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CHAPTER — IXx

RADICALS AND PRIMARY DECOMPOSITIONS

§. 1. INTRODUCTION

In the first chapter of this dissertation we have
studied several stronger abstract formations for the notion of
"Principal element" which play an important role in the theory of
decomposition for lattice. (see Dilworth [1962] [71]).

The concept of radicals are found scattered in several
papers on multiplicative lattices. However there were no
concerted efforts for obtaining abstract formulation of radical
theory of commutative rings with unity though there is a vast
literature available. The study of radicals was carried out by
Murata [17] and Zariski and Samuel [21] and the group of Thakare.

This chapter 1is Dbased on the work of Thakare and

Manjarekar [1982][20], where in they carry out the study of
radicals. Here, we wish to report their finding in details.
For this first, we recall the following definition.

Definition 2.1

A multiplicative lattice is a complete lattice L on

which there is defined a multiplication that happens to be
commutative, associative, and distributive over arbitrary joins

and for which the largest element 1 is a multiplicative identity.

40



An element a of L is said to be compact if a £ \/ X,
X QEL implies the existence of a finite number of element X1,

X9, ... , Xy of X such that a < X9 \/ x5 \/ ... \/ x4,

According to Dilworth & Crawley [9], we report related
result
Lemma 2.3 :
Let L be a multiplicative lattice. Then the
following statements are equivalent
(1) L is complete lattice satisfying the ascending chain
condition.
(2) Every element of L is compact.
Here after, we will assume that L is multiplicative lattice in

which every element is compact.

Definition 2.4 :

The radical of an element a is

\/ { z e L / 2z® < a, for some in-eger s } and is denoted by Ja.

As stated in Dilworth [8], we have the following Lemmas
without proof.
Lemma 2.5

If q is primary element then Jgq is the minimal prime
containing q. Note that {q is called as the prime associated
with q. Assume that an element a in L has an irredundant
primary decomposition

a=4q; /\ay /\ ... /\ q ceen (%)
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§.2.RADICALS

The following most important lemmas that need to be
stated without proof. First Lemma gives sufficient condition
for a prime element p of L tc contain some associated prime
element.

Lemma 2.6
n

If a prime element p contains a finite meet /\i=194
then it contains some qj, if the q; are primary then p contains
the associated prime element Py of one of them.

Lemma 241

If a prime element p = /Qizlpi where the p; are prime
then p contains one of them by lemma 2.6 and thus is equal to it;
the other Pj contain then this P;- The next properties are

immediate analogous of similar properties of radicals of an ideal

in a commutative ring with unity.

Properties of Radicals 2.8

IA

{a
(p) a<b=>Jas<b
(p3) dda = Ja
(pg) {(a/\b)
(p5) 4 (a\/b)

For a, be L (py) a

{fa /\ {b = {(ab)
{({a \/ {b).

il

Proof

(pq) al ca=>ae{xelL/ x% < a for some integer s}

and hence a < Ja. [ ]
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(py) Let vy e { x / x5 < a for some integer s }. Then yS € a < b
which gives { x / x° < a for some integer s }

C{y/ y® <b for some integer s }. Therefore Ja < ib.J

—_—

(p3) a < ya => Ja s {{a. To prove J{{a £ Jya take
y € { x / 2% & Ja for some integer s }. This implies
vyS < Ja = \/{ x /x® 5 a for some integer s }.° As each

v ‘
element of L is compact, y° < Jfa = \/i=1 { X3 / xis1 < a }.

Let s1 + s2 + ... + sn = k. Then

(xg\/%y \/...\/ Xn)sl+sz+...+sn < Xlsl \/ xzsz \/...

\/ ann's a. Therefore y® < (x4 \/ x5 \/...\/ x,)

=> ySK < (x; \/ x5, \/...\/ x, (¥ < a

i.e. vy e { x / x° < a for some integer s } and y < Ja.

Thus {fa € ya and hence we have Ja = Jfa. l
(py) fta/\b)=4a/\N{b=4J(ab).

