection Theorem]

Let L be a Noether lattice and a, b e L.
Then /\p ( a \/ bX ) = a.
Proof :
Let a = qq /\ a3 /\.../\ Q@ be any normal decomposition of

a. Let pq, P3.,..., Pp denote the set of associated primes of a.



If be L then { p; / Py \/ bD$f1 1} =C, by Lemma 4.13
is clearly an isolated set of primes.
Then ap, = /\ {q3 /py € C}=/\{aq /p; \/bF1]}
Is an isolated component of a.

Let a," = /\ { a5/ py \/ b=11}.
Now  py \/ b=1=> pjk \/ b=1 for all integers k. As pj
is associated prime of a5, there exists a positive integer k such
that pjk < a4 < Py Hence pjk \/\ b=1z¢% 9 \/ b
=> q3 \/ b = 1. But then a," = /\ { q5 / pj \/ b=1 }

2y {q;/p; \/b=11

Hence qj \/ b =1 for all aj such that Pj \/ b =1 implies by
(proposition 2.14) that [ ¢ { qj / P \/ b=1 1311 \/b =1,
This shows ab* \/ b =1. By using proposition 2.14, we have
ab* \/ bk = 1 for all k. Therefore a \/ bk = ( ay /\ ab* )
\/ bk = ay, \/ bk for all k, by (proposition 2.15) and hence
a \/ pK > ap for all k and it implies that
ap € /\g Ca\/ DKy (4.14.1)
For the reverse inequality, let m < /\p ( a \/ bK ) where m is
principal elements. Let a \/ bm = rqy /\ ry /\.../\ r{ be a

normal decomposition of a \/ bm with associated primes pl',

pz',..., pt'. Then a \/ bm < i, To,..., Iy ... (4.14.2)

Hence bm < ry for all i =1, 2,..., t where r; is primary.

=>m < r; or b <p; ( by using definitions 2.17 and 2.18).

If b < pi’ then bkl < pi'ki < ri for some integer ki ...(4.14.3)
Now a < r; and pki ¢ r; and by using (4.14.2) and

(4.14.3), it follows that m < /\, ( a \/ b¥ ) < a \/ bkl < .

In either case, we get m € ry and hence

a \/ bm=1rq /\ rop /\.../\ ry 2 m i.e m £ a \/ bm.
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Also a < a\/ bm, m< a\/ bm imply a\/ ms< a\/ bnm.
Clearly, a \/ bm < a \/ m and hence a \/ bm = a \/ m. Since

m 1is principal element by lemma 4.3 we have

il
[y

a:m\/ b=(al\/bm) :m=>a:m\/b=(al\/m): :m

[ because a \/ bm=a \/ m and m<a\/ b= (a\/b):m 1 1]

Now p; \/ b 4 1 implies a : m § P;. Otherwise
a:msP; => {a : m) \/ b=12¢g pi \/ b which gives Pi \/ b=1,
a contradiction. Since ( a : m )m £ a < q; with a:m § P; it
follows that m € gq; for which pj \/ b 1. This yields that
ms/\N{q;/p;y\/b$+1}. |
i.e. m < ap- This conclude if m < /\k { a \/ bk } then m £ ay,.
Since L is a Noether lattice, the element /\k ( a \/ pK ) is a

join of principal elements and hence /\yp ( a \/ b ) = \/ my

( where m; is principal ). But m is principal and
m < /\k { a \/ pK } =>m € ay, . This shows that
N Ca\/ bk ) < a. Hence ap = /\ ( a \/ bK ). i

This paves the way for a simple and sharp formulation

as follows
Corollary 4.16

For -an element b of a Noether lattice L, Ob = /\k bk.

Proof

In the above theorem 4.15 take a = 0. We have
Op = /\ ( 0 \/ bK ) = /\, bK. N
Remark 4.17 : If a + 1 is an element of a Noether lattice L then
there exists a maximal element p ¥+ 1 such that a < p. By

Definition 2.17 and proposition 2.14, it follows that such p is

prime element, moreover p is a maximal prime element of L.



Let us recall the definition of local Noether lattice,

which will help us in discussing a crucial properties.

Definition 4.18 :

A Noether lattice L is called local if it contains

precisely one maximal prime.

Properties 4.19

(1) If L is a local Noether lattice and b 4 1 is an
element of L then /\p ( a \/ K ) = a for each a € L.

(2) If L is a local Noether lattice and b + 1 is an
element of L then /\k bk = 0.

