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CHAPTER I

AMORPHOUS SEMICONDUCTORS
1.1. Structure of Amorphous solids
1.1.1. SOLID STATE THEORY 

A. General Approach:
After the development of quantum mechanics, it became 

possible to understand the properties of atoms, molecules, 
and solids, in a much more fundamental manner than was 
previously imagined. In principle, the physics could be 
determined from the solution of a partial differential 
equation, which could be symbolically written

H y ( r-^, .... r ^) — E y ( r j, ....(rj^) ..(1)
In Eq.(l), E represents a number which gives the energy of 
the state characterized by the wave function, y (ri, .. . rn) 
a complex function of the positions of the N particles in 
the system. The physical significance of the wave function 
is that magnitude squared, .... rn ) |z yields the
probability density for finding the particles near r]_,r2,.. 
rn, respectively. The symbol in Eq.(l), called the Hamilto­
nian of the system, is a differential operator which can 
always be determined provided the forces between the parti­
cles are known. H can be written:

N
H = l V-2 \ + V (r, , ---,rn) .. (2)

i=l\2mi /
Where Vj_2 is the Laplacian operator corresponding to 
particle i, m ^ is mass of the particle i, and V(r^, ..
rn) is the potential energy corresponding to the forces
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between the particles, h is the Plank's constant divided by
-342 tt , and is equal to 1.05 X 10 joule-seconds in the MKS 

system of units.

The great simplification which enables the solution, 

in principle, of all nonrelativistic problems involving atoms, 

molecules, and solids is the fact that the only important 

forces are the electrostatic interactions between the posi­

tively - charged nucli and the negatively - charged electro­

ns. For example, if there are N nuclei of charge +Ze and 

ZN electrons of charge -e present then:

V (R1# RN ' r1' * CZN)

f Z2e2
lRa"%

r.1+ * I Ze‘
1/3 _ r-

N ZNI la=i i = a ! rj_ -Ra I

where the Ra represents the positions of the nuclei, the r^ 

represents the position of the electrons, and the primes on 

the summation symbols mean that the terms a = g and i=j are 

omitted from the double sums (since particles do not intera­

ct with themselves). The first set of terms of Eq.(3) repre­

sent mutual repulsions between the nuclei, the second set 

the mutual repulsion between the electrons, and the third 

set the attraction between the nuclei and the electrons.

The quantitative mathematical problem represented by 

equations (1}—(3) can be solved to a high degree of accuracy 

for atoms and simple molecules, but is much more difficult 

for solids, which typically contain ~ 102 3 nuclei and 1021*

electrons in 1 cm3. Ideally, we should like to calculate the 

lowest possible energy levels for any system, together with
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their corresponding wave functions, since these would yield 
the electrical, optical and thermal properties of the system.

We know that by defination, solids retain their shape 
physically, this means that the nuclei possess equilibrium 
position in which the forces on them vanish. Since all 
materials (except helium, a very anomalous case because of 
its light mass and very weak interatomic forces) become 
solids at sufficiently low temperature, the lowest energy 
state of any collection of atoms must possess equilibrium 
position for the nuclei. This set of equilibrium positions 
for the lowest energy state is called the structure of 
the solids. It is very difficult to calculate the structure 
of solids from the nature of the constituent atoms. Instead, 
an empirical approach is used, in which structure is deter­
mined or inferred from experimental observations.

B. Structure:
X rays, whose wavelengths are of the order of inter­

atomic separations were used to study the structure of 
solids. In 1922, Von Laue suggested that periodic crystals 
would act as a diffraction grating for X-rays, and the next 
year Bragg was the first to use this effect for determining 
crystal structures. More recently, the diffraction of ele­
ctrons and neutrons with similar wavelength have also been 
used to study the structure of crystals, whose long range 
periodicity makes the interpretation of such experiments 
relatively straightforward. Or. the other hand, the structure 
of amorphous solids is much difficult to determine. Diffra-
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ction experiments can be used to discover the interatomic 
separations of the neighbouring atoms from a central atom, 
from which a structure can often be inferred. This procedure 
can be ambiguous in complex materials. However in an elemen­
tal solid, the results are relatively straight forward.

1.1.2. STUDIES OF THE STRUCTURES OF AMORPHOUS MATERIALS
An amorphous solid is one in which three dimensional 

periodicity is absent. The arrangement of atoms, however 
will not be entirely random as in a gas. The binding forces 
between atoms are very similar to those in the crystal and 
although long range order is excluded, short-range order of 
a few lattice constants will generally be present.

A complete theoretical description of the properties 
of an amorphous solid would need a full knowledge of the 
structure. Even within the restraints imposed by forces 
between individual atoms and the tendency towards short 
range order, there are an infinite number of allowed stru- / 
ctures for any amorphous material. If no features greater 
than 50°A (which would indicate crystallization or phase 
separation) are observable, then the techniques used for a 
more microscopic investigation include electron and X-ray 
diffraction, infrared absorption and Raman spectroscopy. 
Diffraction patterns from an amorphous solid consists of 
broad haloes or rings, without any evidence of spots, which 
would indicate some degree of crystallinity, Fig.(1.1).

From the angular dependence of the scattered radiation, 
the radial or pair distribution function 4-jTr2p(r)dr can



be obtained by a Fourier inversion. This gives the average 

number of pairs of atoms separated by a distance lying 

between r and r+dr. Several approximations are involved in 

obtaining this function, only two of which are mentioned 

here. First it is normally assumed that the atomic density 

is uniform over a sphere of a given radius. This is probably 

a good approximation for liquid metals, it may not be for 

amorphous semiconductors, in which the presence of voids 

and cracks is quite likely. Secondly, termination errors in 

the Fourier integrals can distort the radial distribution 

function and introduce spurious structure. Considerable care 

and skill is nee:ded in generating and interpreting plots of 
4iTr2p(r}dr against r, i.e. radial distribution curves( r .d .c.).

Fig.(1.2) represents radial distribution curve for 

amorphous Ge. The first peak of the r.d.c. is well separated 

from the following ones, measurement of the area beneath the 

maximum gives the number of atoms contained in the first 

coordination sphere. The position of the peak gives the 

average separation between nearest neighbours. The curve is 

seen to be distributed about a parabola, which represents 

the r.d.c. of a hypothetical amorphous solid of the same 

density but with matter uniformally distributed in space. 

Although first few coordinations are well defined, the 

width of the peaks indicate some spread in the interatomic 

distance, and the decreasing amplitude of the oscillations 

with r shows the lack of long range order. In the case of 

germanium, the first two coordination numbers are 4 and 12
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as in the crystal. The average interatomic distances are
increased, by about 3%. In crystalline InSe for example, 
the first coordination sphere is occupied by atoms of both 
kinds. Thus each In atom is surrounded by one In and three 
Se atoms as first neighbours, and each Se atom by three 
In atoms. In amorphous InSe the first maximum of the r.d.c. 
is split in to two peaks; and the short range configuration 
present in the crystal is retained.

Structural models of amorphous solids or liquids can 
be constructed to give the oest fit to the experimental 
r.d.c., together with any other conditions required by the 
nature of the bonds surrounding each atom. In most cases 
knowledge of the structure of material in its crystalline 
form, where this exist, is used to determine the basic unit, 
z, the number of bonds, a, the bond length, and Q.the bond 
angles. These basic units are then stacked or mixed in 
an appropriate manner to satisfy experimental observations. 
When the three parameters, z, a and 0 have well determined 
values in a narrow range, the material is said to exhibit 
short range order. Given the short range order it is not 
difficult to construct a model for the structure which does 
not have any long range crystalline periodicity. Such models 
are called random networks.

The hypothesis that an amorphous solid could be mode­
lled by a random network of atoms with near-perfect short- 
range order was first proposed by Zachariasen[4] over 50 
years ago, with reference to oxide glasses. Many years later,
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Polk 15] constructed such a model for tetrahedral amorphous 
semiconductors. However this approach to the structure of 
amorphous solids has remained controversial and alternative 
models based on microcrystalline arrays have continually 
been suggested[ 6 3 .

1.1.3. CHEMISTRY OF COVALENT AMORPHOUS SEMICONDUCTORS
The three parameters z,a, and 0 simply reflect the 

nature of the chemical forces which characterize the consti­
tuent atoms. These chemical forces are themselves just para- 
meterizations of the complex interactions given in Eqs.{2) 
and (3), and arise from the balance between the kinetic 
energies of the electrons and the nuclei and the electrosta­
tic coupling between tnem. The strongest chemical forces are 
ionic, covalent or a resonant admixture of both of them. In 
the presence of large number of atoms, there can be a con­
tribution from a slightly weaker force called metallic, 
which basically has the same crigin as that of an unsatura­
ted covalent bond.

