CHAPTER - III

3.1. DIGITAL STORAGE OSCILLOSCOPE INTERFACE :

The block diagram of the analog scope [HM 203 model of Scientific] and the block diagram of digital storage oscilloscope [DSO] interface with conventional analog oscilloscope [HM 203 model of Scientificl is eiven in Fig. 3.11 and 3.12 respectively. Neverthless, conceptually the interface would be applicable to any analog scope operating within 20 MHz real time bandwidth.

The scope work as an analog scope, if the interface card is abegent and the identity of it does not ghange. Upon incertion of interface card, the datia selector switches select the dieital storage operation mode. The data selector logic is powered using the power supply of analog scope itself.

To develope overall insight in the operation of the DSO interface proposed, functicnal existance of each block has been given in block diagram 3.12 below.
i) The Memory Storage Unit : The unit accomodates two blocks of 2 K RAM memory organised to store data acquised $\mathrm{Irom} \times \mathrm{Ch}-\mathbf{1}^{\prime}$ and ' $\mathrm{Ch}-\mathbf{2}^{\prime}$ respectively and are refered as 'Mch1' and 'Mch2' respectively. The memory unit is configured out of NMC2148L/NMC2148-3 chips, [4 X 1K] NMOS static RAMs with access time of 55 nsec (33). The requirement is because of $10 \mathrm{MS} / \mathrm{sec}$ dcquisition speed proposed. The memory unit is accessible to both 1) DSO interfare operatine

with dedicated data acquisition, storage and display logic unite and 2) the microcomputer controlling the overall cperation. Uata path selector, buffers, transivers are appropriately used to effect the memory sharing. The word length of the memory is of 9 bits, out of these 8 bits are used to store the amplitude of the signal, while the $9 t h$ bil stores the cursor and trigeer information.
ii) Analog to Digital Converter Interface : It's heart of the DSO. Analog input appears to the converter from the preamplifier/attenuator block of the analog scope and trus does not alter the input impedance of the scope interfaced. The signal is appropriately amplified/level shifted, to matrh the requirements of the analog to dieital converter [ADC]. The AlC proposed is CA3308, which is a 8 bit flash converter, employing parallel convertion technique (Sec.2.1). The minimum conversion time offered is 66 nsec . The device optionally converts aralog signals on high or low outputs of the reference clock. The device is used in the option of high phase of the clock and thus a pulse of 50 nsec is sufficient to acquire and convert the sample. The scheme has allowed us to avoid any kind of sample and hold circuits. No doubt we expect sienals of low repetition rates (Sec. 21). The pulse repetition rate of the $A D C$ conversion clock is varied in relation to the time base setting to acquire 1024 samples per horizontal frame.
iii) Clock Generator : The qlock Eenerator uses basic clock of 20 MHz , to generate clock of 50 nsec pulse width and variable duty cycle. The duty cycle depends upon time base settingr. The clock
frequency is managed such that 1024 clock pulses appears per screen width treated as 10 cms. The clock is refered as MSMV or an acquisition clock. A special purpose circuit is deviced to generate MSMV clock of the variable duty cycle. The frequency is controlled by the up latching a divisor count. The MSMV clock is subjected to a few buffer tc generate advanced and retarded clock signals (Sec.3.3).
iv) Address Generators : The mode of storawe of the aquised data depends critically upon the time base settings. Two limiting factors are to be taken into consideration. a) The operation of 'Auto' mode and b) The mayinum samplins spoed. If the auto mode is selected, the trigeer generator waits for about 500 msec to recogniae no trigger and then generates trigger automatically, therefore for time base setting $0.1 \mathrm{~s} / \mathrm{div}$ and 0.2 s/div the philosophy of acquisition and storage is characteristically different than the modes with faster sweep rates. Therefore these two time base settings are treated separately as iar as mode of storage and display is concerned. The mode of storage dictates the address and read/write control generation and therefore separate Gircuit block is active in this time base selection. A hardware switch is also provided to increase the effective time base by a factor of ten optionally. Thus providing 1 s/div and $z=3 / d i v$ tine base effects

[^0]and post-triger acquisitions. A separate address generator is proposed in this range.

As the sweep rate is increased further the equivalent sampling technique is to be adopted (Sec. 2.1). Al probent we lave opted for the randon sampling technigue. Fur the purpose the ECL vernier counter is devieed. The least count of the counter $=2$ nsec. Using this counter the slot of data storage is determined and the remaining sampling events store data inlo these slots. The process is =epeated till all the memory locations are filled. The number of repeatations [slot weight] is statistically valid, further the slot weight is software programable also.