Proof (1)

Let L be a local Noether lattice by definition 4.18, it

follows that L contains maximal prime pg,. If pj 1 and b § 1
then p, 2 p; \/ b and hence p; \/ b 4 1. Thus .
ap = /\{a;/p;\/b$1}=a. But ap = /\p ( a \/ bk )
implies that a = /\k ( a \/ pK ). |
Proof (2)

In above Property 4.19 (1) putting a= 0.
We get /\kbk = 0. |
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§. 5. QUOTIENT LATTICES

The concept of quotient lattice is well stretched in
lattice theory. It has been discussed in the context of
abstract commutative ideal theory by Dilworth [7]. To study
such concepts, we first define quotient lattice.

Let L be a Noether lattice and d € L be any element.
Then clearly the set L/ d = {aelL /a2d} is a sublattice of
L. Define an operation # on L, q as follows
For all a, b € L/ d- aub = ab \/ 4.

With respect to this operation #, the lattice L, q is
multiplicative and 1 is the largest element of L/ a- Such a

multiplicative lattice L/ a is called as quotient lattice.

As an immediate consequence of the above definition, we

have the following remarks.

Remark 5.1 : The quotient lattice L, g is closed with respect
to residuation and this residuation is also the residuation
associated with a » b, since a 2 x # b if and only if a 2 xb.
Lemma 5.2

The quotient lattice L/ d is a Noether lattice, if L is
Noether. Also m \/ d is a principal element of L/,d whenever
m is principal element of L.
Proof :

Suppose L is a Noether lattice. Since L is a modular
lattice and satisfies the ascending chain condition, then

obviously it follows that L/ q 1s also modular and satisfies the

ascending chain condition.
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Next, let m be a principal element of L. Let a, b € L/ a
Then [a\/bs(m\/ d )1 : ( m \/ d ) = [a\/b(m\/d) \/ &1 : (m\/4)

(a \/ bm \/ bd \/ 4) : (m\/d)

il

(a \/ bm \/ d) : (m\/d)
[ a\/ bm\/ d) :ml /\ [(a\/ bm\/ d) : d]

(by proposition 2.13)

it

[ a\/ bm\/ d) :m] /\1 (by proposition 2.3)
(a\/ bm\/d) :m

[

( a\/ bm) : m (since a e L / d => a 2 d)
= a : m\/ b. Hence, we have
(a\/bs(m\/d)]: (m\/ d)=a:m\/b
=a:(m\/ d)\/b for all a, b € L; 4. This shows
the element m \/ 4 is a join principal element of L/ a-
On the other hand, to show m \/ 4 is a meet principal

element of L, 4, we have to show,
la/Ab:(m\/d)]l=s(m\/d)=a=(m\/d) /\Db.
Now [ a/\b: (m\/ d)]e(m\/d)
=la/AN(b:m) /N {(b:d)l=s(m\/d).
Also by using Proposition 2.3, it follows that b 2 d => b:d = 1.

and hence we have, [ a /\ b : (m\/d )]s (m\/ d)

la/AN{(b:m)/\N11=s (m\/ d)
[a/\ (b :m)Jl&s (m\/d). Using

asb = ab \/ dwe have, [ a /A b : {m\/ d}] & (m\/ d)
la/\N (b :m)J(m\/ da) \/ 4d.
[a/\ ( b :m)}Im\/ (a/\b:m)d\/d.

f

Again as m is meet principal, we have

(a/\'b:m)m=am /\ b so we get



La/\b:{m\/d)l=s (m\/d)=(am/\b) \/ [(a/\b:m)d] \/ 4.
We have { a /A b :m)d<d=>[a/\b: (m/d)]les (m\/d)
= (am /\ b )\/ d=Db/\ ( am\/ d ).(8Since L is modular).

Therefore

i

fa/Ab: (m\/d)]l = (m\/d) (am \/ d ) /\'Db

[as (m\/d)] /\b.

It follows that m \/ 4 is both meet and join principal. So the
element m \/ 4 is principal element. Now if a € L/ q then
az2d=>a\/ d4d= a. Since every element of L is a join of

principal elements, a € L => a =my \/ my \/...\/ m where each
m; is principal.

Therefore a \/ d = a = {( my \/ mp \/...\/ m ) \/ 4.

