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Varshni discussed the limitations of different potential
1

energy functions suggested by Kratzer, Morse, Rydberg and

several others. In order to improvize the applicability of

these functions, a number of attempts have been recently

made to formulate their linear combinations. The idea of 

superposition might have taken from the ionic potential functions 

reviewed in the Chapter 1. These potentials necessarily 

consists of a combination of attractive and repulsive terms 

for the potential energy of a diatomic molecule. In this 

chapter, first we will take a brief survey of various combinations 

of potential functions reported in the literature. Then we 

will present a number of new combination potentials suggested 

in the present work.

2.1 MK POTENTIAL The first attempt to formulate the hybrid

potential from the analytical functions was made by Raghuwanshi 
2

and Sharma . They put forward a linear combination of Morse 

and Kratzer functions and referred to it as MK potential.

U(r)=De { l-exp[-a(r-re)] } 2+De[(r-re)/r]2-2De (1)

where a is the potential parameter. By Varshni's method

they obtained the expression for the rotational constant

«e=[ U3re3-a2re2+l)/(a2re2+l)] (6Be2/ o^) (2)

In general the potential curve of Eq (1) lies well below the 

individual Morse, and Kratzer curves. The percentage errors-
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in a values calculated for a few diatomic molecules weree

found to have large magnitudes. However, a good agreement 

was seen between the calculated and experimental a and 

F values.

2.2 MR POTENTIAL

3
Iyer and Sharma have suggested the following linear 

combinations of Morse and Rydberg potentials:

Potential I:

U(r)=-(D /2) { l+(b/2) (r-r ) } exp [-b(r-r )/2]
C C u

+(De/2) { l-exp[-b(r-re)] }2-(De/2) (3)

Potential II:

U(r)=-(De/2) {1+bCr-rJ } exp[-b(r-re)]

+(Dg/2) { l-exp[-b{r-re)] }2-(De/2) (4)

By Varshni's method they obtained expressions for Q ande
x : e e

Potential I:

a e=[0.873 A%-l]6Be2/w e6a,exe=[4.34 A JW/y^2 (5)

Potential II:

a =(.833 A^-l) 6B 2/ a)D andrn x =(5.416A )W/y.r2 (6)
fc} G G 6 G Pi G

Where the symbols have their usual meanings.

Iyer and Sharma claimed that the values of a and-
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u) x calculated by them are superior to those i)calculated 
6 6

by Varshni for Morse and Rydberg potential functions separately.
2

ii) calculated by Raghuwanshi and Sharma on MK potential.
2

Iyer and Sharma also noted that the combination of Morse 

and Kratzer does not show any appreciable improvement over 

the Morse function due to the unsuitability of the Kratzer 

potential. However, they found that for the overall repre

sentation of the potential energy curves the MR combination 

is more suitable.

2.3 RK POTENTIAL

4
Varma and Jha proposed a linear combination of Rydberg 

and Kratzer potential functions

U(r)=-D [1+bp ]exp [-b p ]+D [ p/r] -D
c © ©

Where p=r-r and b=[(k /D )—(2/r ^ 
© 6 6 ©

They have reported the expression for q only
©

(7

a e= t
2b3r 3+12

e _ i] 6B
3(b2re2+2) a),

(8)

The calculated ae values were found closer to the respective

experimental values than those calculated separately for Morse,

Rydberg and Kratzer functions. The average % error was

the least. Further the values of r . and r calculatedmin max
from this function were also in better agreement to those 

calculated from the true potential energy curve.
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2.4 MRK POTENTIAL

Behere5 attempted a combination of Morse, Rydberg 

and Kratzer potentials

U(r) =D {[l-exp(-a p )]2-[l+b p ]exp (-b p ) + ( p2/r2)+l } (9)
e

Where p=r-r . The potential parameters a and b are given 
0

by
a2=k /2D and b2=k /D 

e e e e

The following expressions for a and w x were obtained.
C 0 0

a = { [0.6869 ( A-l)3/2/ A ] + (2/ A )-l} 6B 2/ w 
6 0 0

wexe= { 3-8272 A -14.7316-(18.0184/ a )+(52.9228/ a 2) (10)

+ (42.1232{ A-l)3/2/ A2)} W/ y^2

The \ errors calculated for various molecules were 

found to be considerably large. Also the average percentage 

errors were maximum as compared with those obtained by 

other combination potentials. Behere therefore concluded 

that a combination of more than two individual potentials 

is worse in evaluating the ae and wexe values.