Ionic bonding takes advantage of the attractions 
between oppositely-charged atoms and tends to predominate 
whenever at least one type oE atom with a relatively low 
ionization potential (i.e. minimum energy necessary to 
remove an electron) and another type of atom with a relati­
vely high electron affinity (i.e. the-maximum energy reduct­
ion from forming the negatively-charged ion) are both prese­
nt. The lowest energy ionic solid maximizes the electrostatic
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attraction between the positively and negatively charged 

ions while minimizing the mutual repulsions among similarly 

charged ions. For^ two similar sized ions, the optimal 

value of z is 8 and an optimal value for the bond length, 

a, also exists. As the ratio of ionic redii begins to 

deviate from unity, lower values of z (six or four) become 

opti.'unal for geometric reasons. In any case the only const­

raints on the bond angles are that maximize the distance 

between similarly charged second neighbouring ions.

Ccvalent bonding places strong constraints on all 

three parameters, z, a, and 0 . Consequently it is not 

difficult to form covalent amorphous structures even from 

single elements or simple binary compounds. All of these 

exhibit a great deal of shore range order, as expected. 

In some covalent amorphous solids, there is evidence for 

intermediate -range order, in which third and sometimes 

fourth neighbour peaks in the correlation function resemble 

those in the corresponding crystal.

In addition to a determination of the local environ­

ments of the constituent atoms, other issues are important 

in describing the structure of amorphous solids. For exam­

ple, a-Si and a-Ge appear to contain significant regions 

of micrcvoids and samples may resemble swiss cheese in 

that respect. In addition to this possibility, many other 
types of inhomogeneties may exist in.perticular materials. 

The inhomogeneties include the disorders,

a) Translational disorder,

b) Topolcgical disorder and
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c) Compositional disorder.

a) Translational disorder; The long range order is complete 
absent, while short range order is responsible for 
observable properties.

b) Topological disorder : This is attributed to
i) Crowding of atoms at one place forming clusters

ii) Missing planes from the structure and
iii) Atoms not occupying regular sites. This causes poten­
tial fluctuations inside the structure, giving rise to 
localised states in the forbidden gap.
c) Compositional disorder : While forming multicomponent 

system, the composition of elements in amorphous mate­
rial may not be in the same ratio and it will give 
rise, localized states in the forbidden zone.

These may take the form of density fluctuations, of 
which voids represent an extreme example, or compositional 
variations, including, e.g., phase separation or more 
local clustering. When amorphous solids are deposited in 
thin film form on a substrate, the region near the substra­
te may have a different structure than the bulk of the 
material and that the properties of the interface region 
can depend strongly on the nature of the substrate. Furth­
ermore, the free (i.e., upper} surfaces of films can exhi­
bit structures which differ from those of the bulk. Finally, 
the possibilies of the incorporation of unintentional 

impurities in significant concentrations should not be
overlooked.



1.1.4. ELECTRONIC STRUCTURE
Using one electron approximation, we can write 

the electronic problems as one involving the positions 
of only single electron r^ :

H^,( ri ) = ( r± ) . . (4)
where the effects of all the other ZN-1 electrons are 
included in the operatior Hi. The solution to equation (4) 
give the one electron energies, (E^ . The lowest energy
of state of the solid is then the one in which the lowest 
ZN energy state, (E^)n, are failed and all higher ones are 
empty. Excited states can be analysed by transferring 
electrons from lower energy-filled to higher energy-unfilled 
states. Since there are so mary (-lO^cm 3) electrons in a 
typical solid, the energy levels (Ei^ij ;areclosely spaced 
(~lCr cm~3ev~i ). Consequently, it is preferable to treat 
them as essentially continuous, replacing the discrete 
levels (Ei)n by a function, g(E), which gives the number of 
one-electron states per unit volume per unit energy, g(E) 
is called the density of one electron states. If g{E) is 
known, we can ordinarily deduce the electrical and optical 
properties of the solid from it.
Fermi Energy :- Fermi energy is very useful and convenient 
parameter for expressing the properties of semiconductor 
crystal. In case of metals Ep is the highest level occupied 
by electrons when the metal is at absolute zero of tempera­
ture. At room temperature Ep is defined as that energy for
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which just one-half uhe levels are occupied by electrons.

In case of semiconductors and insulators E„ may be 
defined as the energy that is as far below an energy level 
which has a certain fractional filling as it is above anoth­
er level of the same fractional emptyness.
Rule for locating the Fermi Energy :

If we want to determine Ep for any system, we can 
do it as follows:
1) Go to T = 0°K
2) Determine the highest occupied state, E0ccupied
3) Find the lowest state empty, Eempty.

Then Fermi Energy E^(0) = E°ccupied + Eempty
2

Above T - 0°K as T rised, Ep drops. An exception
occurs when holes are involved. Ep rises with T when hole 
action dominates.

In perticular the Fermi energy, Ep , is obtained 
from the relation:

00

ZN=/g(E)f(E)dE ..(5)
— 00

where f(E) is Fermi-Dirac distribution function. For weakly 
interacting particles in thermal equillibrium at a tempera­
ture, I :

f(E) = ..(6)

where k is Boltzman's constant, equal to 1.38X10-22 j/k in 

units. The electrical conductivity can be obtained from 
the exoression :

CO

a = / g(E) f(E)£ u(E) dE ..(7)
— QQ

where j(E) gives the mobility (velocity attained per unit
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applied electric field) of an electron in a state at energy 
E under the condition that the other electrons are in their 
lowest-energy states. The mobility is controlled by the 
scattering process that affect the motion of the excited 
electron as it moves in the presence of the applied field. 
The scattering can be due to the phonons, the other elect­
rons, or, in some cases, even the ion cores at their equi­
librium positions.

1.1.5 CRYSTALLINE SOLIDS
A) Conventional Viewpoint :

The conventional approach to understanding the elec­
tronic structure of crystalline solids is well known. The 
key element is to simplify the problem by making use of 
the fact that the one electon potential energy must exhibit 
the periodicity of the lattice, Fig 1.3(a),. Group-theore­
tical methods can then be applied to reduce the problem 
to one involving only the small number of electrons contai­
ned in a single primitive cell from which the crystal can 
be generated. It can easily be shown that all electronic 
states are extended throughout the sloid, in fact having 
the same probability of being found in each of the primi­
tive cells. The one-electron density of states, g(E), can 
be calculated by solving the one electron problem in a 
single primitive cell and applying periodic boundary condi­
tions. Because of the periodicity, the density of states 
of any crystalline solid takes the form of alternating 
regions of energy with large densities, typically
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g(E) > 1022 cm-3eV-1 , called oands separated from regions 

where no states are possible, called gaps. The states with 
E <0 form the valence band which is ordinarily filled at 
low temperatures. The conduction band, ordinarily empty 
at low temperature lies at higher energies. The Fermi ene­
rgy lies in a gap. The sharp structure that is evident 
in g(E) Fig 1.3(c), at many different energies arises dire­
ctly from long range periodicity and these energies are 
called Van Hove singularities [7], It can easily be shown 
that the density of states near a Van Hove singularity 
has the behavior,

g(E) = A |E-E0I* . . (8)

either above or below the critical energy, Eq . The valence 
and conduction band edges, Ev and Ec* respectively, are imp­
ortant examples of Van Hove singularities.

B) Alternative Viewpoint :
This type of approach, in its simplest form employs 

the tight-binding approximation [8], in which the electro­
nic wave functions are antisymmetric linear combinations 
of atomic orbitals centered on nearest neighbouring ion 
cores. Schrodingers equation is then solved for the one- 
electron energy levels. Although this method is very crude, 
it provides a good starting point for analyzing g(E), one 
which does not lose sight of the chemistry. More recently 
the method has been modified and an empirical tight binding 
(ETB) approach has become pcpular [9]. In this technique, 
the matrix element of the Hamiltonian and the overlap inte­
grals between electrons centered on neighbouring atoms
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are treated as adjustable parameters to obtain good fits 
to experimentally measured quantities such as energy gap. 
Since the short-range order of corresponding crystalline 
and amorphous solids is ordinarily identical, it is useful 
to set the parameters by their crystalline values and keep 
them the same in their amorphous counterparts.

1.1.6 EFFECTS OF DISORDER
The density of states, g(E), of an amorphous solid 

should not be very different from that of its corresponding 
crystalline solid, provided tie short range order is iden­
tical. As a rough guide, we nay again use a tight-binding 
approach, now asking how the analysis would be modified 
if we introduce bond angle and perhaps even bond-length 
distortions. Fig(1.4} shows a sketch of the energies of 
the bonding and antibonding orbitals as a function of bond 
lenght and bond angle. It is clear that either the stretch­
ing or the bending of the bond tends to increase the ener­
gies of the valence-band states and decrease the energies 
of the conduction-band states.

1.1.7 LOCALIZED STATES
Either bond stretching or bond bending could intro­

duce localized states into energy gap. This is consistent 
with the fact that the band edges are just one type of 
Van Hove singularity, which, as we previously disussed, 
arises only because of long range periodicity. In the abse­
nce of long-range order, we expect these singularities 
be disappear and be replaced by more gradually
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decreasing densities of states, Fig.(1.5). These regions of 
gradually decreasing g(E) are called band tails.