Dependent on the range of time base selection up

 multiplexes the required circuit to generate the address. Address generation of various modes of operations are elaborated separately in the disse:tation.v) $\overline{R D} / \overline{W R}$ Control and Display : Read/Write timines of memory componant 2148 L is shown in the Ei ig. 3.13, 3.14.

Specifications of these cheaps is Biven in the Appendix.

It is apperant that if a memory chip is selected the dala bus would hold the data of the address location selected. Therefore the $\overline{R D} / \overline{W R}$ control pulse required is write enable [$\overline{W E}$] signal only. A monostable multivibrator circuit has been used to provide the required $\overline{W E}$ signal. At the time of data acquisition $\overline{W E}$ is applied to data acquisition memory, while at the time of display or DMA storage [save mode] the $\overline{W E}$ is applied to the output
latch or the DMA memory bank respectively. The address of DMA location is generated by a separate address generator circuit, the 74 LS193 acts as output latch.
vi) Information Display : A generdlised display circuit to annunciate the ΔV and ΔT, belween the cursor locations, and the mode selection menu, at the time of presetting the DSO, is deviced and operates on 20MHz, as the basic clock. Y register is used to position the information vertically and 1024 clock cycles of basic clock scan the horizontal width. The display is of single line only and the vertical register/counters changes between EO and E8. As many as 32 characters are accomodable in a line. ub loads the relevant character in the display RAM [32 X 8 $]$ and passes control to the display circuit. Display circuit treats each character code and Y position as an address to the address generator. The address generator feeds it's output to the Zcontrol of the scope, through an 8 bit shift register. The X and Y position outputs are A / D converted and fed to X and Ch1 final amplifiers respectively. Tre X ard Y counters are physicaly the same in information and datanemby modes. Upon power on reset the X and $Y[C h 1$ and Ch2], seflection contiols are ajso reset to position the beam in the centre of the screpn.

The encoded X atad Y position information is ted to a D / A converter viz. DAC 0800 (Appendix). The level shiftingisignal preconditioning circuits proposed are similar to those used in the intermediate X, Y amplifier sections of the analoe oscilloscope. Therefore are not discussed in detail.
vii) The Save Mode and DMA Operation : If the data acquired is desired to be saved for future comparison, then the DMA facility of the interface could be exploited. If the save mode is sulected the scope is constrained to operate in mono mode only. Upon single acquisition cycle, the data acquired, properly positionnd with respective to the cursor, istransfered to omy wit fous save memory banks. The selection of momory bank is through menu. In save display mode the saved information could be displayed as one of the chanmels. The only constraint on the display of saved data is that the display can not occure in the chop mode, if dual mode is selected.
viii) Multiplexing and Control : Operation of DSO in various modes is controlled through the up. Up is meant to select Mono/Dual, ALT/CHP modes of operations. Further up provides chip select to the desired memory bank relevant with the operating modes. Additionally it selects the proper data path. It is respongible for providing the clock of the required duty cycle and selecting the relevant address generation mode. The up outputs a control signal to a circuit whigh synchronises the operations of acquisition, the address generation. $\overline{\mathrm{KD}} / \overline{\mathrm{WR}}$ control generation and display of signal and information with the acquisition clock. All these activities of up are software controlled. The software control is elaborated in the next chapter.

3.2. AVAILABLE MODES OF OPERATION:

It is worthwhile to reas:set that the activities upon trigger of $D S O$ and that of its analog counter part, differ
drastically from each other. If lhe interface is mounted the up annunciates for mode setting [For details reference is made to Chapter 4]. The up sorts out the mode of operation as far as the DSO is concerned. A acquisition cycle, a display cycle or a save information cycle is an Endividual activity. up sets proper commands sequentially to execute the desired over all operation. The various activities of the DSO are given in the Taple 3.21, the modes which are not available with analog scope, being out product of the $D S 0$ interface, are marked with asterick (*).