First we show that y( a /\ b) = Ja /\ {b.
Let c e { x / x5 € a /\ b for some integer s } Then ¢® < a /\ b
which implies ¢® < a and cS < b, Hence{.x / x5 ¢ a /\ b for
some s e N } € { x / x5 € a, s is an integer } and
{ x /x5 <ca/\Nb}S {x/ %% <D for some integer s }.
=> J{a/\b) < ya and f(a/\b) < {b. Therefore J(a/\b) < Jfa /\ {b.
Conversely let vy s Ja /\ {b => vy s Ja and‘ y £ {b.
iey<\/ {x/ x®5<a} and v < \/ { x/ x5 <b}. As each
element of L is compact, suppose y € \/1:1 { X3 / xiSi < a } and
vy € \/521% {2z /2™ < b},
Then y < x4 \/ X9 A2 AN Xp and y < 23 \/ z9 \/ ... \/ zj.
Let s1 + s2 + ... + sr = nand ml + m2 + ... + ml = p.

Then y" < (x; \/ %5 \/...\/ xr)31+52+"'+sr and hence we have



xSV N/ x,52 \/. 00\ xS < a,

¥ < (z2{\/z,\/ .. \/z2)P < 2™\ 2,2\ /2™ < b,

Hence yM.yP < ab < a /\ b i.e. y?*P < a /\ b.

This implies y < J(a/\b). Therefore 4Ja /\ {b < {(a/\b}.

Hence {(a/\b) = Ja /\ {b. Now we show that J{(a/\b}) = {{(ab}.
Let x e { vy / yS < ab } => x5 < ab £ a/\b.

=>x e { v/ yv® < a/\b }. Therefore {(ab) < {(a/\b).

Let x e { vy / yS sa /\ b} => x5 < a/\b.

=> x5 < a and x5 < b => x5.x% < a.b

Therefore x € { v / y® < ab }.
Hence f(a /\ b) £ J( ab ) and therefore J( ab ) = J{( a /\ b).
i.e. J(a /\ b) =4a /\ b =4( ab ). |
(p5) Let vy e { x / x5 sa\/ b} then y° < a \/ b for some
integer s. By (pq) yS <« Ja \/ {b. This implies
ye { x/ x5 < Ja\/ {b } and we have {{a\/b) < J(fa\/{b).
For the reverse inequality let vy e { x / x® < Jfa \/ 4b }. Then
by definition of radical, it follows that

vS s L \/ { x/ x5 <sal}l\/{z/ 2! <bp)l. Since every

element of L is complete, we have

vS < [xe\/x\/ oo \/xT N/ Tzq\/25\/ .. . \/2,] ; ....[2.8.pgl]
where xiSi < a, i=1,2,...,m and zjlj < b, j=1,2,...,n for some
integers si and 1j. Let s1+s2+...+sm+11+12+..+1n = k.

Using well-known property see Dilworthlxx], we have
[xq\/%\/ . \/x\/z29\/2\/ .. . \/z 1%

< 2SI\, 82\ /0 /xgS™ /2 N /2,120 /0 /210 < a \/ b [2.8pg2]
from [2.8.pgl] and [2.8.pg2] vk < a \/ b and

vy e { x/ x% ¢<a\/ b for some integer s }

Therefore J({fa\/{b) < J(a\/b) and the proof is complete. |
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Thakare and Manjarekar discussed the necessary and suffi-
cient condition for an element to be equal to its own radical.

Theorem 2.9

Let a € L. be such that it admits an irredundant primary
decomposition a=gqq /\Nay /N .. /N ap co (%)

Then a = Ja if and only if all the g; are prime

elements.
Proof

Suppose each qj in the representation (*) is prime.
To prove a = Ja take vy € { x / x% < a for some integer s }.
Then vyS < /czzlqi < q; for all i =1, 2, ... , m and by
primeness of q;, we have y < q; for each i =1, 2, ... , m.

Hence y < a i.e. {a < a and by properly (p;) we have a = Ja.