Hence a = ( my \/ d) \/ ( my \/ @) \/...\/( m \/ 4). Where
each my \/ d is a principal element in L/ a- i.e. a € L/ q 1is
the join of principal elements in L, g- Thus L, g is a
modular multiplicative lattice satisfying the ascending chain
condition in which each element 1is the join of principal
elements. Hence L, 4 is a Noether lattice. [ |

Theorem 5.3 :

An element is prime in L if and only if it is prime in

L/ g-
Proof

Let a, b, c € L; 4. So that a, b, ¢ 2 4. We note
that a 2 bc <=> a 2 b » ¢ for all a, b, ¢c € L; 4. Because

a2bc,a2d=>a=2bc)\/d

]

bswcand a2 b s c=>az2bc\/d
Thus a 2 bc. Hence a 2 bc <=> a 2 b & ¢ ... (5.3.1.)

Suppose a is prime in L. To prove a is prime in L, g-
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Let b s ¢ € a => bc £ a [ by using (5.3.1)].
This implies b € a or ¢ € a and hence a is prime in L/ a
Conversely, Let a be prime in L/ 4 Let bc € a by (5.3.1)

b#c¢c<a=>b<aorczc<adi.e. ais prime in L. l

Theorem 5.4 :

An element is primary in L if and only if it is primary
in L; g
Proof

Let a, b, ¢ € L; 4. So that a, b, ¢ 2 4.

Suppose a is primary in L/ q and bc < a. Then b ® c € a=>b < a

or ¢ < a, ne Z,. Hence a is primary in L.

Conversely, suppose a is primary in L and let b # ¢ € a
This implies bc £ a. Hence we have b € a or c® < a for some
integer n. Therefore a is primary in L/ d- [ |

Theorem 5.5 :

If L is a local Noether lattice and d 4+ 1 then L/, g is
a local Noether lattice.

Proof :

Suppose L is a local Noether lattice and let p be the
only maximal element of L. We have L/ qg={xel / xsd}
As p is a maximal element of L and L, 4 © L, it follows that
p €L, q and is the only maximal element of L, g We know that

if L is Noether, L/ q is also Noether lattice.

Hence L, 4 is a local Noether lattice. B
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§. 6. CONGRUENCE LATTICES

In this last section we study the nation of congruence
relations in the <context of Dilworth's work concerning
multiplicative lattices. Let us recall the definition of a
congruence relation on lattice L (see [12]).

Definition 6.1 :

An egquivalence relation 6 on a lattice L is called a

congruence relation on L if

ag = bo(e) and a; = bl(e) imply that

n

ag \/ a; = bg \/ by (8), ag /\ 24 bg /\ by (8).
for ag, by, a1, bl € L.

The following Lemmas 5.1 to 5.4 shows that congruence mod d
is a congruence relation on L preserving meet, join, multi-

a (o) }

is the congruence class containing a. Suppose L is a Noether

]

plication and residuation. The set [a]e = {xel / X

lattice and let d be an arbitrary element of L. If Py, Porevvs
P, are the primes associated with normal decomposition
a=4q /\ay /\.../\gq, then { p; e L /p; £d 1} is an isolated
set of primes and hence determines an isolated component ag of a.
For a given normal decomposition
a=4q) /\ay /\ ... /\ aqy. we have ag = /\ { q4 / d 2 p; }.
Let ad' = /\ | qj / d # Pj }. Then a = ag /\ ad'.
We define a=b(d) iff agq = bg.
Lemma 6.2 : Let L. be a Noether lattice and d € L
If a 2 b then ag 2 by.
Proof : Let a = qq /\ a3 /\ ... /\ 4, be a normal

decomposition of a. Let py, Py, ... , Pp be the associated
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primes then the set { Py / py 2 4d } is an isolated set of primes
of a. This determines an isolated component

1
d} of a. Let ag = /\ { a5 / py £arl.

1] 1]

IA

ad=/\{ql/Pl

where b = ql' /\ qzl /\ ... /\ qm' is a normal
primary decomposition of b.

Let by = /\ { qj‘ / d 2 pj' }, bd' = /\ { Qj' / d % Pj' }

and suppose Py pz', e e 4 pm' are associated primes of
! 1] ¥
ql ’ qz ’ .y qm .
t ] L]
If pj 2bg =/\{aq /a4 2 Py }- and

hence py 2 g { qj' / dt pj' } then as p; is prime,
7 { qj' / at Pj } < py implies that qj' < p;y for some j,
for which 4 % pj'.
Hence qj' < pj => pj' < Pj where d * pj'. It follows that
d % p; which contrary to the fact that d4 2 p; and hence Py # bd'.
Now bdbd' € q;, where qj primary,
and bd' * p; implies that by < qj
=> by £ /\ {qy/dz2p; } i.e. by € ag
Thus a £ b => ag 2 by. |
Lemma 6.3 :

Let L be a Noether lattice.

