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Varshni1 discussed the limitations of different potential
energy functions suggested by Kratzer, Morse, Rydberg and
several others. In order to improvize the applicability of
these functions, a number of attempts have been recently
made to formulate their linear combinations. The idea of
superposition might have taken from the ionic potential functions
reviewed in the Chapter 1. These potentials necessarily
consists of a combination of attractive and repulsive terms
for the potential energy of a diatomic molecule. In this
chapter, first we will take a brief survey of various combinations
of potential functicns reported in the literature, Then we
will present a number of new combination potentials suggested

in the present work.

2.1 MK POTENTIAL The first attempt to formulate the hybrid
potential from the &nalytical functions was made by Raghuwanshi
and Sharmaz. They put forward a linear combination of Morse

and Kratzer functions and referred to it as MK potential.

U(r)zDe { 1—exp[—-a(r-re)] }2+De[(r—re)/r]2—2De (1)

where a 1is the potential parameter. By Varshni's method

they obtained the expression for the rotational constant
ozez[(a3r‘e3~azrez+1)/(azr‘82+1)] (6882/ we) (2)

In general the potential curve of Eq (1) lies well below the

individual Morse, and Kratzer curves. The percentage errors-
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in ae values calculated for a few diatomic molecules were

found to have large magnitudes. However, a good agreement
was seen between the calculated and experimental A and
F wvalues,

2.2 MR POTENTIAL

Iyer and Sharma3 have suggested the following linear

combinations of Morse and Rydberg potentials:

Potential I:
U(r)=-(D_/2) { 1+(b/2) (r-r ) } exp [-b(r-r )/2]

+(D_/2) { 1-exp[-blr-r_)] }*~(D_s2) (3)

Potential II:

U(r)z—(De/Z) {1+b(r—re)} exp[~b(r—re)]

] 2

+(D/2) { 1-exp[-b(r r.)] } -(D,/2) (4)
By Varshni's method they obtained expressions for e and
e’e
Potential I:

Y 2
o o=[0.873 21168 %/ _gw x =(4.348 1 W/ u,r° (5)
Potential II:
o =(.833 A%-1) 6B.%/ »_ andw x_=(5.416A ) W/u,r 2 (6
e e e e’ e ) Hate

Where the symbols have their usual meanings.

Iyer and Sharma claimed that the values of @, and-
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w Xy calculated by them are superior to those 1)calculated
by Varshni for Morse and Rydberg potential functions separately.
ii) calculated by Raghuwanshi and Sharma2 on MK potential.
Iyer and Sharma also noted that the combination2 of Morss
and Kratzer does not show any appreciable improvement over
the Morse function due to the unsuitability of the Kratzer
potential. However, they found that for the overall repre-
sentation of the potential energy curves the MR combination

is more suitable.

2.3 RK POTENTIAL

Varma and Jha4 proposed a linear combination of Rydberg

and Kratzer potential functions

U(r)=-D [1+bp Jexp [-b p 1+D [ p /r1°-D_ (7)

1

T = - 2 g
Where p=r-r_ and b=[(k /D) (2/r )]

They have reported the expression for U only

2
2b3r_3+12 6B 8
aez[m%:zf H 2 Y
L W
The calculated g values were found closer to the respective

experimental values than those calculated separately for Morse,
Rydberg and Kratzer functions. The average % error was
the least. Further th .

the wvalues of T min and T nax calculated
from this function were also in better agreement to those

calculated from the true potential energy curve.
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2.4 MRK POTENTIAL

Behere5 attempted a combination of Morse, Rydberg

and Kratzer potentials

Ur)=D, {[1-exp(-a p )1%-[1+D o lexp (-b p)+( ey } (9)

Where Fr-r, . The potential parameters a and b are given
by

2 2
a“sk_/2D_ and b=k /D,

The following expressions for e and w X, were obtained.

3/2 2
a = {[0.6869 ( a-1)7"7/ & 1+(2/ 8)-1} 6B/ w

woX,= {3.8272 5 -14.7316-(18.0184/ p)+(52.9228/ 5 2 (10)

c(az.12320 a-1%% 0%} w e

The % errors calculated for various molecules were
found to be considerably large. Also the average percentage
errors were maximum as compared with those obtained by
other combination potentials. Behere therefore concluded
that a combination of more than two individual potentials

is worse in evaluating the g and weXg values.