Conversely, suppose a = Ja where a has the primary decomposition

as in (*). Let p; be an associated prime of qj, 1 = 1,
2, ..., m. In view of representation (*) and by property (py)
we have, fa = fq; /\ Addp /\ ... /\ {4y But a = Jfa gives

a = /\j=1" P
This representation of a as a meet of prime elements is
irredundant because if for some j, a = /\i+jpi 2 /\i+jqi >
a then we get a contradiction as a = /\i=1mqi' is an irredundant
primary representation of a. To show that q4; = Py for each
™

i, take any vy < pj- As /\i=1pi is irredundant decomposition

for a, there is z < /\j+ipj such that z ¥ p;.

o m
Now yz < /\j.qP; = /\j=q1 € q3 for each i. As each q; is
primary and z f p; Wwe have Yy < qj. In particular P; € 493 and
hence p; = q; i.e. each qj is a prime element. [ |
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§. 3. PRIMARY DECOMPOSITIONS IN MULTIPLICATIVE LATTICES

According to Atiyah & MaCdonald [3] the decomposition
of ideals is a traditional pillar to ideal theory. In modern
treatment, with its emphasis on localization, primary decomposi-

tion is no longer, such a central tool in the lattice theory.

The notion of uniqueness of irredundant primary
decomposition of the type a = g /\ Q3 /\ ... /\ qp ..... (%)
is well discussed in [4]. Some results on primary deccmpo-

sitions concerning semi-modular multiplicative lattices are
studied by McCarthy [16]. Richter,G. initiated the concept
of irredundant decompositions in J-lattices.(see[18],[19]).
Also they give a necessary condition for a complete lattice that
each of its elements has an irredundunt decomposition

In this section we report the uniqueness theorems for
primary decompositions, which are represented by Thakare and
Manjarekar [20].

We need to recall some basic definitions.

Definition 3.1
The associated prime elements of the primary elements
occurring in an irredundant primary representation

a = 4qq /\ 4y/\.../\q, of an element a are called the associated

prime elements of a or simply the prime elements of a.

Definition 3.2

A minimal element in the family of associated prime
elements of a is called the isolated prime element of a. A

prime element of a which is not isolated is said to be embedded.



Definition 3.3

If a = /\izlqi is an irredundant primary represen-
tation of a, the elements q; are said to be primary components of
a and qj is called isolated or embedded according as its
associated prime element pj is isolated or embedded.

The following theorem gives a characterization for a
prime element of L to be equal to some associated prime P;-

Theorem 3.4

Let a € L have primary decomposition
a=4qq /\ ay /\ ... /\ aqp. (*)
Let p; ( i=1, 2, ..., m ) be associated primes of dj- Then
the following statements are equivalent
(1) A prime element p of L is equal to some pj-
(2) There exists an element b € L not contained in a and

such that ( a : b ) is primary for p.

Proof
(1) => (2): Suppose a prime element p = p; for some i and
p; are as given in the hypothesis. For this i there exist
b < /\j+iqj' Such that b § qj (3.4.1)
Since the primary decomposition (*) is irredundant . First we

show that for such an element b the element { a : b ) evidently
contains q; and is contained in p;.

Let x € { v / yb £ a } then xb < a5 for every j.
But for cur fixed 1, b#qi and hence x% < 43 for some integer s.
Thus x € { v / v® < q; for some integer s } which shows that
\/ {y/ybsa}s\/ {y/y®saqy}ie (ab)sp; (3.4.2)

On the other hand select y < qj. From (3.4.1) we have
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vybh < /\jzl g5 = a which implies that vy € ( a : b } and hence
q; < (a: b)) ...(3.4.3)
From (3.4.2) and (3.4.3), we have qu =p; <4 ( a: b)s {p; = pj.
i.e. {( a: b ) =py. To show that ( a:b ) is primary take
vz £ ( a : b ) and suppose that z < pj;. Clearly yzb < a £ qj
and thus yb < qj. Use of (3.4.1) gives yb £ /?}zlqi = a
yielding vy < ( a : b }. Thus ( a : b ) is primary and we
conclude that ( a : b ) is Pi primary and hence p primary.
Thus (1) => (2).