Table 3.21

Available Modes of Operation

Sr . No.	Available Modes	$\begin{gathered} \text { Control } \\ \text { Word } \end{gathered}$	$\begin{aligned} & \text { Act } \\ & \text { No } \end{aligned}$	Remark
1.	Slow-Mo-Ch1 (T) Acq.*	$1.0 \wedge \mathrm{H}$	01	Updates the Acq. \& Disp for 1 K sarples on Ch1
2.	Slow-Mo-Ch2 (T) Acq.*	$1,05 \mathrm{H}$	02	Updates the Acq. \& Disp for 1 K samples on Ch2
3.	Slow-Mo-Ch1 (U) Acq.*	$1,2 \mathrm{~A} \mathrm{H}$	03	Updates tra Ara.s Birn from left to right continuously on Ch1
4.	Slow-Mo-Ch2 (U) Acq.*	$1,25 \mathrm{H}$	04	Updates tre Acq. \& Disp from left to right continuously on Ch2
5.	Slow-Du-CHP-Ch1 (T)*	1 , CA H	05	Updates the Acq. \& Disp for 1 K samples in CHP mode for trigeter on Chl
6.	Slow-Du-CHP-Ch2. (T)*	$1, \mathrm{C} 5 \mathrm{H}$	06	Updates the Acq. \& Disp for 1 K samples in CHP mode for trigeer on Ch2
7.	Save Disp-Slow-Mo-Ch1	$1,18 \mathrm{H}$	07	Display the stored data on Ch1, saveflag is att

$\begin{aligned} & \mathrm{Sr} . \\ & \text { No. } \end{aligned}$	Available Modes	$\begin{aligned} & \text { Control } \\ & \text { "Jord } \end{aligned}$	$\begin{aligned} & \text { Action } \\ & \text { No. } \end{aligned}$	Remark
8.	Save Disp-Slow-Mo-Ch2	$1,14 \mathrm{H}$	08	Display the stored data on Ch2, saveflag is set
9.	Save-Slow-Mo-Ch1	$1,02 \mathrm{H}$	09	Save the 1 K samples arquitsed on Chi, saveflag is set.
10.	Save-Slow-Mo-Ch2	$1,01 \mathrm{H}$	$0 \wedge$	Save the 1 K samples acquised on Ch2, saveflag is set.
11.	Save Disp-Fast-Mo-Ch1	$2,18 \mathrm{H}$	OD	Display the stored data on Ch1, saveflag is set
12.	Save Disp-Fast-Mo-Ch2	2,14 H	OE	Display the stored data on Ch2, saveflag is set
13.	Save-Fast-Mo-Ch1	$2,02 \mathrm{H}$	OF	```Save the 1K samples acquised on Ch1, saveflag is set.```
14.	Save-Fast-Mo-Cr 2	$2,01 \mathrm{H}$	10	Save the 1 K samples acquised on Ch 2 . saveflag is set.
15.	Save Disp-Rept-Mo-Ch1	$3,18 \mathrm{H}$	11	Display the stored data on Ch1, saveflag is set
16.	Save Disp-Rept-Mo-Ch2	3.14 H	12	Display the stored data on Ch2, saveflag is set
17.	Save-Rept-Mo-Ch1	$3,02 \mathrm{H}$	13	```Save the 1K samples acquised on Ch1, saveflag is set.```
18.	Save-Rept-Mo-Ch2	3.01 H	14	Save the 1 K samples acquised on Ch2, saveflas is set.
19.	Fast-Mo-Ch1 Acq.	2.0 H	18	Urdates the aceq. for 1 K samples from trieger on Ch1.
20.	Fast-Mo-Ch1 Disp*	$2,02 \mathrm{H}$	19	Display the acquised data on Chl.

Sr. No.	Available Modes		Contro Word		$\begin{gathered} \text { Action } \\ \text { No. } \end{gathered}$	Remark
21.	Fast-Mo-Cri2 Acq.		2,05		1 A	Updates the acq. for 1 K samples from trigger on Ch 2 .
22.	Fast-Mo-Ch2 Disp		2,01	H	1 B	Display the acquised data on Ch2.
23.		Ara	\%,8A	H	1 C	Updates the acg. for 1 K samples from trigetr on Ch1 in ALT mode.
24.	Fast-Du-ALT-Ch1	Disp*	2,92	H	1 D	Display the acquised data on Ch1 in ALT mode
25.	Fast-Du-ALT-Ch2	$A \subset q$.	2,85	H	$1 E$	Updates the acq. for 1 K samples from trigger on Ch2 in ALT mode.
\% 26.	Fast-Du-ALT-Ch2	Disp*	2,91	H	1 F	Display the acquised data on Cr 2 in ALT mode
27.	East-Du-CHP-Ch]	Acq.	2, CA	H	2.0	Updates the acq. for $1 K$ samples from trigeer on Ch1 in CHP mode.
28.	Fast-Du-CHP-Ch1	Disp*	2, D2	H	21	Display the acquised data on Ch1 in CHP mode
29.	Fast-Du-CHP-Ch2	Acq.	2,C5	H	22	Updates the acq. for 1 K samples from trigger on Ch2 in CHP mode.
30.	Fast-Du-CHP-Ch2	Disp*	2, D1	H	23	Display the acquised data on Ch2 in CHP mode
31.	Fast-Mo-Adc-Ch1	$A \subset q$.	2,4A	H	21	Updates :he acq. for 1 K samples from trigeer on Chl in Add modo.
32.	Fast-Mo-Add-Chl	Disp*	2.52	H	25	Disulay the acquisud data on Chi in Add mode
33.	East-Mo-Add-Ch\%	$A \subset q$	2.45	H	26	Updates the aci. for 1 K samples from triges on Ch2 in Add mode.
34.	Fast-Mo-Add-Ch2	Disp*	2,41	H	27	Display the acquised data on Ch2 in Add mode