If a=b (d ) then a /\ ¢

b /\c (d).
Proof :
Let a /\ ¢ =4qq /\ 93 /\ ... /\ @, be a normal
decomposition of a /\ ¢ with the associated primes
Pi, P2, -.. , Pp-
Let a = ql' /\ qz' /N .. /N qm' be a normal primary

decomposition of a and pl', Py s . pm' be the associated



primes of ql', qz', ce. qm'. If 4 is an arbitrary element of L

then { pi' / pi' < d } is an isolated set of primes and

determines an isolated component agq = /\ { qi, / a2 pi' } of a.
Let ad' = /\ { qi' / d * pj' }. Then a = ag /\ ad'.

If d 2 p;, we have p; 2 q; 2 a /\ ¢ = ag /\ ad' /\ ¢ and hence

Py 2 ( ag /\ ¢ ) ad'.
Suppose ad' £ p;. Then Pi 2 ad'. Thus we have
] ]
p; 2 /N {qy /4 * pjlt2zyglaqgy/ad $ Pj't}

As p;y is prime, y { qj' / d k pj* } < 1<) implies that qj' S Pj-
for some j and where d # pj'.
As pj' is the smallest prime containing qj' and qj' S pj, it
follows that pj' £ p;. Hence d * pj' implies d t Pj- Contrary
to d 2 py. Therefore ad' tp;.

Now ( ag /\ ¢ ) ad' S 4y where q; is primary and ad' # pi

implies that ag /\ ¢ = dj- New a b (4 ) <=> ag = by

1

Thus q; 2 a 4 /\ ¢ bq /\ ¢ 2b /\ c. We have shown that if
d 2 p; then q; 2 b /\ c. Hence b /\ ¢ ¢ /\ { q4 / d 2 p; }.
Therefore b /\ ¢ < /\ { qi / d2p; }=(a/\c)g.

By Lemma 6.2 we have ( a /\ ¢ lgqg = [( a /\ c )glg 2 (b /\c 4.
Similarly we can show that ( b /\ ¢ )q 2 ( a /\ ¢ )g.

Therefore ( a /\c )Jg= (b /\Nclg=>a/\c=b/\c(ad)]

Lemma 6.4 :

Let L be a Noether lattice.

il

If a b (d ) then a\/ c=b\/ c(d4d).
Proof
Let a \/ ¢ =4q1 /\ ap /\ ... /\ g,
be a normal decomposition of a \/ c¢ with the associated primes

plr er L § pn'
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Let a = qlr /\ qz' /N ... /\ qm‘ be a normal decomposition
of a and pl', p2', e pm' be the associated primes of a.
If 4 is an arbitrary element of L, we have

a=ag /\ ad' where ag = /\ { qi' /42 pi' } and
] 1 )
ag =/\{aq /d%p; }
If 4 2 p; then p; 2 q; 2 a \/ ¢ 2 a-= ag /\ ad' (6.4.1)

and a \/ ¢ £ q; ., for all i so q; 2 c.

! 1 '
We have p; 2 ay . Suppose p; 2 ag = /\ { gy /4 tp; 1

1 H
Then p; 2y { g3 / 4 $ Pj ). Thus we have
qj' < p; for some i as p; is prime, where d * pj'
Now pj’ is the smallest prime containing qj'. Hence we have

'

]
a5 < py => Py <Py

o]}

Now d # pj' => d 2 py, a contradiction. Hence ad' £pj.
Now a=b (d ) iff agq = bg. From (6.4.1) we have
aj; 2 ag /\ ad’ 2 ad.ad' and q; is primary, where
ad' t p; => ag < 4;- This gives g; 2 ag = by 2 b.
Also q; 2 ¢ => q; 2 b \/ ¢ ~(for all i, where 4 2 pi)
=>b\/ cs/\N{qgqg/d2p; }=(al cg
By Lemma 6.2, we have ( b \/ ¢ Jq s [ (a\/ c)glg=(a\N ¢ g