We have already indicated that a range of energies 
may exists in which g(E) is finite but states are localized, 
and the mobility of an electron with such an energy is 
zero at T=0. aE (0) vanishes for these energies. The vani­
shing of can serve as a defination of localization
for electrons with energy E. Other definations of localiza­
tion are possible. One is that all eigen function of the 
one electron Schrodinger equation decay exponentially in 
space outside regions in which the eigen function is loca­
lized Fig.(1.8). The defination of localization is that, 
for a Fermi gas of non-interacting electrons with Fermi 
energy E,

lim < gB (0) > = o ..(9)
N->oo

1.1.8. ANDERSON LOCALIZATION
Anderson takes the potential of Fig.(1.7) and ask the 

following questions. Suppose at time t=0 an electron is 
placed on one of the wells. What happens then as t-*-® ? Is 
there a finite probability that the electron will have 
diffused to large distances, at the absolute zero of tempe­
rature, or does change that an electron will be found at a 
large distance r vary as exp'.-2arj, in which case there is 
no diffusion?

The first approach to this problem is contained in 
Anderson's important paper, 'Absence of diffusion in certa­
in random lattices' [1958]. Anderson finds that there is no
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diffusion if Uo/J is greater than a constant that depends 
on the coordination number z, and which for z=6 is about 5. 
Where Uo gives measure of disorder, and J is band width. 
This means that if Uo/J> 5 all the wavefunctions for an 
electron in the system are of the type shown in Fig 1.8(c), 
decaying exponentially with distance r from some well n. 
The initial state is of the form

l am 'fin

and the coefficient am will fall off exponentially wiuh 
distance between wells m and n. Some more recent work on 
Anderson localization has concentrated on the quantity a(0). 
If there is no diffusion the conductivity a too must vanish 
for all energies in the band. Alternatively we can say,
following Anderson(1958} that states are localized if an 
electron with energy E±dE placed in a volume l3, large 
enough to satisfy the uncertainty principle, will not diff­
use away.

1.1.9 DENSITY OF STATES
In science of semiconductors, we wish to know =

(a) the energies of all the electrons in the semiconductor, 
and (b) all the possible energies electrons can attain 
after they have been given some additional energy, for
instance, by absorption of sunlight or by heating the mate­
rial.

There are three principle avenues that may lead to
the solution of this problem. The first is to carry out
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a number of experiments and measurements, and to infer 
from them the electron energies. A second important way is 
to use our knowledge of the electron energies in individual 
atoms and of chemical bonding, and to duduce what the ele­
ctron energies should approximately be in the solid. The 
third method involves the theoretical solution of the powe­
rful equations of quantum mechanics and quantum statistics, 
found successful in crystalline semiconductors.
Chemical Approach :

In atoms the available energy are discrete quantum 
levels, or energy eigenstates, which are labelled with 
numbers and letters which signify conserved quantities 
(quantum numbers) like angular momentum. Only two electrons 
with opposite spins can occupy a state characterized by a 
given set of quantum numbers. There are many unoccupied 
states at higher energy in to which electrons can get exci­
ted by absorbing, for instance, a photon of light of just 
the right energy. In a Se atom, the four electrons of high­
est energy are in 4P states. We are principly interested in 
the electrons of highest energy (the valence electrons) 
because these are far away from the nucleus and therefore 
from the chemical bonds between atoms. Imagine that we 
form a solid by slowly decreasing the interatomic distance, 
a, of a large number, N, of Si or Se atoms. Fig 1.9, shows 
what we expect to happen: the N individual and discrete 
atomic energy states will interact and broaden in to bands. 
As the atomic separation is further decreased, the s and 
p states of Si will mix and lose their identity because
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covalent bonding occurs with four neighbours in tetrahedral 
direction. These mixed states are called SP3 orbitals and 
they form the strong tetrahedral bonds typical for diamond, 
Si and Ge. Once formed, it costs energy to pull them apart. 
Hence the band of bonding states lies lower than the avera­
ge energy of the atomic 3s and 3p states. The equillibrium 
atomic distance is the one for which the energy of the 
solid is lowest. All important properties of semiconductors 
are govern by the electron states near the top of the upper­
most filled band (the valertce band) and near bottom of 
the first empty band (the conduction band) and, of course, 
by any states which lie in the gap in between on account of 
defects and other causes.

Thermal excitations or optical excitation can only 
lift electrons across the gap, which is 1.7 eV wide in 
amorphous Si and 2.2 eV wide In Se. The widths of the vale­
nce and conduction bands are about 5 eV. We, therefore, 
can forget about the more distant bands of energy states. 
It is well known that amorphous Si and chalcogenide glasses 
are, in many ways very different noncrystalline semicondu­
ctors. The major reason for this was first explained by 
M.Kastr.er [10], who pointed out that the uppermost filled 
band in Se and other chalcogenide glasses is not the bond­
ing band but a band of states formed by electrons which do 
not participate in bonding (or antibonding). This is illu­
strated in Fig 1.9(b). Se has four p electrons of which 
only two are needed for covalent bonding to two neighbours.
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The remaining two p-electrons remain an unused lone pair. 
The filled band formed in the solid by these lone-pair 
electrons is the valence band. This fact is the origin 
for the rather unusual defect chemistry in chalcogenide 
glasses [11-14] a negative effective correlation energy, 
self compensation, pinning of Fermi level, and other defect 
related phenomena that are absent in a tetrahedral semi­
conductor such as amorphous Si.

Figure (1.10) sketches tne density of electron energy 
states g(E). This is essentially the distribution of energy 
states of the CFO Model [15} that has been proposed by 
Cohen, Fritzsche, and Ovshinsky in 1969. Let as make an 
order of magnitude estimate of the densities of states 
and describe the main features of Fig (1.10), as one moves 
from the bands progressively deeper in to the gap.

Si contains about 5 x 13zzcm 3 atoms. There are four 
valence electrons per atom; hence, the valence band and 
conduction band contain approximately 2 x 10ZJcm 3 states. 
Since the bands are approximately 5 eV wide, the average 
density of states (number of states in 1 cm3 and lev energy 
range) is

g(E) = 4 x 10 zeV cm 3.
Both the conduction band and valence band have tails 

of states, and deeper in the gap there are states origina­
ting from structural and coordinal defects as well as from 
impurities. Hence, in contrast to crystal, g(E) is no where 
zero. The tail states are unavoidable because they are



I

r'3‘- \*9 y SKc.tc'h of energy lo-mds against n<tar-neidistance 
•lor a. x^treJ^dYcd semiconductor (<a)/ Such at St,and for a W>e- 
PiMt samicenduehr ^b). &*ch as; .

fig \ • i c? jfband htociel of a. ncoci^vta-ihne 
are £he ‘mobiubf fh& vej&nce. band

SUd'iCo/'tl ucfrm . bnd Lc 
ana c'i the <^nduch'«n -‘and



29

intimately associated with the disorder in the noncrysta­
lline structure. The valence band tail states are covalent 
bonds chat are weaker than normal. This can happen, for
instance, when the covalent angle is bent from its equilli­
brium value, when the bond is stretched due to internal
strains, or when some antibonding orbital is mixed in. 
That occurs, for instance, when atoms bond together in 
odd-numbered rings containing 5,7, and 9 atoms (instead 
of the 6 atoms in crystal). Moreover, it was recently found, 
both theoretically and experimentally, that there are net 
static charges on some atoms or groups of atoms [16}. These 
produce potential fluctuations which push states up and 
down and prevent any sharp feature in g(E). All these effe­
cts are expected to produce also a tail of states extending 
down in energy from the conduction band.

The total number of tail states is approximately
10” 3 of the number of states in one band, and the number

-5 -7of defect-related gap states varies between 10 and 10 
band states. One wishes, ofconrse, to have as few gap sta­
tes as possible in order to control the electronic proper­
ties by intentional additions of donor and acceptor atoms. 
Furthermore, the gap states act as recombination centres 
of photoexcited charge carriers, and thus limit the photo­
conductivity and life time of electronically injected ca­
rriers.

The tail states, as well as the defect related states, 
are localized to a region of a few atoms. A charge carrier
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occupying them has, therefore, no chance of moving away 
(zero mobility) at low temperatures. Carriers in extended 
band states, in contrast, have a finite mobility.

Non crystalline semiconductors have bands of electron 
energy states which are extended throughout the materials, 
and hence provide a finite mobility. The highest filled 
band (valence band) is separated in energy from the lowest 
empty band (conduction band) by a mobility gap. There are 
localized tail states extending from the top of the valence 
band and from the bottom of tne conduction band in to the 
gap. These localized tail states are weakened or modified 
band states. They do not conduct -a charge carrier trapped 
in such a state has zero mobility.