{(2) => (1): Suppose that for some element b such that

b £ a, the element ( a : b ) is primary for a given prime
element p. Since a = q /\ g3 /\ ... /\ g, it follows that

m
(a:b)=/\4-1( 494 @ b). ( See Dilworth [7]). By proper-

ty (p4) of radicals and our assumption, we have
fla i b) = /\ypflag ¢ b) = p c..(3.4.4)
From assumption b ¥ a and the irredundant decomposition {(*}, we
have b ¥ q; for some i and b < q; for remaining ones.
Case (1) When b ¢ q;, we have by Dilworth [7]
f(q; : b) = 1.
Case (2) When b # qi - Let x = q;. Then
xb ¢ q; and x e { Y / yb £ qg;} i.e. x = (q; : b)
Hence gq; = ( q; : b). This implies p; < J(q; : b).
For the reverse irrequality suppose x £ (q; : b).
Then xb € q;. But b # q; yields x5 < q; for some integer s
i.e. X £ {q; and {(q; : b) £ pj. Therefore {(q; : b) = p;.
From (3.4.4) and the above two cases it follows that

p = /\T Py for some subset T of { 1, 2, ... , m }. Therefore



by Lemma 2.7 we conclude that p = o for some j. I
The following characterization is obvious.

Theorem 3.5

Let L be a lattice, in which a has an irredundant
decomposition a = q¢ /\ a5 /\ ... I\ qAp- (*). A prime
element p € L contains a,if and only if p contains some pj;,
Where‘the p; are the associated primes of the qi's respectively.
Proof

Suppose p; < p for some 1. Then a £ q; € p; £ P.
Conversely suppose a < p then we have qqd5...q, € q1 /\ 4y /\

/

/\ ap € p. This gives gq; < p for some i, Since p is prime.
Let x e { v / y® < q; for some integer s }, this implies that
xS < q; € p for some integer s. But p is prime implies x < p
Hence p; < p. R

By using Theorem 3.4, we conclude that the associated
primes p; arising from the irredundant primary decomposition of
an element a = /\;_qMg; are uniquely determined.

In the next result, Thakare and Manjarekar showed that
even those qi's can be uniquely determined which are isolated

primary components of a € L.

Theorem 3.6

Let a € L have an irredundant primary decomposition

a=4dq /N ap /\ ... /N ap o (%)

and pi's be associated primes of qi's. The element

qi' =\/ { zelL / ( a:z ) < <] } is an element of [ which is
contained in qj - If qy is an isolated primary component of a

then 4y = 44



Proof

Take any element x e { z e L / ( a:2 ) F p; }

H

(zeL/\/{x/xzsa}§pi}.
Then there is an element $ € L such that Bz £ a and B % Pj-

Then B0 % q; for all integers n.

Since Bz < q; and N k a; for every integer n and q; is primary
it follows that z < q; - Therefore qi' < q;- This completes
the proof of first part.

Next if aj is isolated primary component of a then o8]
is a minimal associated pfime of a and hence Dj ¥ p; whenever
if3. Then there exists bj < P such that bj ¥ Pj- Since every
element of L is compact, we have
by < py = \/::1 { 2,/ zrSr < q; for some integer s, )

Puting Sq+8g+. . .48, = k{j).
Then bi*{3) < (z2) \/ 2z, \/ ..o \7 2 )R03) < qy.

Obviously we have b = Titi bjk(J) # p; (as p; is prime).

However b < /\j+i qj Next we take any x < q; -

¥vy
Then bx < /\izlqi =a=>b << (a:x )=\ {celL / cx g a}.
Since b % p; it follows that (a:x) # P; - This shows that
x e {zelL/ (a:z) ¥ py }- Hence we have the;equality

x < \/ {zel/ (az) <p;}=aq

Thus 4; S 94 and by using the first part we have q; = 44 - l



§. 4. FURTHER RESULTS ON RADICALS AND PRIMES.

Thakare and  Manjarekar [20] settlaed the relation
between the radical of a and isolated primes of a € L. We shall
report the same here.

Theorem 4.1

The radical of a having irredundant primary decomposi-

tion a = q; /\ ap /\ ... /\ q (*) |

is the meet of isolated primes of a.

