LIST OF FIGURES

1.1	The Spinel Structure (Schematic)	5
2.1	Flow chart of stages in the ferrite preparation	23
2.2	Bragg's principle of X-ray powder diffraction	33
2.3	XRD pattern of $CoFe_2O_4$	46
2.4	XRD pattern of Co _{0.8} Zn _{0.2} Fe ₂ O ₄	47
2.5	XRD pattern of $Co_{0.\epsilon}Zn_{0.4}Fe_2O_4$	48
2.6	XRD pattern of $Co_{0.4}Zn_{0.6}Fe_2O_4$	49
2.7	XRD pattern of Co _{0.2} Zn _{0.8} Fe ₂ O ₄	50
2.8	XRD pattern of $ZnFe_2O_4$	51
2.9	Variation of the lattice constant of $\text{Co}_{\mathbf{X}}\text{Zn}_{1-\mathbf{X}}\text{Fe}_{2}\text{O}_{4}$ with Zine concentration	54
2.10	Compositional variation of average bond length ${\bf R}_{\rm A}$ with Zn content	55
2.11	Compositional variation of average and length ${\tt R}_{\rm B}$ with Zn content	56
2.12	Compositional variation of site radius r _A with Zn content	57
2.13	Compositional variation of site radius r _B with Zn content	58
3.1	Sample holder and circuit diagram for electrical resistivity	70
3.2	Experimental set up for electrical resistivity measurement	71 '

}

3.3
$$\log_{10}^{P} vs \left[\frac{10^3}{T}\right]$$
 plots for $CoFe_2O_4$ 80

.

,

3.4
$$\log_{10}^{P}$$
 vs $\left(\frac{10^3}{T}\right)$ plots for $Co_{0.8}Zn_{0.2}Fe_2O_4$ 81

3.5
$$\log_{10}^{P} vs \left(\frac{10^3}{T}\right)$$
 plots for $Co_{0, \epsilon} Zn_{0, 4} Fe_2 O_4$ 82

3.6
$$\log_{10}P$$
 vs $\left(\frac{10^3}{T}\right)$ plots for $Co_{0.4}Zn_{0.6}Fe_2O_4$ 83

3.7
$$\operatorname{Log}_{10}^{p} \operatorname{vs}\left(\frac{10^{3}}{T}\right)$$
 plots for $\operatorname{Co}_{0,2}\operatorname{Zn}_{0,8}\operatorname{Fe}_{2}O_{4}$ 84

3.8
$$\log_{10}^{P}$$
 vs $\left(\frac{10^3}{T}\right)$ plots for $2nFe_2O_4$ 85

3.9
$$\log_{10}^{P}$$
 vs $\left[\frac{10^3}{T}\right]$ plots for $\operatorname{Co}_{X}\operatorname{Zn}_{1-X}\operatorname{Fe}_{2}O_{4}$
ferrites sintered at 900°C for 30 hrs. 86

3.10 Variation of Curic temperature with Co-content
in
$$Co_x Zn_{1-x} Fe_2 O_4$$
 samples sintered at 900°C for
hrs. 87

4.1A configuration of four domains with a closed
magnetic flupath and domain Wall structure974.2Magnetization Curve and Hysteresis loop.994.3Predicted susceptibility curve of a ferrimagnetic
material above the Curie point1084.4Magnetic corresponding stats (
$$\sigma/T$$
) curves
predicted by Neel's theory1084.5Experimental set up for magnetization experiment1114.6Variation of $4\Pi M_s$ with Zn-content in
 $Co_x Zn_{1-x} Fe_2 O_4$ 116

.

• ~

. .

.

.

4.7	Variation of μ_B with Zn-content in $Co_X Zn_{1-X} Fe_2 O_4$	117
4.8	Plot of Curie temperature (Tc) versus cation distribution coefficient (%)	124 ',
4.9	IR Spectrum of Co _{0.2} Zn _{0.8} Fe ₂ O ₄ Ferrite	131
4.10	IR Spectrum of Co _{0.4} Zn _{0.6} Fe ₂ O ₄ Ferrite	132
4.11	IR Spectrum of Co _{0.6} Zn _{0.4} Fe ₂ O ₄ Ferrite	133
4.12	IR Spectrum of Co _{0.8} Zn _{0.2} Fe ₂ O ₄ Ferrite	134
5.1	Schematic representation of typical structures observed during sintering	147
5.2	Homogeneous grain structure	147
5.3	Discontinuous grain growth and Duplex Structure	148
5.4	Discontinuous grains growth with pores trapped inside the grain boundaries	148
5.5	Dense Sintered NiZn ferrites	149
5.6	Continuous grain growth	149
5.7	SEM Micrographs of $CoFe_2O_4$ sintered at 900°C for 15 hrs & 30 hrs	159
5.8	SEM Micrographs of $Co_{O, 6}Zn_{O, 4}Fe_2O_4$ sintered at 900°C for 15 hrs and 30 hrs.	160

•

,

...0o*o0...