1.1.10 MOBILITY EDGE
The mobility of charge carriers, P(E), affects the 

electrical conductivity via Eg.(7). Even if all states are 
localized to a distance r0 , electrons can still tunnel 
from an occupied to an unoccupied state at equivalent ener­
gies, with a probability proportional to exp(-2d/r0), where 
d is the distance between the two states. Thus we can write 
U7].

P (E) = p0 exp(-2d/r0) ..(10)
Where Po is a constant of proportionality. If all 

states with in an energy range a are equivalent, then the 
average separation between equivalent states is :

- x/ 3
d = [ g(E)A L . . (11)
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Substitution of Eq. (11) into Eq. (10) yields :

y (E) = y 0 exp, (-2/[$(E)A]1/^o) . ..(12) 

It is not yet clear how g(E) varies in a band tail, and 
both gaussian and exponential £18] behavior has been infer­

red theoretically. For the later we may write
Sf(E) = A3 exp,, C-(E0-E)/KT0] , ..(13) 

where Tq is a parameter describing the extent of the tail. 
In this case Eq. (12) yields :

y (E) = yQ exp£-( 2/ArQ ) exp [ ( EQ-E) 3kTQ ]} ..(14) 

Equation (14) is essentially a step function, in which 
y(E) increases sharply from very small values to yQnear 
the value of E at which point the term in the curly brack­
ets is unity.

Thus we can define a critical energy, E^, by :
1/3E£ = E0- KT01 n (Ar0A72). . .(15)

E1 is c called the conduction-band mobility edge , and it
plays the same role in disordered solids that the band
edge, Ec does in crystals. The critical density of states
at a mobility edge is :

gc = 8/ (Ar0)3 ..(16)
For example, if we takeA= 0.027 eV (kT at room temperature)

20 -3 -1and rQ= 100 A°, then gc= 3 x 10 cm eV
Tne conductivity is an integral over the prodect 

g(E) f (E) y (E) [see Eq.7 ], and is not simply given by the 
value cf the product at E . This can be significant when 
g(E) is -such a rapidly varying function of E as is commonly
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believed fl9J.

Of course the valence band should also have a mobility 

edge, E* . The difference between and E^ is called the 

mobility gap, Eg :

E'g = Bc - E'v

Mott [20^ was the first to suggest the idea of a mobility 

edge. Mott suggested that at the transition from extended 

to localized states the mobility drops by several orders 

of magnitude producing a mobility edge. Cohen [21]} proposed 

a slightly different picture for the energy dependence 

of the nobility. He suggested that there should not be 

an abrupt but rather a continuous drop of the mobility 

occuring in the extended states just inside the mobility 

edge.

1.1.11 EAND MODELS

Several models were proposed for the band structure 

of amorphous semiconductors, which were the same to the 

extent that they all used the concept of localized states 

in the band tails. Opinions vary, however, as to the extent 

of this railing. Experimental data of electrical transport 

properties can only be properly interpreted if a model 

for the electronic structure is available. Figure (1.11) 

illustrates, schematically, the main features of these 

various models.

The Cohen-Fritzsche-Ovshinsky Model :

The CFO model [22] shown in Fig. 1.11(a), assumes 

that the tail states extend accross the gap in a structure-
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less distribution. This gradual decrease of the localized 
states destroys the sharpness of the conduction and valence 
band edges. The CFO model was specifically proposed for 
the multicomponent chalcogenide glasses, used in switching 
devices. The authors suggested that in the chalcogenide 
alloys, the disorder is sufficiently great that the tails 
of the conduction and valence bands overlap, leading to 
an appreciable density of states in the middle of the gap. 
A consequence of the band overlapping is that there are 
states ir. the valence band, ordinarily filled, that have
higher energies than states ir. the conduction band that
are ordinarily unfilled. A rsdistribution of electrons
must take place, forming filled states in the conduction 
band tail, which are negatively charged, and empty states 
in the valence band, which are positively charged. This
model therefore, ensures self-compensation, and pins the 
Fermi level close to the middle of the gap.

The essential features of the CFO model are 
1) band tails,
2} mobility edges,
3) density of states at the Ferni energy g(Ep) and
4) local satisfaction of valence requirements.

Most of these feature involves the shape of g(E), 
particularly within the gap, so that modern spectroscopy 
techniques should prove to be extremely useful.

Naive application of the CFO model would suggest 
that simple amorphous semiconductors, e.g., a-Si, a-As,
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a-Se, should not exhibit extensive band tails.

Davis-Mott Model :
Fig. 1.11(b) sketches the Davis-Mott model; here 

Ec and 3y represents the energies which separate the ranges 
where che states are localized and extended. According to 
Davis and Mott [23] the tails of localized states should 
be narrow and should extend a few tenths of an electron 
volt into the forbidden gap. They proposed furthermore 
the existance of a band of compensated levels near the 
middle of the gap, originating from the defects in the 
random network, e.g., dangling bonds, vacancies, etc. This 
band may be split in to a donor and an acceptor band, which 
will also spin the Fermi level, Fig.1.11(c). The concept 
of localized states implies chat the mobility is zero at 
T=Q K. The interval between the energies Ec and Ev acts as 
a pseudogap and it is the mobility gap.
In recent years experimental evidence, mainly coming from 
luminescence, photoconductivity and drift mobility measure­
ments, has been found for the existance of various locali­
zed gap states, which are split off from the tail states 
and are located at well-defir*ed energies in the gap. These 
states are associated with defect centres, the nature of 
which is not always known.

It is clear now that the density of states of a real 
amorphous semiconductor does not decrease monotonically 
in to the gap but shows many peaks which can be well sepa­

rated from each other, as in tne case of some chalcogenide
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glasses. The position of the Fermi level is largly determi­
ned by the charge distribution in the gap states, Fig. 
1.11(d).

The interpretation of electrical transport data is 
closely interwoven with the energy distribution of che 
density of states. On the basis of Davis Mott model, there 
can be three processes leading to conduction in amorphous 
semiconductors. Their relative contribution to the total 
conductivity will predominate in different temperature 
regions.

1.1.12 DEFECTS IN AMORPHOUS SOLIDS
In crystalline solids, the equillibrium position 

of each atom is ordinarily one in which its coordination 
number, z, its bond length a , and its bond angles, 6 ,
are all optimal. In amorphous solids, no crystalline const­
raints are present, and the concept of lattice defects 
such as vacancies, interstitials, dislocations, etc. has 
little value. However the same chemical interactions that 
control the structure of crystals are present, and they 
provide strong dividing forces for optimization of z,a, 
and e , i.e. the short range order. Furthermore in multi- 
component alloys, a hierarchy of bonds strength can exist, 
favouring some local environments over others.

The amorphous solids are not ordinarily the lowest 
energy structure for any large collection of atoms. Most 
of the amorphous materials are Metastable (i.e. locally
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rather than globally stable), and they are generally be 
processed using non ideal techniques such as by quenching 
from the liquid phase or by direct deposition from a vapour 
phase onto a relatively cool substrate. The atomic mobility 
diminishes rapidly with decreasing temperature below the 
melting point, and long-range motions which would normally 
induce crystallization are retarded. A softning point or 
glass transition temperature, Tg, usually exist below which 
the visocity of the material increases by many orders of 
magnitude and the material becomes an amorphous solid. 
Ovshinsky pointed out that the connectivity of the network 
is a major factor in controlling the overall strain in 
the material, and this in tern is determined by the chemi­
cal composition.

Consider a localized defect centre that is neutral 
when occupied by a single electron. Let us call the neutral 
centre D°. We set the zero cf energy at that of an unoccu­
pied centre, D+ . A, D+ centre has two states available at 

the one-electron energy E^j, one with spin up and the other 
with spin down. Here Ed can be set by the energy it takes 
to remove the electron from D° and place it at the condu­
ction band mobility edge, E^ leaving a D+ defect behind — 
this energy must be E' -E^ . If both a spin up and a spin 
down electron are present, the defect centre is negatively 
charged, D-. Since the two electrons repel each other, 
the second electron is not at E^ but at E^+U. Only an energy 
of E^ - E^- U is needed to excite it beyond the conduction
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band mobility edge. However, we cannot neglect the electron- 
phonon interations either. The three states D+ , D°, and 
D- all possess a minimum-energy local configuration which 
is necessary distinct.

The correlation energy, U, can be defined as the 
energy required for the reaction,

2 D° + D+ + D ~ ..(18) 
without any local atomic relaxation. However, in reality, 
the local environments arounc both D+ and D will relax, 
lowering the energy of both the states. If we take these 
relaxations into account, the energy required will be lower 
than U. We define the minimum energy to create an opposite-

4- —ly charged D - D pair from 2 D° centres as the effective 
correlation energy, Ueff . The value of Ueff is of importa­
nce in characterizing defect centres.