2.5 IMPROVED MR POTENTIAL

Birajdar et 816 re-examined the MR potential due to-
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Iyer and Sharmas. They found that the derivations for
te and wyXg Were incorrect. The corrected expressions

are as given below

MR Potential (I)

. 2
0 =[1.2346 4 1) GBeZ/ W, and o x =11.65 AW/ 4T (11)

MR Potential (II)

. 5 2 . 2
o =[1.0264 8 7-1] 6B.°/ o, and u x =8.247 AW/ y ,r, (12)

Birajdar et al also proposed a new potential function

which combines Morse's and Rydberg's potentials
U(r)=(D_/2) { [1-exp(-z0 )1°~(1+b p)lexp(-bp )+1} (23)
Where the potential parameters are related by a=b/v2=/ (ke/ZDe)

Using this potential they obtained

1
2

2 .
ae-[0.9714 A-1] GBB /we (Z4)

2
- A -
weXe = 7.655 & W/u zLe (15)

The average % errors in a, and w Xe calculated from Eqs
{14) & (15) were found to be considerably less as compared
to those estimated using Egs (11) § (12) for MR Potentials
I § II. Birajdar et al therefore claim the superiority of
the MR potential suggested by them over those proposed by

Iyer and Sharma3 .

42



2.6 RE-EXAMINED MK POTENTIAL

Birajdar anc Behere7 reinvestigated the MK potential
proposed by Raghwanshi and Sharmaz. They noted that in
order 1o make U(‘re)zO the last term —2De in MK potential
can be omitted without affecting the derivates of @, and

wXg Further they obtained the following expression for

WeXg not reported earlier by Raghuwanshi and Sharmazz

3/2

wx = (88 -314(2/ B)+(45/ 2%ye0( a-1)%/2/ 8 2 W/pArez (16)

The average % error in weXg of randomly selected molecules
was found to be much less than that evaluated on Morse function

alone.

Table 2-1 contains the expressions for F and G functions

for different combination potentials discussed above.
2.7 AIM OF THE PRESENT STUDY

We have already summarized the results of the comparative
studies of wvariocus potentials carried out by Varshmﬂ1 and
Steele et 318. Varshni1 found that the analytical functions
due to Morse, Poschl-Teller, Rosen~-Morse, Frost-Musulin,
Rydberg and Lippincott give the @, and WXy values in the
increasing order of accuracy. Varshni's third, sixth and

seventh functions are also successful in this respect. For

over all representation of the P.E curves, the Rydberg,Varshni I[II-
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and Varshni VI functions were found to be most successful.

Steele et al 8 found that Linnett, Lippincott and Rydberg
functions vyield minimum percentage errors in the estimatss
of @, and w X values. However, a function evaluating satis-
factory g and weXg values does not necessarily show a good
reproducibility of P.E curves e.g. Linnett. On the other
hand a function like Hulburt and Hirschfelder gives nearly
the best fit of the potential for all the molecules considered.
The Frost-Musulin potential does not give any appreciable

improvement over the Morse curve, while Rydberg potential

is a distinct improvement.

Among the combdination potentials discussed in the previous
sections, MK potential 1is not satisfactory as compared 0
Morse potential. Also MRK potential fails to evaluate accuraze

e and WeXg values. The failure of these two combination
potentials, as we understand, is due to the following reasons:
(1) The simple Morse function though ‘'overworked in mary
branches of investigation' gives a poor performance as has
been noted by Varshnil. A suitable modification 1is therefore
needed to improvize the same. (2) Kratzer function is nct
applicable to molecular problems1 as it predicts the abnormal

result pA=1 for Sutherland's parameter which value is not

found in any diatomic molecule.
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On the other hand the combinations of Rydberg potential
with others are more successful e.g. MR and RK potenticls
are more suitable for the overall representation of the P.E.
curves and for estimating accurate ¢, and w X values. Tnae
reason is due to the fact that1 Rydberg function is at the

top in evaluating g and W X, in order of increasing accura:zy

and in reproducing the P.E. curves.

With a view to further improvize the general performancss
of individual Morse and Rydberg potentials, we have tried,
in the present work, various combinations of these functions

with other functions.