Sr . No.	Available Modes	Control Word	Action No.	Remark
35.	Rept-Mo-Ch 1 Acq.	$3, \mathrm{OA} \mathrm{H}$	28	Updates the acq. for 1 K samples from trigger on Ch1.
36.	Rept-Mo-Ch1 Disp*	$3,02 \mathrm{H}$	2.9	Display the acquised data on Ch1.
37.	Rept-Mo-Ch2 Acq.	3.05 H	2A	Updates the acq. for 1 K samples from trigeer on Ch2.
38.	Rept-Mo-Ch2 Disp*	3.01 H	2 B	Display the acquised data on Ch2.
39.	Rept-Du-ALT-Ch1 Acq.	3,8A H	2 C	Updates the acq. for $1 K$ sampless from trigeer on Ch1 in ALT mode.
40.	Rept-Du-ALT-Ch1 Disp*	$3,92 \mathrm{H}$	2D	Display the acquised data on Ch1 in ALT mode
41.	Rept-Du-ALT-Ch2 Acq.	$3,85 \mathrm{H}$	2 E	Updates the acq. for 1 K samples from trigeer on Ch2 in ALT mode.
42.	Rept-Du-ALT-Ch2 Disp*	3,91 H	2 F	Display tho acquised data on Ch2 in AIT mode

Note : The format for the control woti is as below.
Mode $\quad \mathrm{Du} / \overline{\mathrm{MO}} \mathrm{CHP} / \overline{\mathrm{ALT}} \quad \mathrm{T} / \overline{\mathrm{T}}$ or $\mathrm{N} / \overline{\mathrm{A}} \mathrm{D} / \overline{\mathrm{A}} \mathrm{Ch}_{1} \mathrm{Ch} 2 \quad \mathrm{MCh} 1 \quad \mathrm{MCh} 2$ Slow $=01 \mathrm{H}$, East $=10 \mathrm{H}$ and $\mathrm{kept}: 11 \mathrm{H}$

After these indivicual activities are executed in proper sequence, the resultire mones of operation at the user level are as below.
a) The Save Mode : This made is operative if the scope is set in to the mono mode. The up performes the acquisition cycle [i.e. acquisition and display cycle in slow model and then saves the
information acquired in the memory bark specified. The system returns to monitor after storage. The activity sequence performed in this mode is exemplified below.

Example 1 : Save Mode (Trjeger) (Gl

Example 2 : Save Mode (Untuigete) (hiz
The sequence is $4,10,0$, returns to the monitor.
b) Acquisition + Display Mode : The dotivity of analog and the DSO is almost the same in this mode. In the slow and repetitive modes the trigger is always positioned at the left most corner. Conversely, in the fast mode trigeers are allowed anywhere on the screen. The Auto/Normal mode of operation is reconciled through the softwafe only. In this mode the repeatition sequences arte not very straight forward, a few examples are given below -

Example 1 : Acq+Disp (Auto) Ch1
The sequence is $19,19, \ldots, 20,19,19 \ldots, 20$ and so on. The number of repeatition of acquisition depends upon time base setting.

Example 2 : Acq+Disp (Normal) Ch2

The sequence is $21,22,21,22, \ldots$ and so on.
The acquisition is discarded until trigeer is recoived.
c) Save Display Mode : In this mode the signals saved in the gave mode are displayed on the specified channel. In the mono mode the information appears on the channel selected. While in dual [ALT] mode the information appears on the channel not selected from the pannel. Further in dual mode, before the display of the saved information, acquisition and display cycles of the channel
specified are executed. The time base at the time of acauisition does not keep any relevance at the time of display, therefore this mode could be used to acquire information at slow speed and display it at a higher speed such that persistance of vision will not pose any visual constraint. In this mode the action sequences are in the following manner.