Fig. (1.12) represents two dangling bonds at the 
end of Se chain, for which the reaction (18) is exothermic. 
On the configurational co-ordinate diagram, Fig (1.13), 
the positive correlation energy U associated with the two 
electrons at D~ in the absence of configurational changes 
become negative (Ueff) after lattice relaxation. The "chemi­
cal" reason for the exothermic nature of the reaction is 
that, at D , an extra bond with neighbouring chain can 
be formed by utilizing the normally non-bonding loan-pair 
electrons. The co-ordination of Se atoms at D+ is therefore 
three, in contrast to that at D- where it is one and at 
a normally bonded Se atom where it is two. MDS proposed



38

that the lattice distortion at D- is negligible, at D + 

it is considerable and at D° it is intermediate.

In a chemical-bond description of these defects given 

by Kastrter et al. [24], the charged states of the defect
_ _j_are disignated C ]_ and C3 , C standing for the chalcogenide 

and the subscript indicating the atomic coordination. The 

neutral centre is labelled C3 since these authors believe 

that an extra electron placed on is shared equally bet­

ween the three bonds of the atom, which therefore remains 

threefold coordinated. In this respect the description 

of the neutral center differs from that proposed in [25], 

in which it was suggested that the extra electron is loca­

ted primarily on only one of the three bonds.

The structures and energies of several simple bonding 

configurations for a chalcogen, as given by Kastner et 

al. [26], are displaced in Fig. (1.14). The normal bonding 

configuration is ; the straight lines representing bonds 

( a states) and the dots the lone-pair (LP), nonbonding 
electrons. In this configuration the antibonding (a*) sta­

tes are empty and the energy, relative to the LP level, 

is -2 as shown. Antibonding states are pushed up from 

the LP energy more than bonding states are pushed down. 

Thus the next configuration shown, - a neutral three

fold coordinated atom with an extra electron placed in 

the antibonding orbital has a higher energy than C° by

an amount A .
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which can be seen to be exothermic if

-4 Eb +24 >“3 Eb -Eb +ULp,

i.e., if

2 A - ULp >0. . . (20)

Here, relaxation effects around the configuration shown 

in Fig. 1.14 which would change the energy of electrons on 

near neighbours, have not been included. Finally there 

is an implicit assumption in the model that the lattice 

is infinitely soft, i.e. the configuration illustrated 

are assumed to form without steric hinderance from the 

surrounding network; introduction of lattice stiffness 

would be expected to make the reaction less exothermic. 

Tne charged defects C3 and c£ have been called by

The C+ configuration, with an energy of -3Eb, is the defect 

having the lowest energy. The energy of C“ is - Eb+ 2 +Ug*, 

the positive correlation term U g* arising because two ele­

ctrons are in the antibonding state. The extra electron 

at a normal dangling bond C£ is indistinguishable from 

the two lone pair electrons at the site and so the energy 

of this defect is - E . Finally a negatively charged dang­

ling bond, Cj , has four electrons in the lone-pair state, 

its energy is - Eb+ ULp , the second term arising from the 

correlation energy in this level. The reaction correspond­

ing to (18), in Kastner's notation, is

*—
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oCN
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Kastner a valence alternation pair (VAP). Their creation, 

starting from a fully bonded network in which all atoms 

are in the C° configuration can be described by

2 C3 + Cp . . (21)

which costs an energy

- 3Eb - Eb + °LP + 4Eb * °LP- •■(22)

The concentrations of VAPs present in a sample pre­

pared by cooling a melt, assuming equilibration at the 

glass transition temperature T , is then N exp(-ULp/2kTg) 

where N is the concentration of lattice sites.
The energy to create VAPs may be reduced if they 

form close to each other because of the coulomb energy 

of attraction. Such bound pairs have been called by Kastner, 

intemate valence-alternation pairs (IVAPs). Although certa­

in configurations of IVAPs are self-annihilating, others 

may not be.

Another way of looking at the negative corelation 

energy which makes reaction (18) exothermic, is as follows. 

Let the addition of an electron from, say, valence band 

to D + cost an energy E ^ and the addition of an electron 

to the resulting D° an energy E2. Then we can write

D+ + e(+E1) D° . . (23)

D° + e(+E2) + D" . . (24)

Thus
2 D° 4 D+ + D‘ + (E1- E2) ..(25)
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If the addition of the second electron to D*" costs 

less energy than the first (i.e., E2 < - which is what
a negative correlation energy means), then E^- is posi­
tive and the total reaction is exothermic.

13232



42

1.2 ransport Properties
1.2.1. ELECTRICAL PROPERTIES OF NON-CRYSTALLINE SEMICONDU­

CTORS :
In most semiconductors, the dc transport properties 

are very well understood. Electrical conductivity, Hall 
effect, and thermo-electric power (or thermopower) measure­
ments as functions of temperature can be interpreted to 
yield the position of the Fermi energy, the effective mass 
of the carriers, the band mobility, and the predominant 
carrier scattering mechanism. Intrinsic and; extrinsic regi­
ons can be distinguished and investigated separately. Small 
polarcn formation and hopping transport can be identified 
if present. The most remarkable feature of the electrical- 
conductivity data in amorphous chalcogenide alloys is the 
strong pinning of the Fermi energy.

1.2.2. DC ELECTRICAL CONDUCTIVITY :
The essential features of the Davis-Mott model fo* 

band structure of amorphous semiconductors are the exista- 
nce of narrow tails of localized states at the extremities 
of the valence and conduction bands, Fig. 1.11(b), and 
furthermore of a band of localized levels.near the middle 
of the gap. This leads to three basically different channe­
ls for conduction, 
a) Extended State Conduction :

Conduction due to carriers excited beyond the mobility 
edges in to non localized or extended states.
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The conductivity for any semiconductor can be expre­

ssed in the form

o = -e f g(E) y(E) kT —1|1 dE ..(26)

where f(E) is the Fermi-Dirac distribution function,
1f(E) - i + exp[(E-Ep)/kT]

Using this relationship

= - f ( E ) [ 1 - f(E)]/kT 

a can be written as
a = e f g(E) p(E) f(E)[1 - f(E)] dE. ..(275

In the Davis-Mott model, the Fermi level E is situa­

ted near the middle of the gap and thus sufficiently far 

from E , the energy which separates the extended states 

from the localized states, so that Boltzmann statistics 

can be used to describe the occupancy of states,

f(E) = exp[-(E - Ep) / kT].

According to Mott's view the mobility drops sharply 

at the critical energy Ec (or Ev ) but at present it is 

not exactly known how the mobility depends on the energy 

in both conduction regimes.

In the nondegenerate case and under the assumption 

of a constant density of states and constant mobility, 

the conductivity due to electrons excited beyond the mobi­

lity edge in to the extended states is given by

a = e g(Ec) kT yc exp[-(Ec - Ep) /kT] . . (28)
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Where pc is the average mobility. The number of ele­
ctrons is given by

00

n = / g(Ec) exp<[-(E - Ep) / kT ] dE 
Ec

= g(Ec) kT exp-[-(Ec- Ep)/kT] ..(29)

In order to get an idea of the order of magnitude 
of yc , we shall follow Mott’s treatment. We define 
0(Ec) = eg(Ec) yc kT. If g(Ec) * < g(E) >/3, where 

< g(E) > is the average density of states over the band, 
then

a (Ec) = e < g (E) > pc kT/ 3 .
Mott calculated the lowest value of the electrical 

conductivity before the start of an activated process, 
i.e. just at Ec. This quantity he called the "minimum meta­
llic conductivity". He derived the expression

amin.= Const. e2/-ha, ..(30)
Where the constant lies in the range between 0.026 and 0.1; 
chnin.is usually of the order 200-300 $Tlcml .
Taking Const.= 0.026, one finds for the mobility

UC = 0.078 (e/-fta )/<g(E)> kT.

In the nearly free electron model, g(E) is given by

g (E) = km / 2ir %2

On the other hand, the maximum energy Emax< of the 
band, which also yields the width B of the band, is expre­
ssed by

Emax fl 2 ~T 2
2ma2 and kmax JLa
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This yields c(E) * l/a3B.

Introducing this result in the expression for pc one
gets

p = 0.078 ea2.B/#kT. . . (31)
v

Taking a = 2A°, E = 5 eV one finds at room temperature 
that = 10 cm2 . This value corresponds to a mean

free path comparable or less than interatomic distance. 
Cohen [21] suggested that conduction in this case would 
be more properly described as a diffusion or Brownian-type 
motion. In this regime the mobility can be obtained with 
with the help of Einstein relation,

p = eD/kT
The diffusion coefficient D may be written as

D = Cl/6) v a2,

where v is the jump frequency and a the interatomic separa­
tion. The mobility in the Brownian-motion regime is then 
given by

1 ea2
uc 6 kT v ..(32)

This expression yields the same temperature depen­
dence as ( 31 ) derived by Mott. Since p « 1/kT, one expe­
ct tnat the expression for conductivity is of the form

o=o- exp, [-(Ec - Ep) /kT ] . .. (33)

Optical absorption measurements made on amorphous 
semiconductors have snown that the band gap decreases with 
increasing temperature. The energy distance Er - E„ there-k- R
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fore will show a similar behavior, and, under the assump­
tion of a linear temperature dependence,

Ec - Ep = E(o) -Y T, . . (34)

the expression for the conductivity becomes

o = o exp • (Y/k)exp - [-E(o)/kT] . ..(35)o
Here E(o) is energy distance at T = OK.