2.8 PRESENT WORK

We have suggested two hybrid potentials involving gene-
ralized Morse, Kratzer and Rydberg potentials, three combinations
of Rydberg function with Varshni's and Lippincott's functions
and one superposition function due to Varshni's second ard

sixth potentials.

2.8.1 Generalized Morse and Rydberg (GMR) potential

2
U(r)=D [ 1-exp(-bp )1°~D_[1-(1+bp Jexp(-to )] p° exp(-bo ) (17)
where pz(r-re)/re. It satisfies the three necessary criteria
of Varshni. The first term is a slight modification of Morse-
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potential, while the second term represents a more generalized
form of Rydberg potential. After simplification Eq(17) takes

the following form:

U(r)=D(1-exp(-b o )]2+De[[1+b 0 ) 0 exp(-2b 0]

-D, p3 exp(-b p ) (18)

The first two terms of this equation constitute a potential
which is similar to Hulburt-Hirschfelder potential. The GMR
potential is one of a c¢lass of possible potential functions

of the fcrm,
23 .
Ulp )=D, {[1-exp(-bp )]°+ gdexp(-bp JF(p) } (18a)
with p=(r—re)/re

For a variety of F({ p } values, the necessary criteria

U(0)=0 and U( o )} = De are satisfied. We have chosen
F(p )=[-1+(1+b> Jexp(-bp )] (18b)

By putting F( p} = C(1+b p Jexp(~bp }in Eq (18a) Hulburt-

Hirschfelder Potential can be obtained.

In general, ore may get F( p )=n+exp(-b p )(1+b p )and
find the best n value which would lead to the best performance
of the potential function given by Eq(18a). This potential

therefore needs to be further examined.

By following Varshni's method1 we obtained the expressions

given below:
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11 _ 2,02 oo 2
urlr,) = 2Deb /Ty, with b=( A )

11 ) 3 3 W, 3 4
t"e ) = -0 b%/r * and u'V(r_)=2D_b(7b7+3)/r,
- (A% -1) 6B %/ (19)
Cle— A e u)e
a - [8A -(3/A 0] Wiy r 2 (20)
and w_x, = A TR

It is interesting to note that Eq(19) 1is exactly the same
as that given by Morse, while G function in Eq(20) differs

by a factor of 3/ A”E
2.8.2 Generalized Morse and Kratzer(GMK) potential

Raghuwanshi and Shar‘ma2 directly combined Morse ard
Kratzer potentials to formulate their MK potential. We have
considered Varshni's first and fifth functions which are the
generalizations of Morse and Kratzer potentials respectively.
With a view to formulate a three-constant potential functicn
we used only one potential parameter (n).

U(r)=D_  {1-expl-n(r’-r_/2r *)] } %D, [1-(r /o)™ 17 (21)

It satisfies the three c¢riteria. Varshni's method leads 1o

II _ 2, 2 . _ %
U (re) = 4Den /re with n=( A/2)
111 - . 3, 3 v _ 2 2 4
U (re)- 12Den /re and U (re)-ZDen (14n +6n+14)/re
% 2
ae=[(A /2)°-1] 6B_ /we (22)
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- 5 2
wexe-[4 A-3(A /2)°=7]1 W/ Halg (23)

In Egq (21), a term ¢ De can be added to bring the

minimum of potential energy curves at zero value.
2.8.3 Varshni's Second and Sixth [V(II & VI)] Potential

Varshni's second potential function is wunsuitable for
calculating g and wexe values, while his sixth {function :s
seen to be the most accurate function in this respectl. ‘n
order to improvize the performance of second function, we
have linearly combined it with the relatively successful sixth
function
u(r)=b, {1-(r /rlexp [-a(r-re)] }2+De{ 1-(r/r Jexpl-a(r-r )] 12

(24)

In this combination we have used only one potential parameter
'a' to have a simple three-constant potential function. By

following Varshni's method we got

UH(re)=4De(azrez+1)/rez with a=(( 4/2)-11/r_

111 . 3.,.3.3 3
U (r‘e)— ‘lZ(De/r8 Ma e +3are+1}/re
v _ 4 4 4 2.2
U (re) = (4De/re [ 7a re +42a Ty +36are+18]
3 .2 2 2
Ofe=[(X -X"+3x)/(x +1)]638 /we (25)
wexe:[(8x6+41x4~6><3+75x2+54x—3)/(X4+2x2+1)] W/ Arez {26)

Where x=[( A/2)-1] = ar,
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2.8.4 Rydberg and Lippincott (RL) Patential

As per Var‘shnil. Rydberg potential is found to be nearly

at the top in evaluating IR and weXg values accurately.