Proof

By using property (pg) the radical of a is the meet of
all associated primes p; (i =1, 2, ... , m) of a
i.e. Ja = py /\ py /\ ... /\ py

If some p) is not isolated then we have pyp 2 P; for some p;.
Hence we delete such embedded elements from the above representa-
tion and hence the proof. B

Recall the notion of nilpotent element in a multiplica-
tive lattice which plays an important role in a Noether lattice.
Definition 4.2 :
if a* = 0 for some integer n.

The following consequence is worth noting.
Corollary 4.3

In a Noether lattice L, the join of the set of all

nilpotent elements is the meet of the isoclated primes of 0 i.e.
the minimal prime elements of O.
Proof

™

Let 0 = /\j-.1 93 be a finite irrdeundant primary
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decomposition of 0. Let p; (i =1, 2, , m) be associated

primes of q; (i =1, 2, ... , m) respectively. By Theorem 4,1
we have [0 = p1/\p2/\.../\pr where Py, P3,...,p, are isolated
primes of 0. By definition of the radical, we then have

\/ { a/ ais nilpotent } = py/\py/\.../\p,. [ |

Thakare and Manjarekar have given the characterization of

the primeness of radical of a in the following;
Corollary 4.4

Let L be a multiplicative lattice.

For a € L, following statements are equivalent,

(1) Ja is prime element.

(2) a has single isolated prime element.
Proof

(1) => (2): Suppose that fa is prime element and
Jfa = P1/\P2 where py , pp are isolated primes. Hence there

exists %, y € L such that x £ Py, X S pyand y € py; , Y £ py.

Hence xy < fa = py /\ pj. But py /\ py is prime implies
X £ pq /\ pé or y £ pq /\ Py. In any case we get the contra-
diction x € py; or y £ pg. Hence Ja % pqy /\ Py. This can be

proved for any finite number of isolated primes.
(2) => (1): Suppose that an element a has single
isolated prime p then by Theorem 4.1 it is clear that Ja = p.|}
Hereafter L will denote a Noether lattice. Thakare
and Manjarekar investigated the notable characteristics between
associated prime elements and residuation. We call, q is
p-primary if p = {q.
Theorem 4.5 :If g is p-primary and if a € L such that a ¥ q

then (g : a) is again p-primary . Also, if a £ g then q : a = 1.
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Proof

If a < g then we have (q : a) = \/ ((z e L / za £ q }.
Since za € q for all z € L it follows that gq:a = 1.

Next suppose that a # q where g is p-primary we show

that (q : a) = g 1is p-primary. If vy £ ¢q

g : a then ay £ q.

But a # q and q is p-primary imply that y < p. This shows that

t

q < p.
Now let x £ p = yq then for some positive integer m,
™ < q < (q: a) = q' {by proposition 2.6). Hence p < Jq'.
Finally, assume that cd € g and ¢ * p. Then for
y £ a we have ycd € cda € q where c¢ * p. As q is primary we

have ad € gq. Consequently we have
d £ {(q: a) = q'. Thus, ( g : a ) = q' < p
Hence q' = (g : a) is p-primary. .

Theorem 4.6

Let L be a Noether lattice and a $ 1 belongs to L and b
be any element of L. Then a : b = a 1iff b is not contained by
any prime ideal belonging to a. {i.e. a : b = a iff no prime

element of a contains b).

Proof

Let a = g /\ 93 /\ ... /\ g be a normal decomposition
of a. Suppose b is not contained by any associated prime of
a. i.e. b ¥ fq; = py for any i =1, 2, ... , m.

We claim that a : b = a. Obviously a : b 2 a. Let x £ a : b.
Then xb < a < q4 for each i =1, 2, ... , m.
As qi is primary , xb € qj and b ﬁ fq; it follows that x £ qj

ot
for each 1 =1, 2, ... , m, This shows that x < /\j-q1m q; = a



and hence a b < a. Therefore a b = a.

Now assume that a : b = a

To prove that b is contained in no associated prime element of a.