We can write this formula in the form

a = cQ exp.[-E(o)/kT], ..(36)

Where CQ= eg(Ec) kT \x „exp. (y/k) . ..(37)

As seen before is proportional to 1/T, so that
the preexponential factor CQ is temperature independent. 
Mott [2-7] has made an estimate of the preexponential aQ. In 
general aQ may lie between 10 and 103 Q ^ cm ^ in most amor­
phous semiconductors. An estimate of y can be obtained 
from the temperature dependence of the optical gap. In
chalcogenide glasses zhe temperature coefficient of optical

-4 -4 -igap generally lies between 4 x 10 and 8 x 10 eV deg 
As the Eermi level is situated near the middle of the gap, 
values of y of approximately half this magnitude are expec­
ted and hence values of exp(y/k) in the range 10-100 are 
most probable.

b) Conduction in Band Tails
The conduction take place due'to the carriers excited

into the localized states at the band edges i.e., at EAor
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ED . Conduction can only occur by thermally activated hoop- 
ing. Every time an electron moves from one localized state 
to another it will exchange energy with a phonon. It may 
be expected that the mobility will have a thermally acti­
vated nature,

yhop = y0exP* [-W(E)/kT] . ..(38)
The preexponential Uo has the form

U0 = (l/6)Vph eR2/kT, ..(39)

Where vph is the phonon frequency and R the distance cov­
ered in one hop.

X 3 —1For a typical phonon frequency Vp^ = 10 s and W - xT, 
(38), yields a mobility of the order 10-2 cm2 v^s1 at room 

temperature. Comparison of this value with the one calcula­
ted for conduction in the extended states suggest, as 
postulated by Mott, that the mobility may drop by a factor 
of at least 100 at the energy which separates the localized 
and non-localized states.

The conductivity, being an integral over all availa­
ble energy states, will depend on the energy distribution 
of the density of localized states. If one assumes that 
the density of states g(E) behaves as some power s of E,

g(E) = -g-{.-"f}- (E - EA)S
(A E)s (40)

with AE = Ec - Ea, then the conductivity ahop due t0 ele~ 
ctrons can be easily calculated starting from (27) :

°hop = aohop (kT/AE)s C exp.[-(EA - Ep + W)/kT]

. . (41)



48

Where
aohop = (1/5) Vph e2 R2g(Ec). ..(42)

and .
C = s! - (AE/kT)s exp. (- -^—-) [1 + s(-||-)+s(s+l)(||) +..]

For the specific case of s=l (linear variation), the condu­
ctivity is given by

kT°hop _ aohop ae" ^1 exP‘I-^A ~ +W)/kT], ..(43)
with

Cx = 1 - exp..(-~-) [ 1 + (AE/kT) ] ..(44)

C) Conduction in Localized States at the Fermi Energy
If the Fermi energy lies in a band of localized states, 

as predicted by the Davis-Mott model, the carriers can 
move between the states via phonon assisted tunneling 
process. This is the transport analogous to impurity condu­
ction observed in heavily doped and highly compensated 
semiconductors at low temperatures. An estimate for the 
temperature dependence of the hopping conductivity at E 
has been given by Mott [28], We shall follow his original 
derivation. Let us consider an electron that is scattered 
by phonons from one localized states to another. The jump 
probability between the states is donated by three factors, 
which are the following :

I) The probability of finding a phonon with an excitation 
energy equal to W, given by a Boltzmann expression 

exp.(-W/kT).
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II) An attempt frequency v , t which can not be greaterph
than the maximum phonon frequency { in the range 
1012 - 1013 s .

III) The probability of electron transfer from one state 
to another.
This factor depends on the overlapping of the wave 

functions and should be given by exp.(-2aR). Here R is 
the jumping distance, which at high temperatures equals 
the interatomic spacing, and a is the quantity which is 
representative for the rate of fall-off the wave function 
at a site. If overlapping of the wave functions is importa­
nt, the factor exp,(-2aR) becomes of the order of one.

The probability p that an electron jumps will then 
be expressed by

p = vphexp,(-2aR - W/kT). ..(45)
By making use of the Einstein's relation

]_i = eD/kT
with D = (1/6) pR2, the conductivity can be written as

a = (1/g) e2 pR2 g(Ep) .

Here g(E ) is the density of states at the Fermi level
r

and g(E ) kT is the number of electrons that contributer
to the conductivity.

Using (45) the conductivity is represented by

a = (1/6) e2 R2Vph g(Ep) exp.(-2aR) exp (-W/kT).
. . (46)



50

As the temperature is lowered the number and energy 

of phonons decrease, and the more energetic phonon-assisted 

hops will progressively become less favourable. Carriers 

will tend to hop to large distances in order to find sites 

which lie energetically closer than the nearest neighbours. 

This mechanism is the so-called variable range hopping. 

The factor exp.(-2aR -W/kT) will not have its maximum value 

for the nearest neighbours. In order to find the most pro­

bable hopping distance, Mott used an optimization procedure. 

This is as follows. If g(W) is the density of states per 

unit volume per unit energy, then the number of states 

with energy difference W within a distance R from a perti- 

cular atom is given by

R3 g(W) W.

The electron can leave its site only if the number 

of accessible sites is at least one. Taking this into acco­

unt one gets for the average energy spacing between states 

near the Fermi level

W = ------------4TrR3g(Ep) ..(47)

and for che jump probability

p = v L exp, ( -2aR - [(4tt/3) g ( E„ ) R3 kT J_1} . .(48)
ph *

The most probable distance is found by minimizing 

the exponent of the above expression as a function of R :
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R ____ L-__  J1/48-rra g (Ep) k T J
(49)

This gives a jump frequency of the form

where

p =■ vphexp. (- J^jr)

A = 2.1 [ a’/kglEpI ]1/4

(50)

Mott's treatment of variable range hopping leads 

to a temperature dependence for the conductivity of the 

form

a = (1/6) e2 R2 vph g (Ep) exp. ( - .. (51)

or

a = a0 (T) exp, ( - . . (52)

In the recent literature many experimental studies, 

especially on the tetrahedral bonded, materials, dealt with 

variable range hopping. In many cases, unreasonable high 

values were calculated for g(Ep ), very often by use of 

the preexponential factor cj0(T). Although the dependen­

ce of lna is widely observed, these findings seem to indi­

cate that the above expression do not describe in an exact 

quantitative way the conductivity. A review article on 

hopping condutivity in disordered solids has recently been 

published by overhof.
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1.2.3. THERMO ELECTRIC EFFECT IN SEMICONDUCTORS.

Fundamental information about the mechanism of cond­
uction in solids can be obtained from studies of the ther­
moelectric effect. In 1821, Thomas Seebeck found that if 
a metal is connected at its two ends with a second metal, 
and if one of the juctions is heated, a voltage is develo­
ped across the open ends of the second metal. The schematic 
circuit for the measurement of thermoelectric voltages 
for a semiconductor is given in fig. (1.15). If the metal 
contacts are applied to the two ends of a semiconductor 
rod and if one of the junction is maintained at a higher 
temperature than the other, a potential difference will 
be developed between the two electrodes. This thermoele­
ctric or Seebeck voltage is produced partly because of 
the majority carriers in semiconductor defused from hot 
to cold junction per second, thus giving a potential diff­
erence between the two ends. This voltage builds up a value 
such tnat the return current just balances the diffusion 
current, when a steady stage is reached.

In the experimental arrangement of Fig. (1.15), : if 
the charge carriers in semiconductors are predominantly 
electrons, the cold junction becomes negatively charged, 
if the carriers are positive holes, the cold junction beco­
mes positively charged. The magnitude of the voltage Vs 
is proportional to the difference in temperature between 
the hot and cold junction.
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From the sign of the thermoelectric voltages, it 

is thus possible to deduce whether a specimen exhibits 

n-type or p-type conductivity; further from the magnitude 

of the thermoelectric voltage one can determine the concen­

tration of charge carries in the specimen.

Semiconductors exhibit thermoelectric behavior in 

circuits with metals, the magnitudes of the thermoelectric 

quantities exhibited by semiconductors are often much larg­

er than those exhibited by metals. The thermoelectric pro­

perties of semiconductors can be used to know the position 

of Fermi level with respect to band edges.

h typical thermoelectric circuit containing a semi­

conductor in the form of long thin rod, with metal contacts 
at its two ends is shown in Fig. (1.16). One end of the 

rod is kept at a reference temperature T0, while the other 

end is placed at T0+At. Let us suppose that a linear tem­

perature gradient exists along the rod, which is p type. 

Under these conditions, the Fermi level in the metal and 

semiconductor and the edges of the semiconductor band ass­

ume the position shown in the lower part of Fig. (1.16). 