Example 1 : Save-Disp (Mono) Ch1
The sequence is $7,7, \ldots$, and so on.
Example 2 : Save-Disp (Dual) Ch2
The sequence is $25,26,11,25,26,11, \ldots$ and so on.
The Ch2 is acquised and displayed directly and the stored data is displayed on Ch2 as in ALT mode.

All the numbers in the examples given above refer to serial number in Table 3.21.
3.3. DISCUSSION OF INDIVIDUAL CIRCUIT BLOCKS :

1) Slow Mode Address Generator : The basic unit eenerating the address output is a 12 bit counter configured using three 4 bit Hex, Up/Down counters 74 LS193 [The data sheet corresponding to the IC has been reproduced in Appendix! 10 I.SBs of the counter are used for providing the address to the memory, while the 11 th bit acts as an edge triggered interrupt to indicate end of acquisition of 1 K samples. The features of control circuit for the address generation are as below. The circuit schematic and timing diagram in slow mode are shown in Fig. 3.31a, 3.31b [Rising and falling edges of the digital signals are shown as vertical lines for convenience, in all the timing diagrams].

$$
\rightarrow \sim=\sim=-m
$$

$$
\equiv
$$

The address generation scheme is different in four allowed modes of action (Table 3.21). For all these modes a bi-flip-flop circuit generates a reset signal, after the uphas loaded a start bit. In untriggered mode the up start itself causes reset to go active on rising edge of the MSMV olook. The chop mode is always a
 opened (Fig. 3.31b). The address emprator clock is a divided by two clock in the chop mode, the output of the MSMV clock gated with the clock-gate is fed to the ADC clock multiplexer. Each clock line has a specific delay introduced on it, which manages synchronization of acquisition and storage.

In the triggered mode the 11 th bit of address generator acts as an end of acquisition/display event [EAG], while in untriggered mode the end acquisition/display is only upon external interrupt. In the save mode the interrupt is generated from DMA address generator. The clock and reset gignals for the DMA address generator, active in save or save display modes, is also generated within this block. The DMA operation is also in the count up fashion.
2) Fast Mode Address Generator : The address generation facility in this mode is a lot elaborate. Two reset signals are required for this activity, the RST:F appears only in the beginning of the acquisition event, while RST2F appears for both the acquisition and the display events. The circuit moant for generation of RST1F, RST2F and clock-gate are aimilar to those discussed for slow mode. Therefore the circuit only is given in Fig. 3. 32 , but the

Fig NO 3.22 SYNCRO NEOUS RESET GENERATOR.
explanation is anticipated.

The $\mu \mathrm{p}$ interface initially lomat tho pretriger count, if it is supplied, otherwise it is treated as zero. Two 10 bit counters are used in parallel in this mode, Fig. 3.33a. The lower and upper counter banks, accumulate the memory address count simultaneously. The count. in the lower counter is subtracted with the pretrigger count set [addition with first compliment]. Further, if a trigger appears after the count accumulated in a lower counter is greater than pretrigeer count, then the lower counter is disabled from countine. A subtractor is dsed between count accumulated in lower counter and the pretiriges count. The subtracted count and the upper address counter are compared such that acquisition of 1 K only will appear, positioning the triget properly. The subtractor $[A>B]$ generates an interrupt to processor indicating end acquisition and simultaneously disables the clock-gate.

[^1]

Fig.NO.3.33d RST 7.5 DELAY TIMING
3) Repeatative Mode Address Generator : This circuit is explained by dividing it into three blocks.
i) The vernier counter : It is meant to count time gap between the rising edge of acquisition clock and the trigger. The philosophy of start, reset and the clock-gate are the same except that proper TTL to ECL conversion is necessary. The basic unit is a modified version of vernier counter (34) operating at 50 MHz main clock and the vernier clock is at 62.5MHz. Further the symetric 50 MHz and 62.5 MHz clocks, generated ueing ECL OR \& NOR gates are gubjected to monostable multivibrator circuit. The resulting clock in with - $3 n s e c$ pulse width and the clock generators could be activated externally. The clock outpu: will be low in the deactivated state of the clock. Upon detivation, the firgt rising edge will appear out of the clock circuit. The delays encountered are shown in fig. 3.34t. The clock durations of 50 MHz and $6 Z .5 \mathrm{MHz}$ ate 20 nsec and 16nsec respectively, Therefore the correspondance will appear for vernier count of less than 5 .

The veraier counter proposed accepts trigger after the clock-gate is activated, the maximum time difference to be counted is 100 nsec because the clock frequency at 10 MHz for the repeatative mode. The following discussion relates to the estimation of the least count.