Suppose b g p; for some i, say b g pyp we have a = a b which
implies a = a : b= {( a: b) : b = a b2. And hence,
In general a = a : b" for all n. As b €

py = {q; we have

bf < pyT. We choose n such that p;¥ < q; so that bY < qy .
Then we have a = ( /\j.q 93 ) : bf
=>a = ( qq: b" ) /\ (qp : BT ) /\ /N (ap ¢ b )
Now (g :bY )=\/{zelL/bfzs<q } =1,
=>a=1/\ ( gy : b ) /\ /N (g s bT).
=>a=(qy: b ) /\ /N (g = b)),

By using Theorem 4.5 it follows that each { q:

: r
if b* € q; or ( q;
As a + 1 it follows

obtain for a primary

P1 is not associated.

i+ bY) is either 1
b' ) is p;-primary.

that each term cannot be 1. Thus we
decomposition with which the prime element

This primary decomposition can be re-

fined into a normal decomposition of a with which p; is not
associated and has less than m components.
Thus a has two normal decomposition with different

number of components. But this contradicts The Fundamental

Theorem of normal decomposition which states that ;

"

Any two normal decompositions of an element have the same
number of components and the same set of associated primes. "

Hence the proof.



The other elegent form of the above theorem 4.6 is asg

follows
Corollary 4.7

Let L be Noether lattice. Then an element b of L is

contained in some associated prime elements of a in L if and only

if a: b $ a.

The above corollary gives the uniqueness of the maximal
associated primes of a in the following form.
Corollary 4.8

Let L be a Noether lattice. An element a is contained
in some associated prime element of ¢ if and only if there exist
some b # ¢ for which ab < c.
Proof

Let ¢ = 41 /\ 499 /\ ... /\ g, be an irredundant
primary decomposition of ¢ and p; be an associated prime of qi
i.e. py = Jqj. Suppose there exist some b # ¢ for which ab £ c.

To prove that a < p; for some associated prime

Let if possible a < p; = fq; for each i =1, 2, , m.
Now ab < ¢ => ab £ q4 for each i =1, 2, ... , m.
=> b < q4 for each i.
=>b <qy /\Nay /\ ... /\gyp=c i.e. bs<c
which is contradiction as b # c. Hence a < p; for some 1i.

Conversely, suppose a is contained in some associated prime p; of

¢ =4dqq /N az /\ ... /N Qg To prove that there exist some b #
c for which ab € ¢. We known that if a $ 1 then b is contained
in no associated prime element of a iff a : b = a. Now a is

contained in some associated prime element of ¢ implies c:a F c.
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By proposition 2.6 we have ¢ : a 2 c.

Hence ¢ : a4+ ¢ => (c:a )5 c. Put b= (c : a ). Then

b= (c: a) % cand ab=a(c:a)=(c:a)acc/(by

proposition 2.1 ). Therefore there exist some b such that b = ¢
a # ¢ for which ab < c. [ |

The concept of 2zero divisor in the' context of
r-lattices was introduced by Anderson [a’]. After building so
many things, Thakare and Manjarekar [29] also discussed the
concept of zero divisor in multiplicative lattices which is

restated as follows
Definition 4.9

Let L be a Noether lattice. An element a of L 1is
called zero divisor if ( 0 : a ) # 0.
(i.e. \/ { zelL/za=01}+40).
Thus a is zero divisor in L if there exist at least one non zero
z in L such that za = 0.

Thakare and Manjarekar relate zero-divisor with
associated primes in the next result.
Proposition 4.10

Let L be a Noether lattice. Then the join of zero divisor is

contained in the join of all associated prime element of O,

Proof

Suppose 0 = qq /\ 493 /\ ... /\ gy is the irredundant
primary decomposition of 0. Suppose X is zero divisor in L.
Therefore ( 0 : x ) % 0. By applying corollary 4.7 to a = 0 we

get x € p; for some associated prime p; of qj.
Thus the join of zero divisor is contained in the join

of all associated primes p; of zero. [ |
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Theorem 4.11

Let L be a multiplicative lattice. For an element
a e L. There exist an element r < b such that
ar < b iff b : a # b.
Proof