2.5 IMPROVED MR POTENTIAL

0
Biraj dar et al re-examined the MR potential due to-
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Iyer and Sharma3. They found that the derivations for

„ and u) x were incorrect. The corrected expressions
^ 0 G 6

are as given below :

MR Potential (I)

ae=[1.2346 A 6Bg2/ to e and u)exe=11.65 a W/y Arg2 (U)

MR Potential (II)

a e=[ 1.0264 A*-1J u e and w^-8.247 A W/y Ar02 (12)

Birajdar et al also proposed a new potential function 

which combines Morse's and Rydberg's potentials

U(r) = (D /2) { [ 1-exp(-ap )]2-(l+b p )exp(-b p )+l} (13)
G

Where the potential parameters are related by a=b//2=/ (k /2D )
u G

Using this potential they obtained

a e=t 0.9714 A5-!] 6B 2/o)
o o

(14)

we e
= 7.655 A w/y . r 2 

a e (15)

The average % errors in a
G

and to x calculated e e from Eqs

(14) 6 1;i5) were found to be considerably less as compared

to those estimated using Eqs (11) 6 (12) for MR Potentials

I 8 II. Birajdar et al therefore claim the superiority of

the MR potential suggested by them over those proposed by

Iyer and Sharma3.
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2.6 RE-EXAMINED MK POTENTIAL

7
Birajdar and Behere reinvestigated the MK potential

2
proposed by Raghwanshi and Sharma . They noted that in 

order to make U(r )=0 the last term -2D in MK potentialB 6

can be omitted without affecting the derivates of a and° e

co x . Further they obtained the following expression for
B G

2
co x not reported earlier by Raghuwanshi and Sharma :

G G

CO x = {8 A -31+{2/ A)+{45/ A2)+[60( A-l)3/2/A2)} W/p r 2 (16)
G G /» G

The average % error in co x of randomly selected molecules 

was found to be much less than that evaluated on Morse function 

alone.

Table 2-1 contains the expressions for F and G functions 

for different combination potentials discussed above.

2.7 AIM OF THE PRESENT STUDY

We have already summarized the results of the comparative
i

studies of various potentials carried out by Varshni and
8 1Steele et al . Varshni found that the analytical functions 

due to Morse, Poschl-Teller, Rosen-Morse, Frost-Musulin, 

Rydberg and Lippincott give the a and u> x values in the
G G G

increasing order of accuracy. Varshni's third, sixth and

seventh functions are also successful in this respect. For 

over all representation of the P.E curves, the Rydberg,Varshni HI-
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and Varshni VI functions were found to be most successful.

g
Steele et al found that Linnett, Lippincott and Rydberg

functions yield minimum percentage errors in the estimates

of a and co x values. However, a function evaluating satis-

factory q and w x values does not necessarily show a good
6 6 6

reproducibility of P.E curves e.g. Linnett. On the other

hand a function like Hulburt and Hirschfelder gives nearly 

the best fit of the potential for all the molecules considered. 

The Frost-Musulin potential does not give any appreciable 

improvement over the Morse curve, while Rydberg potential 

is a distinct improvement.

Among the combination potentials discussed in the previous

sections, MK potential is not satisfactory as compared :o

Morse potential. Also MRK potential fails to evaluate accurate

n and co x values. The failure of these two combination

potentials, as we understand, is due to the following reasons:

(1) The simple Morse function though 'overworked in many

branches of investigation1 gives a poor performance as has
1

been noted by Varshni . A suitable modification is therefore

needed to improvize the same. (2) Kratzer function is net
1

applicable to molecular problems as it predicts the abnormal 

result for Sutherland's parameter which value is not

found in any diatomic molecule.
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On the other hand the combinations of Rydberg potential

with others are more successful e.g. MR and RK potentials

are more suitable for the overall representation of the P.E.

curves and for estimating accurate a0 and ^ exe values. Tne
1

reason is due to the fact that Rydberg function is at tie 

top in evaluating a and w x in order of increasing accuracy 

and in reproducing the P.E. curves.

With a view to further improvize the general performances 

of individual Morse and Rydberg potentials, we have tried, 

in the present work, various combinations of these functions 

with other functions.