The semiconductor band edges become titled as indicated; 

while the Fermi level also becomes titled, with a somewhat 

different slope. The Fermi level in the semiconductor is 

continuous with the Fermi levels in the metals at two cont­

acts. The Fermi level in metal wires leading away from 

the contacts do not change with temperature as compared
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to the magnitude of change in Fermi level in semiconductor; 
hence the Fermi level in metal wires are shown horizontal 
in Fig (1.16)., The Seebeck voltage of the circuit is essen­
tially given by the difference in the Fermi level from 
one end of the semiconductor rod to the other end. In the 
case of uniform p-type semiconductor taken as an example, 
the right end of rod becomes negative with respect to left 
hand side. The tilting of the energy levels in the Fig{1.16) 
is greatly exaggerated in order to illustrate the arguments 
to be presented.

If the temperature difference is small the effects 
depicted in Fig. (1.16) will be linear with temperature 
and hence linear with horizontal distance across the dia­
gram. The quotient between Vs and AT is called the "thermo­
electric power." Its physical dimensions are volt per degr­
ee, it is disignated by a symbol S. If both the hot and 
cold junctions are raised or lowered in temperature keeping 
T same, it will be found that S varies with mean tempera­
ture. The variation of S with temperature can just be well 
observed by keeping the cold juction at temperature T and 
plotting the thermoelectric voltage Vs against the variable 
temperature T0 + AT of the hot junction. The slope of this 
plot at temperature T gives the value of S at that tempera­
ture .

The tilting of the energy bands and Fermi level in 
the semiconductor sustaining a temperature gradient can 
be explained as follows.
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Because of the temperature gradient, there will be a 
diffusion of positive holes down the temperature gradient 
from right to left. The cooler end of the specimen, there­
fore becomes positively charged and a steady state poten­
tial difference just counter balances the diffusion flow. 
The potential difference in question is given by the verti­
cal distance d on the diagram.

Sven if there were no concentration gradient of majo­
rity carriers, there would still be a small potential diff­
erence generated between the two ends of the specimen. 
This difference would result from the fact that those holes 
crossing an' imaginary cross section of the specimen by 
random thermal motion would be going alightly faster in 
the right to left direction than in left to right because 
they come from a warmer region of the specimen, and hence 
have higher thermal kinetic energies. For semiconductor 
in the impurity dominated and intrinsic temperature range, 
however this effect is small compared with the effect of 
diffusion and may be neglected in approximate theory.

1.2.4 SEEBECK EFFECT AND THERMOELECTRIC POWER

The Fermi level in p-type semiconductor rises with 
temperature towards the middle of the forbidden gap. Hence 
the total rise of the Fermi level in Fig. (1.16) from cold 
end of the specimen*, to the warm end is given by the sum 
of rise in the upper edge of the valence band and the addi­
tional increase due to the rise of the Fermi level above
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the valence band edge. In other words,

. .(53)

where Vs is voltage which would be indicated by a high resi­

stance voltmeter in the metallic part of the circuit.

The calculation of the thermoelectric quantity Vs 

in terms of basic physical quantites is straight forward 

for simple cases of semiconductors in which only one type 

of conducting particles need be considered. In the p-type 

sepcimen indicated in Fig.(1.16) the right to left current 

density due to diffusion is,

. . (54)

where Dp is diffusion constant, dp/dx is rate of change

of holes with distance and q is charge on the hole.

The left to right return current daeto electEicfield 

set up by this process is,

ZRL = ? Pp<* EX

where Ex is electric field, p-number of holes and Up is 

hole mobility.

In steady state, these two currents are equal giving
dp

DP q T7 = p p P q Ex ..(55)
Using Einstein relationship, we may write 

Dp = kTUp/q and assuming the electric field to be uniform 

(as it will be for a small temperature difference and uni­

form gradient) we may set d/L for Ex where L is the length 

of the speciman; with these substitutions, and rearranging 

above equation we get
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dp _ p q d 
dx k T L

However
dp _ dp . dT dp _ A Tdx dT dx " dT * L ,

Therefore above equation becomes

dp _ oq _d__
dT kT * A T . . (57)

From the Fermi.statistics,
p = 2 U T 3/2 e~qVF// k T 

where U = 2.42X10 15 cm-3 Abs"3^2

Differentiating with respect to T, and substituting the 
result in to equation (57), and simplifying we get,

dv* VF 
dT- T

Combining equations (57) and (58
VF , 3k

+ 4|-).a t

vs ( -p- + —) h T1q
Since Vs/AT, we have

(58)

(59)

F , 3 k
T 2 q . . (60)

These last two equations for Seeback voltage and 
thermoelectric power are only approximate. Their derivation 
neglected the effect described earlier in which a small 
contribution to S comes from the difference in mean thermal 
kinetic energy of particles diffusing randomly in two dire­
ctions in the specimen. The correction to take account 

of this effect yields for Vs and S,
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VF, 2k) A TT + -f"
and

therefore
. .(61)

A similar derivation holds for n-type semiconductor leading 

to equations similar to the two above except that the signs 

of Vs and S will be negative and that (Vg- Vf) will appear 

instead of VF.

Equation (61) gives us an independent method for dete­

rmining Vp in a p type semiconductor sample and hence for 

obtaining by calculation a value for the hole concentration 

p. Therefore we have,

2 U T3/2 e-qQ/k+2 . . (62)P

In case of an n-type semiconductor above formula becomes,

. . (63)

1.2.5 THERMOELECTRIC POWER

Important information about the transport mechanism 

in amorphous semiconductors has been obtained from thermo­

power data. In this section we shall derive the formulas 

for the thermopower associated with the three possible 

processes of conduction.

Fritzsche [29] has given a general expression for

the thermopower S,
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S k_
q

f y(E) g(E) [(E - Ep)/kT] f(l - f)dE
f y(E) g(E) f(1 - f) dE ..(64)

Where f is the Fermi-Dirac distribution function. 
For nondegenerate semiconductor classical Boltzmann stati­
stics are appropriate. In this case the factor f (1 -f)
in (64) reduces to a Boltzmann factor f = exp.[-(E - Ep)/kT]. 
a) Conduction in Extended States :

Under the assumption of a constant density of states 
and an energy-independent mobility the thermopower can 
be readily found by intergrating (64). This yields an ex­
pression for the familiar form for band conduction of ele­
ctrons

_k
qs . . (65)

with A=1.
In crystalline semiconductors it is well known that 

the kinetic term A depends on the scattering machanism.
Comparison of (33) and (65) shows that a plot of 

lna and of S vs. 1/T should have the same slope if conduct­
ion takes place in the extended states. Hindley [30] has 
found a similar expression for S using the random phase 
model.

If both electrons and holes contribute to the condu­
ctivity then the thermopower is the algebraic sum of the 
individual contribution Se and Sh but each weighted accord­
ing to the ratio of its conductivity to the total conducti­
vity. Thus we have
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Se cj e + sh oh

b) Conduction in localized States Near the Mobility Edge.

The thermopower built up by the carriers conducting 

in the localized states of a band tails will be given by

- k f t (E- Ef) /kT] exp [—(E - EF) /kT] g (E) d E 
S " - q

- n

If ifc is again assumed that the density of localized 

states behaves like some power s of the energy E,

g ( e ) “= 9 ■EC') „ (E - EA)?
(EC-EA)

then we have

S = “Ji
q

ea-eA _£_)
k t ] •

where C is defined as before, in dc conductivity,

Ae
kTc*= / e-x xs+]a3o ;

Here A E = Ec- EA is the width of the tail and X = {E-E^.) / k T.

If the carriers move by hopping in the localized 

states, the conductivity varies nearly exponentially with 

temperature, and the measured activation energy is the 

sum of the activation energies for carrier creation and 

for hopping. The activation energy for hopping does not 

appear in the expression for S and, therefore, one expects 

a difference in slope between the conductivity and thermo­

power curve.
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c) Conduction in Localized States at the Fermi Energy

At low temperature, charge transport can arise from 
electrons tunneling between states at Ep. Cutler and Mott 
suggested that the thermopower in this regime should be 
identical to the equation used for metallic conduction,

it2k2 T r d lno(E) •,
b " 3 q 1 dE Ef , . . (67)

Since the Fermi level lies in a region where the 
density of states is finite. The thermopower is expected 
to be small. Its sign may be positive or negative, depen­
ding cn whether the major contribution to the current will 
lie below or above the Fermi energy.

1.2.6. CONDUCTION BY SMALL-POLARON MOTION
In contrast to the CFO and Davis-Mott ideas, a diff­

erent approach to the understanding of the electrical pro­
perties of amorphous semiconductors has been put forward 
by Emin [31]. He suggested that the charge carriers in 
some amorphous materials might be small polarons. It is 
generally accepted that hopping of small polarons is the 
Mechanism responsible for electrical transport in oxide 
glasses, in which the major constituent is a transition-metal 
oxide.

