LIST OF FIGURES

¢.

FIG. NO.	TITLE	PAGE
L	Schematic representation of ferroelectric	
	hysteresis loop	4
1.2	Schematic representation of frequency	
	dependence of the several contributions to	
	the total polarizability	10
1.3(a)	Schematic representation of the free energy	
	as function of polarization for various values	
	of χ for a second-order transition	21
1.3(b)	Schematic representation of the spontaneous	
	polarization and reciprocal susceptibility	
	near the transition temperature T _c for a second-order	21
1.4(a)	Schematic representation of the free energy as	
	a function of polarization for various values	
	of x for a first-order transition	23
1.4(b)	Schematic representation of the spontaneous	
	polarization and reciprocal susceptibility nea	r
	the transition temperaure T _c for a first-orde	r
	transition	23
2.1	Some geometrical stacking possibilities for	
	pyroxenes structures, illustrating the three	

FIG. NO.	TITLE	PAGE
	different chain configurations :	
	(a) O-rotated chain, (b) S-rotated chain,	
	(c) E(Extented) chain	43
2.2	A view of the infinite linear chain of VO_4	
	tetrahedra along the C-axis. Only one such	
	chain is shown for clarity	43
2.3	A view of the structure looking down the (001)	
	direction. The octahedral co-ordination aroun	d
	sodium ions Na(1) and Na(2) is shown. All the	
	octahedra are not shown for clarity	44
2.4	X-ray diffraction pattern of NaVO _z	46
2.5	X-ray diffraction pattern of NaVO ₃ + 0.025 mol Nd ₂ O ₃	% 47
2.6	X-ray diffraction pattern of NaVO ₃ + 0.05 mol% Nd ₂ O ₃	48
2.7	X-ray diffraction pattern of $NaVO_3 + 0.1 mol\%$ Nd_2O_3	49
2.8	X-ray diffraction pattern of NaVO ₃ + 0.5 mol% Nd_2O_3	50
2.9	X-ray diffraction pattern of NaVO ₃ + 1 mol% Nd ₂ O ₃	51
3.1	Experimental set-up for studies of the	
	hysteresis loop and coercive field (E _c)	58

FIG. NO.	TITLE	PAGE
3.2	Sawyer-Tower circuit for the display of the	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	hysteresis loop (modified (form)	59
3.3	Ferroelectric hysteresis loop of NaVO ₃ at	
	different temperatures	61
3.4	Ferroelectric hysteresis loop of NaVO ₃ + 0.025	
	mol% Nd_2O_3 at different temperatures	62
3.5	Ferroelectric hysteresis loop of NaVO ₃ + 0.05	
	mol% Nd_2O_3 at different temperatures	63
3.6	Ferroelectric hysteresis loop of NaVO ₃ + 0.1	
	mol% Nd_2O_3 at different temperatures	64
3.7	Ferroelectric hysteresis loop of NaVO ₃ + 0.5	
	mol% Md_2O_3 at different temperatures	65
3.8	Ferroelectric hysteresis loop of NaVO ₃ + 1	
	mol% Nd_2O_3 at different temperatures	66
3.9	Variation of coercive field with temperatures	
	for different concentrations	70
4.1	Experimental set-up for measurement of	
	d.c. conductivity	78
4.2	Variation of current density (J) with d.c.	
	electrical field (E)	79
4.3	Variation of logarithmic conductivity with 1/T for NaVO ₃	81

· _

FIG. NO.	TITLE	PAGE
4.4	Variation of logarithmic conductivity with $1/T$ for NaVO ₃ + 0.025 mol% Nd ₂ O ₃	82
±.5	Variation of logarithmic conductivity with $1/T$ for NaVO ₃ + 0.05 mol% Nd ₂ O ₃	83
4.6	Variation of logarithmic conductivity with $1/T$ for NaVO ₂ + 0.1 mol% Nd ₂ O ₂	84
1.7	Variation of logarithmic conductivity with $1/T$ for NaVO ₃ + 0.5 mol% Nd ₂ O ₃	85
4.8	Variation of logarithmic conductivity with $1/T$ for NaVO ₂ + 1 mol% Nd ₂ O ₂	86
4.9	Variation of log σ with log t for NaVO ₃ and NaVO ₃ + 0.05 mol% Nd ₂ O ₃ above T _C	87
. 10	Variation of log σ with log t for NaVO ₃ and NaVO ₃ + 0.05 mol% Nd ₂ O ₃ below T _C	88
5.1	Experimental set-up to study the pyroelectric	
	measurements	100
š. 2	Variation of pyroelectric current with	
	temperature for different concentrations	102
5.3	Variation of pyroelectric coefficient with	
	temperature for different concentrations	103

.

· · ·