2.8 PRESENT WORK

We have suggested two hybrid potentials involving gene

ralized Morse, Kratzer and Rydberg potentials, three combinations 

of Rydberg function with Varshni's and Lippincott's functions 

and one superposition function due to Varshni's second ard 

sixth potentials.

2.8.1 Generalized Morse and Rydberg (GMR) potential

U(r 3-D [ 1-exp (-b p } ]2-D [ l-( 1+bp )exp(-bp )] p3 exp(-bp }
o G

where p=(r-r )/r . It satisfies the three necessary criteria
G G

of Varshni. The first term is a slight modification of Morse-

(17)
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potential, while the second term represents a more generalized 

form of Rydberg potential. After simplification Eq(17) takes 

the following form:

U(r)=D [ l-exp(-b P )]2+De[(l+bP ) P 3exp(-2b P )]

-De p3 exp(-b p ) (IB)

The first two terms of this equation constitute a potential 

which is similar to Hulburt-Hirschfelder potential. The GMR 

potential is one of a class of possible potential functions 

of the fcrm.

U( p ) =D {[1-exp(-bp )]2+ p3exp(-bp )F( p ) } (18a)
c

with p=(r-r )/r H e e

For a variety of F( p ) values, the necessary criteria 

U(0)=0 and U( «> ) = Dg are satisfied. We have chosen

F( p ) = [-1 + (1+bp )exp(-b p ) ] (18b)

By putting F( p) = C(l+b p )exp(-b p )in Eq (18a) Hulburt- 

Hirschfelder Potential can be obtained.

In general, or.e may get F( p )=n+exp(-b p )(l.+b p )and 

find the best n value which would lead to the best performance 

of the potential function given by Eq(18a). This potential 

therefore needs to be further examined.

1
By following Varshni's method we obtained the expressions 

given below:
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UH(r ) = 2D b2/r 2 with b=( A ^ 
e e e

TTT t t TV t 4UiU(r ) = -6D b /r and Ulv(r )=2D b(7b +3)/r 
e e e e e e

ae= ( A% -1) 6Be2/ We (19)

and ajexe = [8 A -(3/A *)] W/y Are2 (20)

It is interesting to note that Eq(19) is exactly the same 

as that given by Morse, while G function in Eq(20) differs 

by a factor of 3/ a ^

2.8.2 Generalized Morse and Kratzer(GMK) potential

2
Raghuwanshi and Sharma directly combined Morse and 

Kratzer potentials to formulate their MK potential. We have 

considered Varshni's first and fifth functions which are the 

generalizations of Morse and Kratzer potentials respectively. 

With a view to formulate a three-constant potential functicn 

we used only one potential parameter (n).

U(r)=De { l-exp[-n(r2-re2/2re2)] }2+De { l-(re/r)n }2 (21)

It satisfies the three criteria. Varshni's method leads to

U11 (r ) = 4D n2/r 2 with n=( a/2)*5 
6 6 6

UHI(r )= -12D n3/r 3 and UIV(r )=2D n2(14n2H-6n+14)/r 4 
e e e e e u e

„e=[(A /2A-1] 6Be2/„e (22)
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(23)

In Eq (21), a term ± D can be added to bring the
G

minimum of potential energy curves at zero value.

2.8.3 Varshni's Second and Sixth [V(II 8 VI)] Potential

Varshni's second potential function is unsuitable for 

calculating a and a) x values, while his sixth function is
G G G

1
seen to be the most accurate function in this respect . -n 

order to improvize the performance of second function, we 

have linearly combined it with the relatively successful sixth 

function

U(r)=D { l-(r /rjexp [-a(r-re)] } 2+D { l-(r/r )exp[-a(r-r )] }2
U c c c c

(24)

In this combination we have used only one potential parameter 

'a' to have a simple three-constant potential function. By 

following Varshni's method we got

UH(r )=4D (a2r 2+l)/r 2 with a=[( A/2)-l]/r
cut/ U c

..III, , . 3,r 3 3 , ... . 3U (re)=-12(De/re )[a rg +3are+l]/re

IV 4 4 4 2 2UiV (re) = (4De/re4)[7a re^+42azrez+36are+18]

a e = [ (x3-x2+3x)/(x2+l)]6Be2/ u g

a) x =[ (8x^+41x4-6x3+75x2+54x-3)/(x4+2x2+l) ] W/p r 2
G G A G

(25)

(26)

Where x=[( a/2)-1] = are
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2.8.4 Rydberg and Lippincott (RL) Potential

1
As per Varshni , Rydberg potential is found to be nearly

at the top in evaluating a and go x values accurately.e e e

It is also a successful function for overall representation 

of P.E. curves. However, Lippincott function is found to 

give most accurate values for go exe only. It is not that satis

factory in estimating a and representing the P.E. curves. 