The time base ranest covered in repeatative mode operate at time base settings of 5 Ms/div, $2 \mu s / d i v, 1 \mu s / d i v, 0.5 \mu s / d i v$. Table 3.31 gives the number of acquisitions for each horizontal scan and a statistical estimate of number of repeatation [slot
weight] required to acquire the lk samples. For the time hage settinges of 0.5 hus/div within earh hovizontal scan 20 sampless are acquired and thetefore minimum measurable lime betwema a trigger and a positive edge of acquisition rlock becomes masuc. With the scheme of the vernier counter proposed the least count reduces lo 2nsec.

Table 3.31
For Repeatative Mode Operation

The control circuit unables the 50 MHz counter upon triger and the counts are accumulated in main counter till next positive edge of acquisition clock. Upon positive edee of the clock the vernier clock enerator is activated and counting proceeds in the vernier counter. Instrad of an AND type of correspondance detector, a and flip-flop combination is used. The delays encountered in the correspondance circuit are such that the counter module proposed does not remain error prone, though the main counting is displayed right on the positive edge of acquisition clock (For the details please refer the Fig. 3.34a and timing diagram Fig. $3.3 A b$). The count in the main and vernier

counter provides the slot to be acquised.
ii) Memory address generator : The inhibit signal from the corresponance circuit openes the clock-eate for the secondary counter, a TTL device. The TTL counter is managed to be of 8, 7 and 6 bits effectively. (Eig. 3.34a)

The slot word eqnerated within ECl vernier counter is properly ECL to TTL converted. Dependent on the tine base settings either three or four or five bits of vernier counter are used to indicate the slot. The zlot bita and the zecomdany comater form the 11 bit memory addrass. Beraust ot the differemee in count: of decimal and binary counting gystems out of 8,10 out of 16 , or 20 out of 32 memory location are acquised or retrieved for time base settings $5 \mu s / d i v \& 2$ Ms/div, 1 us/div or $0.5 \mu s / d i v$ respectively. Therefore within a block of 1.6 K of acquisition memory the 1 K samples are systematically distributed. The next bit to the MSB of secondary counter provides end acquisition signal [EAG]. The Fig. 3.34 c shows multiplexing of the address lines dependent on time base settings.
iii) Display address gentrator : While displayine the acruit:ilion data in the repeatative mode, the systematisation at the acquisition time is to reproduced in counting. Therefore the address counter Fie. 3.34 A is a multiplexed versior, where it acts as either (a) divided by 5, divided by 256 , (b) divided by 10 , divided by 128 , (c) divided by 20 , divided by 64 counter. Dependent upon the time base settines, one of these mode is selected. The counting procedure in mode (a), mode (b), or mode
(c) for 5, 10 or 20 slottid acquisition/display acheme respectively (Table 3.21). (The data sheets of components in the vernier circuit are reproduced in Appendix).
4) Display Read-out Circuit : The philosophy of start and clockgate is similar in this mode of operation also. The basic 20 MHz clock is divided by 8 and used as the system clock for this circuit, Fie. 3.37. The X-defloution is rontrolled by a 10 bit: counter, output of these rounturs are subjeteted to b/A comvarsion and fed to the X final amplifier, after proper conditioning and multiplexing (Fig. 3.35).

The Y-position is controll d d through a 8 bit latch/counter operating in the up mode. Within a display interval, only 3LSBs of the counter are modified. Y-position is fed to the Ch1 final amplifier Fig. 3.35. The clock for Y-deflection is a divided by 1024 clock. The up loads the count EO in the Y-counter and is incremented after each horizontal scan up to E8 and the process is repeate.

A [32 X 8] RAM is used to store the display charactora. In the display mode of circuit these charactors form address of a TTL character generator ROM in combination with the Y-adiress. The character generator outputs the illumination control byle to a shift register corresponding to each charactur. The data loaded parallely in to the shift register is shifted to Z control of the scope. Each character has 8 illumination bits therefore a 5 bit counter operating at $1 / 32 n d$ of the system clock is used to
generate the display character address.