It is also a successful function for overall representation

of P.E. curves. However, Lippincott function 1is found to
give most accurate values for w oXg only. It is not that satis-
factory in estimating ¢ g and representing the P.E.curves.

It is therefore felt that the performance of Lippincott function
for the latter purdose can be improved by combining it with
the Rydberg function. In this combination also we have made

use of a single potential parameter 'b!
2
U(r):-D8[1+b(r—re)}exp [—b(r-re)]+De{ 1—exp[-b(r—re) /r]} 27

According to Varshni's method we obtain

utr,)=(D b/r )br_+2] with b=(/ I+Z8 -1)/r,

111

vl r ) = - 2D b(b2r %43)/r 2
e e e e

t™V(r )= D b[3b°r °-12br +24]/r 3
e e e e e

) ) 2
Q= {[2bre 3]bre/[3bre+6]} 6B,7/ w_ 28

_ 4 4_ .3 3 2 2 2 2
weXg = [ (11b°r "-18b°r, "+1560°r “+46)/3(br +2)° } W4 ,r © 29

2.8.5 Rydberg and Varshni's Second[RV(II)]Potential

We have seen earlier that Rydberg potential is the
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most suitable one for both the calculations of ag and WM
and representation of P.E. curves, while Varshni's second
potential is unsuitable.1 In order to upgrade the general

performance of the latter function we have tried its combination

with Rydberg potential

U(r)= -De{ 1sb(r-r ) exp [-b(r—re)]}
2
+D,  { 1-(r /r) exp [-b(r-r )] } (30)
Varshni's method leads to

UII(re) = b, [3b2+(4b/re)+(2/r82)] with b=(v 84 ~2-2)/3r,

Uf”(re) - —De[8b3+(18b2/re)+(24b/r82)+(12/re3)]

uVir) = b, (170%560%/r )+120(0%/r ) 41aa b/ N e (727 )

g = [(8X3+9X2+12x+6)/(9X2+12x+6)] GBez/w e (311

® xe=[5(8x3+18x2+24x+12)2

. C(7xtesexe120x24144x472)] W

3(3x2+4x+2)2 (3x2+4x+2) T

(32)

Where x=br
e

2.8.6 Rydberg and Varshni's Sixth [RV(VI)]Potential

According to Varshni1 his sixth potential function is
the most accurate one in calculating oy values and representing

P.E. curves. Regarding the evaluation of w Xy it is found
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to be the next successful function to the Lippincott and Rydberg
potentials. Hence its appropriate combination with Rydberg
potential would further increase the accuracy of the results.

We have attempted the following combination:

U{r) = -D, {1+b(r—re) exp [-b(r-r )]}

2

+D { 1-(r/r,) exp [-b(r~re)]} (33)
Varshni's method gives
u™r) = D [(3b%-(4b/r )+(2/r ?)] with b=[(V Bz ~2)+2]/3r,

111 _ 3 a2 2
U (r,) = -D [8b"-18(b"/r )+(12b/r )]

v B 4 3 2, 2
U (r,) = D, [17b°-56(b"/r ) + (48b%/r %)]
23 2 2
v = {2b(4b ro -9br “+6r ) B 6B, (34)
2 2 .
3(3b L 4bre+2) W e
i
0 x = {20b2(4b2r 2_obr +6)°  b2(17b%r %-56br +48) W
e e e e - e e —_
2 - 2 2 -
3(3b%r 2-4br _+2) (3b2r 2-4br_+2) Ha
(35)

2.9 CONCLUDING REMARKS

Using the above suggested hybrid potentials we have
calculated the potential energy curves and the rotational-vibra-
tional coupling constants and anharmonicity constants for a

number of diatomic molecules which were randomly chosen.
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In the next Chapter 3 we have reported the potential energy
curves In comparison with those obtainable on other well-

known potential functions and by the RKRV method.
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