It is therefore felt that the performance of Lippincott function 

for the latter purpose can be improved by combining it with 

the Rydberg function. In this combination also we have made 

use of a single potential parameter 'b'

U(r)=“De[1+b(r-re)]exp [-b(r-rj ]+De{ l-exp[-b(r-re)2/r] } 27

According to Varshni's method we obtain

U11 (r } = (D b/r ) [ br„+2] with b=(*/ 1+2A -l)/r 
e e e e e

TTT 72 7Ulii(r ) = - 2D b(b r +3)/r z 
e e e e

UIV(r )= D b[3b3r 3-12br +24]/r 3 
e e e e e

ag= { [2bre-3]bre/[3bre+6] } 6B02/ 28

uexe = { (llb4re4-18b3re3+156b2re2+46)/3(bre+2)2 } ^ 29

2.8.5 Rydberg and Varshnl's Second[RV(II)]Potential

We have seen earlier that Rydberg potential is the
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most suitable one for both the calculations of oe and 0,^

and representation of P.E. curves, while Varshni' s second
1

potential is unsuitable. In order to upgrade the general 

performance of the latter function we have tried its combination 

with Rydberg potential

U(r)= -D { l+b(r-r ) exp [-b(r-r )]}
0 0 0

+Dg { l-(re/r) exp [-blr-rj] }2 (30)

Varshni's method leads to

UH(r ) = D [3b2+(4b/r ) + (2/r 2)] with b=(/ 6 a -2-2)/3r
e 6 G G G

ITT 3 ? 9 9u ir ) = -DJ8b +(18bz/r M24b/rV(12/r '3)]
GG 0 0 0

UIV(r ) = D [ 17b4+56(b3/r )+120(b2/r 2)+144(b/r 3) + (72/r 4)]
0 0 0 0 0 O

a = [ (8x3+9x2+12x+6)/(9x2+12x+6) ] 6B 2/ to (311

oa x =[5(8x3+18x2+24x+12)2 (17x4+56x3+120x2+144x+72)] W
e e 3(3x2+4x+2)2 " (3x2+4x+2) u Ar 2

(32)

Where x=bre

2.8.6 Rydberg and Varshni's Sixth [RV(VI)]Potential

1
According to Varshni his sixth potential function is 

the most accurate one in calculating ae values and representing 

P.E. curves. Regarding the evaluation of w x it is foundG G
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to be the next successful function to the Lippincott and Rydberg 

potentials. Hence its appropriate combination with Rydberg 

potential would further increase the accuracy of the results. 

We have attempted the following combination:

U(r) = -De |l+b(r-re) exp [-b(r-rj]}

+D { l-(r/r ) exp [-b(r-r )]} 2
U c c

(33)

Varshni's method gives

UH(re) = De [3b2~(4b/re) + (2/re2)] with b=((v/ -2)+2]/3re

TIT 19 9u 11 (r ) = -D [8b -13(b /r }+(12b/r j]
u c c c

TV 4 T 9 9UiV(r ) = D [17b -56(bVr ) + (48bZ/r Z)]
U b C fc/

ae
2b(4b2r 2-9br 2+6r } 

e e e
3(3b2r 2-4br +2) e e

6B (34)

U Xe e
20b2(4b2r 2-9br +6)2 

e e
3(3b2r 2-4br +2)2 e e

b2(17b2r 2-56br +48) 
e e

(3b2r 2-4br +2) e e

W

(35)

2.9 CONCLUDING REMARKS

Using the above suggested hybrid potentials we have 

calculated the potential energy curves and the rotational-vibra

tional coupling constants and anharmonicity constants for a 

number of diatomic molecules which were randomly chosen.
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In the next Chapter 3 we have reported the potential 

curves in comparison with those obtainable on other 

known potential functions and by the RKRV method.
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