Digplay of information and the signal is achieved through the same circuit. The multiplexing occurs at the level of display mode selection. A few points to be noticed are as below.
a) $1 / \mathrm{n}$ clock deviced are of $\overline{T C U} / \overline{T C D}$ type. b) Parallel loading of information into the shift register at $1 / 32$ and serial output at $1 / 4$ clock rates, occur on LSB transitions $X 11$ to $X 100$ and X 100 to X 101 respectively. Therefore no event clash is predicted.
5) Memory Components and Configurations : The acquisition memory is a $4 \mathrm{~K} X 9$ configuration for the DSO sircuits. On the other hand the same configuration appears splited as a sets of $4 K X 8$ and $4 K X 1$ [8] configuration for the up interface. The address of this 8K block are mapped continuously. The memory componants proposed are NMC2148-3/NMC2148L [4K X 8] and MM2147-3 [4K X 1], with read/write cycle timing of 55nsec. 2 X 2148-3 form a 1 KX 8 unit, two such units are combined to form data acquisition memory, roferred as MCh1 and MCh2 (Eig. 3.36). The data sheets of the memory component are reproduced in Appendix.

A $4 \mathrm{~K} X 8$ memory unit, selectable as a 1 K page at each time. is used to store [Save] the acquised and properly trigeer centred information. The information stored is always of one screen width and therefore block of $1 \mathrm{~K} X 8$ is necessary and sufficient. The appropriate block is selected through the software. [Fig. 3.37]

Refering to the timing diagrams in, Fies. 3.31b, 3.33b, 3.34b it is apparent that the address is stable on the address bus

Fig. NO 3:17. DMA AND MEMORY CIRCUIT

Fig. No3.3Ba CONTROL CIRCUIT FOR WE.

 WIOTH WIII BE ALNESIIU WITH VMKIIII (I CONIROI

Fig. NO. 3.38b.CONTROL. CIRCUIT FOR WE TIMING.
at a time instarce, whjelt is 42nsec apart from the acquigition clock pulse. Furtior referrimg to tho timing diagram (Appendix). of the ADC 3308 , the digital o/p is available after about $20 n s e c$ from the end of acquisition phase. Reconciling with these tining features and payine an attention to the memory requisements, a WE Control generation/multirlaxing धincuit is desintul The circuit employs a monlithic monostabla multiviluatof 7415121 . At prestent the device is proposed to oprrate without external timing capacitor and geneiates a monostable pulse of approximately $35 n s e c$ (These (eatures ate ulatoratud in Sec. 3.1). These ftatutes satisfy the timine requirenents of the configuration proposta.

Various tri-state devices proposed to transive the address and data bus of the memory confieuration, is a too standard and a prototype configuration. The various chips proposed for the purpose are [74LS244, 74LS245]. lo avoid reproduction of the standard design data (36), the details are assumed.

Regarding the additional hardware overhead of address aeneration for the DMA :ycles, the dircuit and the memory confieuration is eiven in Fie. 3. 38a, 3. 38b, clock to this address generator appears from one of the address generators selected according to the tine base setting. Restet causod before the operation starts, lesets the counter. In saved data operation mode, both the addeess eenefatot tuat simultameously in the eonnt

Fig.NO.3.39 CHANNAL SELECT LOGIC.

is withheld.
6) Other Multiplex Controls : The Table 3.21 accounts for the control signals required to execute a desired operation. Mp is meant to latch these control signals as per requirement. These control signals could be grouped in to two sections (a) Initialisation controls and (b) Mode selection controls. The initialisation controls are meant basically to select one of the address generator and related control and multiplexing. This is achieved through a resetable latch 8212 [Reseted after each power on activity]. If the 8212 is reseted the information display mode is selected automatically. The remaining modes are selected through software.

The mode selection control - this group of signals include Chi, Ch2, MCh1, MCh2, D / \bar{A}, Chp... etc. (Table 3.21 provides the meaning of these signals). $\mu_{\text {p }}$ is exclusively meant to select a mode of operation and therefore to set the proper mode control word. [Fig. 3.39]
7) Clock Generator : The ssan of clock frequencies required for the standard 20 MHz oscilloscope lies between the range 500 Hz to 10 MHz . The calculation assumes 100 acquisition/div and the maximum data conversion frequency of 10 MHz . Despite of the actual values the range becomes an important factor while designing a timer/clock generator. The basic clock is senerated using monolithic IC 424 and is of 20 MHz . Secondly the on time required of the output clock is of 50 nsec only. A 15 bit mounter operatine in the count down mode is used for the purpose. The eounter is

initially loaded from a up addressable latek and by up itself. Upon each count down the counter is reloaded automatically from these latches. A XNOR circuit, operating on 15 bits of yount down word, enerates a monostable pulse. The output is high for the terminal count [$\overline{T c}$] only. The circuit diagram is given in Fi\& 3.30 .