Suppose for an element a € L, there exist an element r s b

such that ar €< b. To prove that b : a + b. We known that
b :a=\/{2z¢€eL / zas<b)}. Obviously b : a 2 b. It is
enough to show that ( b : a ) € b. By hypothesis there exist
r £ b such that ar € b.Hence (b : a) = \/ { x e L / ax € b } £ b.
Hence b : a $ b.
Conversely, suppose b : a F b. As b : a 2 b ( by proposition
2.6), b:a$b=>b:achb. Therefore there exist
re{ zel / az <£b } such that r ¢ b. 1i.e. ar £ b and r < b. l

Thakare and Manjarekar proved an abstract formulation
of well known lemma f{or Noetherian rings which is useful to
prove Krull's theorem ( see Zariski and Samuel {211]). Which is
reported as follows.

Theorem 4.12

Let L be a Noether lattice, a be any two elements of L.
Then there exist an integer k and an element a' of L such that

t 1 k
ab = a /\ a and a 2 b™.

Proof :

Let ab = qq /\ g3 /\ ... /\ g, be the primary decomposition of
ab and py, Py, ... , Py be associated primes of aq . qé, cee 4 9y
Obviously, qj € pj (i=1, 2, ..., m ) and ab < qj -

Let { qi' } be the set of primary components of ab whose



associated primes contain b. i.e. a < pi' and let { qj" } be

the set of primary component of ab whose associated primes do not

. R "
contain b i.e. b % pj .

L] ] 1] "
Take a = /\ iqi and a = /\ij .

Then ab = ( /\j a3 ) /\ ( /\; a5" ).

1 1A

Therefore ab = a /\ a
i t
=>ab =4q; /N gy /\ ... /\ qyand ab £ a = /\;q4
11} 1 "
< = :
and ab € a ., Now ab < a /\} q} .
¥
=> ab < qi' for each i and b ¢ Pi' = Jqy .

1

=> bt < qy for some i.

Let k =max { ry / (i =1,2,...,n)} (n £ m)
=> bK ¢ /\ qi, = a . Take any element Yy < b such that
" "
Y4 s = pao, element
vi § 795 = py For any
t . 1"

X < a, Y 5% < ab < qj' ( j=1,2,...,t). Now ab < a5 and
b % pj” => a £ qj" ( by definition of primary element)

1"

> a < /\jqj" = a
(a /\a )/Na=>ab=a /\(a /\a )

it

Since ab = ab /\ a
1 k 1]

Therefore ab = a /\ a where b™ £ a . l

Theorem 4.13

If g is p-primary and if a # p then ( g : a )} = (.

Proof
By proposition 2.1 we have a ( 9 : a ) < q. Let
xe {zelL / za £ g }. Since q is p-primary we have xa £ gq and
a E p. We have X < q.
Hence ( q : a ) = \/ { ze L [/ za s ql} 5 q. Thus g : a £ q.

Also by proposition 2.6, we have ¢ € g : a.

Therefore ( q : a ) = q. |



Finally, we give our original result.
Theorem 4.14
Let p, g be elements of a multiplicative lattice I such that
(1) a < p < Jq.
(2) if ab € g with a ﬁ’p then b < q.
Under these conditions q is a primary element of L with p = Jq.

Proof

To show that g is primary element. Suppose that ab £ ¢q
but b F q. Using (2) we conclude that
Aa<p<Jyg=\/{2elL /) zD¢gq, for some integer n }.
This shows that a® < q and q is primary. Next, to show that
p = {q, we have to prove that Jgq < p.
Let x € Jg=\/ { z e L / 2z ¢ q for some integer n }. This

implies that x" < q for some integer n. Suppose m is the least

positive integer such that x™ < q. If m = 1 then x < g

A

P.
If m> 1 then x™ = x™1 | x < q with x™1 F q and hence x < p [by
using (2)]. In any case we have x £ Jg => X <p. Hence {q < p.
Therefore we conclude that p = {q. R

We wish to mention that the efforts of Professor Thakare
and his group with the active involvement of Professor Shichiro
Maeda of Japan have extended not only the theory of symmetricity
but also the theory of multiplicative lattices. We wish to
abstract several analogues of decomposition theorems for

commutative rings and various ideal theoretical results in
future.

*%%x THE END **%
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