similarly ( a\/ c)gs(b\/ clg=>(alN c)lg=1(Db\ c)g

Therefore a \/ ¢ =b \/ ¢ ( 4d). [ |
Lemma 6.5 :
If azb(d) then ac = bc ( 4 ).
Proof
Let ac =4qq /\ g3 /\ ... /\ q, be a normal decomposition
of ac with the associated primes Py, P2, --- + Pp-
Let a = qu /\ qz' /N ... /N qm' be a normal decomposition of aLet



d be an arbitrary element of L. Then aq = /\ A qi' / 4 2 py }
is an isolated component of a. Let ad' = /\ { qj' / a2 pj' }
So that a = ayg /\ ad'. If 4 2 p; Wwe have
qi?.ac=(ad/\ad')c

=> qy 2 ag ad'c = | ayc ) ad'

=> pj i ad'.

1 1 ! 1 1
Because p; 2 aqg =/\ { qy /4 } py r2yglaqgy /4 $ py }
=> qj' S Py for at least one j for which 4 ¢ pj'.

Now pj' is the smallest prime containing q; and
! 1] 1]

qj <pj =>P; <Ppj- Hence 4 } pj =>4 3 T

a contradiction which proves that Pi b2 ad'.

Now q; 2 { ag ¢ ) ad' and ad' $ P; => agc = q;.

bg as a=b(d ). So 43
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Also ad
where d 2 pj. Hence bc < /\ { q4 / d 2 pj } = ( ac )g-

By Lemma 6.2, ( bc )y < [( ac )gl4 =_( ac )d'

|

o

Q
o)

Similarly ( ac )gq < ( bc )gq => ( ac )gq =

Therefore ac = bc (4 ).

Lemma 6.6 :
If a=b (4d) then a:c=b:c(d) and
c a=zc:b (4).

Proof

Let x : vy =494 /\ a3 /\ ... /\ q, be a normal decomposition
of x + v and P/ pz} ..+ , Pp be the associated primes of
491, 92, --- . 49p-
Let x = ql' /N ... /N qm' be a normal decomposition of x with
associated primes pl', pz', e, pm' and let d be an arbitrary

t

element of L. Then x4 = /\ { qi' / d2p; }.

Let x4 = /\ { qi' / da # pi' }. Then x = x4 /\ xd'.



Tf d2p; Thenp; 2 q; 2% : vy =( %xg/\ %xq ) :¥

] 1]
=> q; 2 ( x:y ) /N (U xg vy ) 2 (xg:y ) xgq ¥ ). ... (6.6.1)
By proposition 2.4, we claim that pi # xd' T Y.
Suppose p; 2 xd' Ty 2 Xd! { Since by proposition 2.6)

=> p; 2 /\ | Qj' / at Pj' Y2 g o Qj' / dk Pj' }

=> qj' s p; for at least one j, since <7 is prime and for this j

As pj' is the smallest prime containing qj',
4 '
qj < Py => pj < Pj-
But 4 ¢ pj' => d } p;, a contradiction. Hence p; ¢ Xdﬂ .
1

from (6.6.1) ( Xq + Y ) Xqg Y ) € q;, where qj is primary and

1

(xqg @Y ) ¥ p; - Hence ( x4 : v) S qj.

)
Xd:(Yd/\Yd )?-deYd

i

Now ( Xq Y )
Thus g4 2 Xg : ¥ 2 Xg * Ygq where d 2 Py
=> /N { a3/ dz2pj} 2zxg: 74
=> (X 1 ¥y )g 2 Xq : Ygq-
On the other hand x 2 ( x : v } ¥ By proposition (2.1]
and hence by Lemma 6.2 and Lemma 6.5 we have
xqg2 [(x vy )ylg=(x:7y7 )gvg
Now x4 2 (x : v )de => Xq ! ¥Yq 2 ( x ' v )q-
Hence ( x : ¥ )gq = xq @ Yq-
Now if a = b ( d ) then { a : ¢ ) = ag : cq

implies ( a : ¢ J)q =bg :t ¢cq= (b : ¢ )g-

i
Q
oy
o

m

Similarly we have ¢ : a

1
o
[o7
S
Py
[ 1Y
st}
Q.
n
o2
[a B
s
n

Corollary 6.7 : The relation a

congruence relation on L.
Proof

Reflexivity : For any a e L, ag = ag =>a=a (4 ).

)



Symmetry Let a=b (4 ). Then ag = bg i.e. by = a4 and

hence b = a { 4 ).