Emin argued thai the probability of small polaron 
formation in the disordered state is largely increased 
as compared to the crystalline state. It may be remembered
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that Davis-Mott model postulates the existance of mobility 
edges at the energies which separate the localized tail 
states from the extended states. The existance of such 
tail states does not appear in the small-polaron picture 
where it is assumed that the electronic states form a small 
polaron band.

If the charge carrier remains in the vicinity of 
a perticular atomic site over a time interval long enough 
for displacement of the surrounding atoms to take place, 
a potential well may be created which can lead to trapping 
of the carrier. The unit built up by the trapped carrier 
and its induced lattice deformation is called a polarom. 
The polaron has a lower energy than the free electron but 
has a larger effective mass, since it must carry its indu­
ced deformation with it as it moves through the lattice. 
The decrease in energy of a small polaron relative to that 
of the electron in the undistorted lattice is called the 
small-polaron binding energy.

In paper on 'small polaron motion' Holstein [32] 
introduced the fundamental concept called coincident event 
which characterizes the hopping mechanism. In 'adiabStie' 
regime, the electron goes backwards and forwards several 
times during the period that the two potential wells have 
equal depth. The carrier will possess a high probability 
to hope to the adjacent site. In 'nonadiabatic' regime
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the electron can not follow the lattice vibrations and 
the time required for an electron to hop is large compared 
to the duration of a coincident event. In this case carrier 
will have many coincident events before it hops' , its pro­
bability for transfer being much smaller than in the adi­
abatic case.

The dc conductivity for small polarons, being propor­
tional to the probability for hopping, is geiven by

a = (ne2 a2 / kT) P. ..(68)
The jump probability p, can be written as a product 

of two terms: the probability Pi for the occurance of a 
coincidence event and the probability P2 of charge transfer 
during this event. The probability for a configuration 
with equal potential can be expressed by

P = exp, (-W/kT) ..(69)1 2 tt

where w0 /2 it is an average phonon frequency and W is 
the minimum energy necessary to obtain two equivalent sites. 
The total probability P becomes

P = exp. ( -W/ k T) P2 . ..(70)
In the adiabatic regime, where the carrier can follow 

the notion of the lattice, the probability for jumping 
during coincidence is high, and one can put P2= 1. In the 
non adiabatic regime where the carrier is slow, one expects 
P2<<1. Holstein [32] derived the following expression for

P2:
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~D 2 7T / 7T \ 1 / 2 _ 2'2 -ftwo W kT ; . . (71)
The electronic transfer in integral J is a measure 

of the overlapping of the wave functions.
The transport proerty thermoelectric power S, received 

special attention in the experimental studies on small 
polarons. For small polaron hopping, S was found to be 
expressed by a formula of the classical form:

Where E is the energy associated with the thermal gene­
ration of the carriers.

1.2.7. SWITCHING
Amorphous chalcogenide alloys were among the first 

and certainly have been the most investigated materials 
which exhibit the phenomenon of "threshold switching" dis­
cussed by Ovshinsky in his landmark paper [33]. When ele­
ctric field in excess of about 10s V/cm are applied to this 
materials, a metastable state of high conductance appears, 
in which of the order of 1019 cm-3 free electrons move with 

mobilities of approximately 10 cm2/V-s [34]. When the curr­
ent is reduced below a critical value, the material returns 
to its original low-conductance state.

The detailed experimental observations of switching 
in chalcogenide can be explained by VAP model [35]. Near 
equillibrium, the charged centers, e.g., ct and Pi, act as 
efficient traps for field-generated as well as photogenera­
ted carriers, and the trapping time is considerably shorter
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than the transit time. However, beyond the critical value 
of the applied field, sufficiently free-carrier generation 
takes place so that the charged traps are all occupied 
and thus neutral. Since the concentration of the positively 
and negatively-charged centers were originally equal, the 
material remains neutral after charged trap saturation. 
Only neutral traps remain, so that the trapping time incre­
ases sharply. If it becomes large compared to the transit 
time, the current rises dramatically, initiating the swit­
ching. Note that it is essential that a sufficiently high- 
barrier to neutral defect interconversion exist to retard 
this posibility over the time necessary for the switching 
transition, since such interconversion would tend to pin 
the quasi-Fermi energies. When the current is reduced below 
the values necessary to sustain sufficient carrier concen­
trations to keep the charged traps filled, the material 
quickly transforms to the nonconducting state.
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1.3. Magnetic Properties
1.3.1. CLASSIFICATION OF MATERIALS :

From atomic physics we know that electrons have an 
intrinsic magnetic moment associated with the spin angular 
momentum, and an orbital magnetic moment associated with 
the orbital angular momentum. There is also a magnetic 
moment and angular momentum associated with the nucleus.

It has been realized that all substances possess 
magnetic properties, i.e. all substances are affected by 
the application of magnetic field. If a substance is placed 
in a field of H oersteds then the magnetic induction B, 
is given by H plus a contribution, 4^1 to the substance 
itself.

B = H + 4*I, . . (73)
Where I is the intensity of magnetization. Dividing 

Eq.(73) by H'we get,
P = 1 + 4Trk , ..(74)

Where p and k are permeability and susceptibility 
per unit volume respectively and which may be considered 
dimensionless.

In practice susceptibility, is usually more conve- 
nienlty expressed per unit mass (gram susceptibility) than 
per unit volume.

X = k/density
The molar susceptibility, xm= X x molecular weight.



67

Eg. (74) leads to a most fundamental magnetic classifica­

tion of substances.

(a) p<l i.e. I, K and xnegative.

In this case zhe substance is said to be diamagnetic 

and causes a reduction in the density of lines of force 

Fig. (1.17).

Experimental values of x are negative and are found 

to be very small ( - - 1.0 x 1CT6 ) and generally independent 

both of field strength and temperature. (b) p>l i.e. I,

k, and y positive.

In this case the substance is said to be paramagnetic 

and causes an increase in the density of lines of force, 

Fig. (1.18). Experimental values of x are positive and 

are found to be rather larger than in diamagnetic case 

(1 to 100 x 10-6 ). Though independent of field strength, 

y is markedly dependent on temperature.

l. 3.2. DIAMAGNETISM :

Diamagnetism is the occurrence of a negative magnetic 

susceptibility. In a case of negative susceptibility, the 

magnetization is opposite in direction of field. There 

is no electrical counterpart to negative susceptibility, 

although it is somewhat vaguely analogous to the induced 

or deformation polarization. It arises from Lenz's law. 

We consider the Bohr model of the atom a central nucleus 

with electrons revolving about it with some frequency 

wo-The moving electrons are equivalent to current; and
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where there is current, there is flux. If an external field 

is applied, the current changes so as to oppose the change 

in flux. This appears as a change in the frequency of revo­

lution .

Let us consider the forces on an electron in a 

circular orbit. In the absence of an external field we 

have

F = m too r = e2/r2 .. (75)

Or

In the presence of a magnetic field H there is the 

additional Lorentz force

F = — v x H r a) H ..(76:

if Hj.r. Then the force equation is

m co2 r r 00 Hr c
the minus sign representing'the negative charge

Thus

u)2 + e H 
m c oo - m r

and solving for oo we have

y = ± oo0 - e H 
2mc

if e H 
2 me << co0 (77)

The ± sign on oo0 means that those electrons whose 

orbital moments were parallel to the field are slowed down



69

and those whose moments were antiparallel are speeded up, 
by the amount eH/2mc. This frequency change gives rise 
to a magnetic polarization or magnetization. The reason 
for this is that the frequency change is equivalent to 
an additional current, and this current component in every 
atom is in the same direction, where as the original circu­
lating currents were in random direction and canceled each 
other.

In the field we can write a current for each electron 
due to its frequency change eH/2mc

I = - Ze e H
2tt c 2 me 

The magnetic moment is defined from 
A is the area enclosed by the current I

y =

. . (78) 
IA, where

the

y

Where p 
field axis.

z e2 H _ 2
4 nuc2 ..(79)

is the average radius of the electron from 
If the field is in the Z direction

P2 = X2 + Y2

If r2 is the average radius from the nucleus, then 
r2 = X2 + Y2 + Z2. If the atom has spherical symmetry, 
X2 = y2=Z2. Then P2 = 2/3 r2

Thus
Z e2 H r 2u -gm cr - - ..(80)

If M = i_ N and x = M/H, then 
y - _ 2 e2 N r2* 6 mc\ r ..(81)
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This expression of X indicates that all materials 
should be diamagnetic - and bigger the atom the bigger the 
magnitude of diamagnetism.

1.3.PARAMAGNETISM :
Paramagnetism is a positive magnetic susceptibility. 

It is the magnetic analogue of the electrical orientational 
polarizability and is due to the permanent magnetic moment 
of the atoms.
Sources of Paramagnetism :
1) All atoms having an odd number of electrons.
2) Atoms with unfilled inner shells.
3) Free radicals
4) Metals (

Paramagnetic susceptibility is calculated using Curie
law Y _ jiilLX 3%T ..(82)

2Where NP/3kgT is called Curie constant.
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