3.4. THE ANALOG INTERFACE HARDWARE :

The preamplifier used in HM 203 is a FET input amplifier with IC MA 733 as amplifying device. The circuit is powered symmetrically with $\pm 5 V$ supply. The rated range of output swing is guaranteed to 3 volts symmetric output form $\mu \mathrm{A} 733$ [a balance symmetric output operational amplifierl. The signal is further subjected for amplification through a switchable stage. The channel gelection is realised at this staee. Fig. 3.41 reproduces the relevant part of the circuit diagram of HM 203 and the switchable amplifiers ar" encirclud in lhe Fis. 3.4:. Nt present we propose to use the similat swilching losic to switch the input channels.

After the chanel irputs areswitched the symuetrje output will be converted to a single ended output ake that of conventional operational amplified and the sain of the circuit will be so adjusted that the output swing occurs between 0 to +6.4 volts maximum. The switching circuit being principally the same, it has not been subjected for performance test. The design data of 3308 reproduced in Appendix, shows recommended circuit connection to achieve A / D conversion, where the range of input is

scientific

Y-Input, Attenuator, Preamplifier Channell and Channelll

Fig-341- Y-Intermediate Amplifier Ch.l u. Ch.ll,
allowed betweer 0 to 6.4 volts [the level 6.4 volts $-s$ desired for the convenience while handline dieital quantities].

Digital number $00 H$ will correspond to the voltage level causing deflection to 5 cms below the central line of the CRT, While the quantity FFH will correspond to 5 ems above the central lire of the CRT. With DAC 0800, both Io, Io output lines are provided (data is reproducod in Appendix). These two could be made use of again to generate a symmetric output, within 3 volts limit. The symmetric output thus enerated could be fed to the Y final amplifier with proper imput conditioning. The design procedure used for this purpose are taken fiom the Handbook of Micro circuit Designing Application by Stout and Kaufinan (37).

3.5. TESTING OF HARDWARE MODULES :

Continued efforts to procure CA 3308 , the llash converter from RCA, in Indian durrency, were futile. The enquifies to the authorised dealer * also were tepelled with tegrate. Therefote we shifted our interest from desiguing a systen with a lesser modus of operation, to a system with incceased range of operatimb modes.. For such a system the software requirement is sufficiently complicated. [The software developed is discussed in chapter 4.]

Neverthless, the hardware modules are tested to estimate the performance of individual modules. The performance estimated is at the level of confirmation of the theoretically ploted timing diagramo. The tests are also extended to estimate effects of additional loading capacitor to alter the output delays. At
present the departinent lad the 20 MHz pulse/Clock Generator M/s.Scientific Inetrument Co. and a 4 CH - 100 MHz Analow Oscilloscope of HIl.5024 ami a 100 MH a Digital storage Oscilloscope from Tektronics. These devices have boen fully exploitod for the module testing.

The modules tested and its outcome is described below -
i) The bi-flip-flop configuration used to synchronise the operations with the system clock (Eig. 3.32) and a nono-flip-flop circuit getting the clock, appears with each address generator. This circuit has been converted such that it would generate a repetitive sienal (Eig. 3.42) to estimate the time delays and syrachronisation. The system clock used for this purpose was at 10 MHz. [The maximum clock rate encountered in the DSO interface]. The results are up to the satisfaction and the timing diagrans are confirmed.
ii) The monostable slock ©etruator (Fie. 3. 0) employimis $2 \times$ LS 193 s [divided by 256 max.] was doviued and bested. In this case also the clock fruquency used is 10 MHz . The observed pulse width was at 110 nsec approximalyly and with introducing the
 The least count of HIL 5024 is 5 nosec/div.
iii) The ECL MSMV cock senerator (Fig. 3. 34d) has also been tested but with the limiter bandwidth of the scope the pulse width measurement was not feasitue. Thefefore instead of a single gate delay two gates were used to eenerate a pulse of about 10 nsec high time approximately.

The remaining moduaes are yet to be tested but from the above mentioned test we have gain a confidance in the design and we are optimistic to expect the remairing modules logically correct.

[^0]: For the time base settines between 50 ms/div to 10 Ms/div, the sampling occurs as a record of 1024 valid events, with a trigger marker mounted in the desired location, to faciliate pre

[^1]: In a situation where trigeer is not received in $1 K$ acquisition, a flip-flop is set to indicate 'No trigetr' received, and disables the clock-gate. In this cast another interrupt is generated to indicate no input signal. Various features of timing are shown in the Fig. $3.33 \mathrm{~b}, 3.33 \mathrm{c}, 3.33 \mathrm{~d}$.

 In the save and save display mode RST1F is disabled. Counter acts as an up counter and the interrupt is eenerated from the DMA address eenerator.