1

Transitivity : Let a b (d)and b = ¢ ( 4 ).

Then ag = bgq and by = cg => ag = cq. Hence a = ¢ ( d ).
Congruence mod { 4 ) is equivalence relation.

Also let p 2q (d ) and r = s ( 4 ). By definition of
congruence mod ( d ), we have Pgq = dg and rq = Sgq- This
implies pgq \/ rq = ag \/ sq and pg /\ rq = dq4 /\ sq-

=> (p\N rl)g=(a\V s)gand { p/\r)g=(a/\s )4
=>p\/ r= qgq\/ s (d)andp /\r=qg/\s (4d). This
shows that the congruence mod (d) is congruence relation on L. J}

In the view of above results we have the following

Theorem 6.8

Let L be a Noether lattice and
Let [al={belL/b=a(d)} be the congruence class
containing a. Then the set of congruence classes Ly of L is a

Noether lattice.

The salient features of the multiplicative lattice
Lq of congruence classes are (1) The primes of Lg
(2) The primaries of Lg.

Theorem 6.9

The primes elements and primary elements of Ly are
precisely the congruence classes determined by the primes and
primaries of L respectively. Moreover, the proper prime
elements of Ly are the congruence classes determined by primes p

such that d 2 p.
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Proof

Let Lgq = { [a] / [a] is the congruence class containing

a}, where [a]l = { x e L / x=a (d) i.e. xq = ag}.

Let the congruence class [c] be a prime in Ld. Assume that
¢ has a primary decomposition ¢ = qq /\ g3 /\ ... /\ q, and
suppose py, Py,...,Pp are the associated primes of c. Let d e L.
Let cq = /\ { q; /d2p; } and q;, 93, ... , 4, be such that
d2py (i=1,2, ... ,n). Then c¢q = a9 /\ 4y /\ ... /\ qp
(n<sm). Obviously, ¢ = gy /\ 93 /\ ... /\ qp < q4,
(i=1,2, ..., m) implies ¢ < q /\ @3 /\ ... /\ q,.

By the property of an associated prime, we have

piki € q; 5Py for some ki (i =1, 2, ... , m),.

Now ¢ = a3 /\ 9p /\ .../\ ap 2 pyKE /N poR2 /Lol ppkm
= c 2 plkl.pzkz. Cee pmkm, where py, Py, ... , P, are the
primes of L. and pj 2 q; 2 ¢ for each i=1,2, ..., m.

Then [c] 2 [ py 1¥[p,1%2. . [p 1%D.

Hence [c] 2 [p;]} 2 [c] for some i. This shows [pj] = [c] where
p; is a prime of L i.e. the prime element [c] of Lq is determined
by the prime p; of L.

Conversely, suppose p is prime element of L. Then p is primary.

Let d e L. Either 4 2 p or d * p. Then pg = /\ { q; / d 2 p }.

v

Thus pg = /\ { 9 y / d 2 p } = p when d 2 p. and 1f d $ p then
pq=/"{a;/d2plt=/\N{p/datp}=1.

Let [ pl2[lal]lbl=>[p1]=2z2I[abl.

=> Pg 2 adbd.
and hence pgq 2 agq or pg 2 bg. Which vields that

fpl2lalorl[plz21[hb].



Hence the primes of L4 are of the form [ p 1. Where
p is a prime of L and [ p ] is proper <=> d 2 p.

Next suppose that [c] be a primary element of Ly
associated with the prime element [p]. Since cg = qq /\ 4y
/\ ... /\ q whenever d 2 p; and p; is the prime associated with
qj - Let us assume that [c] § [1] and hence we have d 2 p.
Also {[c] 2 [p]k for some k. Thérefore we have cq 2 pdk = pk.
But then we have p; 2 p for all i. Since p 2 Cq it follows that
for some j, Pj < p. And therefore p = Py Also Py, Pp, ...
p, are distinct prime associated with each qj - And hence we
have pj # p for i 4 j. Since [c] is primary element in Lq,
it follows that [qj] € {e]. And then [c] = [qj] where a5 is

primary element of L. Conversely assume that g is a primary

element of L. We known that by definition, qg q or gqq = 1

whenever d 2 pg or d # Pq-

> [al £ [q] or [b]

1A

Hence [al[b]l < [q] [pl. And

this shows that [q] is primary =lement of lattice Lg- [ |

We note that distinct primes contained in d gives rise

to district congruence classes.

kk*x*k THE END **k*x
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