CAPTIONS OF FIGURES

,

•

۰

Fig. 1.1	Solubility of KBr and NaCl as a function of temeprature.
Fig. 1.2	Solubility versus temperature for various saturation conditions .
Fig. 1.3	Method of production of seed crystals.
Fig. 1.4	Growing of large single crystals using seed crystal with variation of solubility by evapora- tion or by change of temperature.
Fig. 1.5	Basic principles of pulling method.
Fig. 1.6	Liquid encapsulation Czochralski method for growing volatile compounds.
Fig. 3.1	A few of the growth crystals of CaSO, in silica gel (white bar indicates 5 mm in length).
Fig. 3.2	X-ray oscillation photograph of CaSO ₃ crystal show- ing single crystallinity.
Fig. 3.3	$CaSO_3$ spherulites growing in Na_2SO_3 incorporated gel.
Fig. 3.4	$CaSO_3$ crystals growing in CaCl ₂ incorporated gel.
Fig. 3.5	Schematic diagram of CaSO ₃ crystal growth after fifteen days of growth, indicating precipitate, spherulites and deadrites.
Fig. 3.6	Schematic diagram of CaSO ₃ crystal growth after two
	months of growth indicating the complete dissolution and conversion of precipitate, spherulites and dendrites into single crystals.
Fig. 3.7	Schematic diagram of CaSO ₃ crystal growth in U-tube,
	showing the formation of single crystals near the limb containing Na_2SO_3
Fig. 4.1	Crystals grown at three different specific gravities (a) 1.04, (b) 1.03 and (c) 1.02.
Fig. 4.2	Number of crystals versus specific gravity of sodium silicate solution.
÷	
	· •

: . .

,

		ii CAPTIONS OF FIGURES contd.
	Fig. 4.3	Crystals growing at three different pH values of gel solutions
		(a) $pH = 4$, (b) $pH = 6$ and (c) $Ph = 10$.
	Fig. 4.4	Number of crystals versus pH of the gel.
	Fig. 4.5	Crystals growing at three different molarities of CaCl ₂ solution.
		(a) 1.5M CaCl $_2$ (b) 1.0M CaCl $_2$ and (c) 0.5M CaCl $_2$
	Fig. 4.6	Number of crystals versus molarity of Na ₂ SO ₃ solu- tion.
	Fig. 4.7	Crystals growing at three different gel ages.
		(a) 5 days, (b) 15 days and (c) 25 days.
	Fig. 4.8	Number of crystals versus gel ageing in days.
	Fig. 4.9	Crystals growing in tubes with three different heights of intermediate neutral gel (1.02 specific gravity).
		(a) $L = 0$ cms., (b) $L = 4$ cms. and (c) $L = 6$ cms.
	Fig. 4.10	Number of crystals versus height of intermediate neutral gel.
	Fig. 4.11	(a) Crystals growing without concentration programm- ing.
		(b) Crystals growing with concentration programm- ing.
	Fig. 5.1	Growth spiral layers in $\{001\}$ face of CaSO ₃ crystal.
	Fig. 5.2	Triangular growth spiral layer in $\{001\}$ face of CaSO ₃
	Fig. 5.3	Growth layers initiating from the edge of a crystal.
	Fig. 5.4	Growth layers near the corner of a crystal.
	Fig. 5.5	Typical crystal habit of CaSO3 using Scanning Electron
		Microscopy (SEM) under low magnification (x50).
ి. సి. - పై సం	Fig. 5.6	Edge of CaSO3 crystal at higher magnification (x110).
	Fig. 5.7	Growth layers and etch pits on the surface of $CaSO_3$ crystal using SEM (x1000).
• • • •	•	

L,

CAPTIONS OF FIGURES contd.

- Fig. 5.8 Growth layers from small steps on { 001} faces.
- Fig. 5.9 Growth layers from large steps on { 001} face.
- Fig. 5.10 Starting of growth layers from all the sides of a crystal face and advance towards the centre of the face.
- Fig. 5.11 Line AB, edge of thick crystal on which growth layers are seen.
- Fig. 5.12 Built up of material on the crystal edges.
- Fig. 5.13 Initiation of growth layers from small liquid inclusions.
- Fig. 5.14 Growth layers started from the line and L-shaped liquid inclusions.
- Fig. 5.15 Overgrowth on the {001} face in the form of a square.
- Fig. 5.16 Overgrowth of the {001} face in the form of a spinel chord.
- Fig. 5.17 Multi liquid inclusions, oriented along [010] direction on {001} face of a crystal.
- Fig. 5.18 Single oriented liquid inclusion along { 010} direction on a crystal face t
- Fig. 5.19 Liquid inclusions with no crystallographic orientations.

Fig. 5.20 A Typical triangular liquid inclusion observed on $\{001\}$ face on CaSO₃ crystal.

iii