

CHAPTER - 5

EVALUATION OF SPECTROSCOPIC CONSTANTS OF POLAR DIATOMIC MOLECULES ON GEP AND GLP FUNCTIONS

5.1 INTRODUCTION

We have described in Chapter 1 the criteria for testing the validity of a given potential function. Its merits and demerits are decided by testing it in two different ways:

- i) By comparing its potential energy curve with the experimental RKRV curve and
- ii) By calculating the various spectroscopic constants like $a_e^{}$, $\omega_e^{}x_e^{}$ etc and comparing their values with the experimental results. However, the evaluation of correct values for these spectroscopic constants is only a necessary condition but not sufficient. A function which is satisfactory in producing the potential energy curve may not be so in evaluating $a_e^{}$ and $\omega_e^{}x_e^{}$. Further a function, which may be useful for calculating $\omega_e^{}x_e^{}$ may not be accurate in estimating $a_e^{}$ values.

By employing Varshni's method¹ one can obtain expressions for $\alpha_{e}^{}$ and $\omega_{e}x_{e}^{}$ after taking the derivatives of the function upto the fourth order, while in the case of higher order constants the fifth order derivative is also required. This means the results for these spectroscopic constants are found to be very sensitive to the form of potential function used in the calculations. This provides a sensitive method for checking the validity of a given potential energy function. This fact has been well considered in our GEP and GLP functions proposed in Section 4.3. The characteristic features of these functions are the parameters n and m involved in the repulsive type

MIYAJI UMIYEBBITY, KULHAPUR

UNIV

terms. By suitably changing the values of n and m one can vary the forms of the two functions so as to get the most accurate $\alpha_{e,\omega} e^{x}e^{a}$ and higher order spectroscopic constants.

In this Chapter, first we have obtained the expressions for the potential parameters relevant to the GEP and GLP functions. Then using these potential parameters we have derived expressions for α_e and $\omega_e x_e$. The higher order spectroscopic constants are related to α_e and $\omega_e x_e$ through the known relations in the literature.

5.2 EXPRESSIONS FOR SPECTROSCOPIC CONSTANTS

5.2.1 Using GEP Function

On GEP function the expressions for potential parameters are already derived and reported in Section 4.3.2 [eqs.(4.25), (4.30) and (4.31)]. Also the derivatives of first and second order are given by the eqs. (4.22) and (4.23). At $r=r_e$ the eq.(4.23) takes the form

$$U^{II}(r_{e}) = \frac{(-e^{2}/r_{e}^{3}) \left[r_{e}(n+1) + (m(m+2n+1)r_{e}^{m}/Q_{1}) + (m r_{e}^{m}/Q_{1})^{2} \right]}{(n+m r_{e}^{m}/Q_{1}) \dots (5.1)}$$

Differentiating eq.(4.23) we can obtain the third and fourth order derivatives whose values at $r=r_{e}$ are found to be

$$U^{\text{III}}(\mathbf{r}_{e}) = (e^{2}/r_{e}^{4}) \left[6(n+m r_{e}^{m}/Q_{1}) - \left[A' + (B'r_{e}^{m}/Q_{1})^{+} C'(r_{e}^{m}/Q_{1})^{2} + D'(r_{e}^{m}/Q_{1})^{3} \right] \right] / (n+m r_{e}^{m}/Q_{1}) \dots (5.2)$$

$$U^{IV}(r_{e}) = (-e^{2}/r_{e}^{5}) \left[24n+A' (n-3) + (ar_{e}^{m}/Q_{1}) + b(r_{e}^{m}/Q_{1})^{2} + d(r_{e}^{m}/Q_{1})^{3} + mD'(r_{e}^{m}/Q_{1})^{4} \right] / (n+mr_{e}^{m}/Q_{1}) \dots (5.3)$$

where a = m(A'+24) + B'(m+n-3)

$$b = mB' + (2 m + n - 3)C'$$

$$d = mC' + (3 m + n - 3)D'$$

$$A' = n(n - 1) (n - 2)$$

$$B' = m [n(n - 1) + (m + 2 n - 1) (m + n - 2)]$$

$$C' = 3 m^{2} (m + n - 1)$$

$$D' = m^{3}$$

and Q₁ is given by eq. (4.30) and by eq.(4.32) for n=0 Employing eqs.(5.1)-(5.2) the expressions for α_e and $\omega_e x_e$ are derived with the help of equations given by Varshni¹

$$\alpha_{e} = (6B_{e}/\omega_{e}) \left[(U^{III}(r_{e})/U^{II}(r_{e})) (r_{e}/3) + 1 \right] \dots (5.4)$$

$$\omega_{e} x_{e} = (2.1078 \times 10^{-16}/\mu) \left[(5/3) (U^{III}(r_{e})/U^{II}(r_{e}))^{2} - U^{IV}(r_{e})/U^{II}(r_{e}) \right] \dots (5.5)$$

Using the eqs.(5.4)-(5.5), the expressions for higher order spectroscopic constants¹³ are written as,

$$\mathbf{B}_{e} = \mathbf{D}_{e} \left[\left(8 \underset{e}{\omega} \underset{e}{w} _{e} / \underset{e}{\omega} \right) - \left(5 \underset{e}{\alpha} / \underset{e}{B} \right) - \left(\alpha \underset{e}{\omega} _{e} / 24 \underset{e}{B} \right) \right] \quad \dots \quad (5.6)$$

and

$$H_v = (2 D_e / 3 \omega_e^2) (12 B_e^2 - \alpha_e \omega_e)$$
(5.7)

5.2.2 Using GLP Function

The expressions for potential parameters on GLP function are already derived in Section 4.3.1 and are given by eqs.(4.17), (4.18). The first order derivative is given by eq.(4.14).Differentiating eq.(4.14)further with respect to internuclear distance r, derivatives up to fourth order are obtained.Their values at r=r are expressed as

$$U^{II}(r_{e}) = \left[(-1/r_{e}) + p q/s^{2} \right] 2 e^{2}/r_{e}^{2} \dots (5.8)$$

$$U^{III}(r_{e}) = \left(2 e^{2}/r^{3} \right) \left[(3/r_{e}) - (2p q^{2}/s^{3}) + 4p(q - H)/n s^{2} \right] \dots (5.9)$$

$$U^{IV}(r_{e}) = \left(4 e^{2}/r^{4} \right) \left[(-6/r_{e}) + (3 p q^{3}/s^{4}) - (12 p q(q - H)/n s^{3}) + 2 p(q - H)(4 - n)/n^{2} s^{2} \right] \dots (5.10)$$

where $p = (2 G H)/n e^2$

q =
$$(2^{n-1}((4/n)+1)r_e^{4/n}) + H$$

s = $(2^{n-1}r_e^{4/n}) + H$

With the help of eqs(5.8)-(5.10), the expressions for $\alpha_{e}^{\omega}, \omega_{e}^{x}$ and higher order spectroscopic constants can be obtained as in the case of GEP function.

5.3 RESULTS AND DISCUSSION

In this section we present the calculated values of various spectroscopic constants using the eqs.(5.4)-(5.7) derived on GEP and GLP potentials as explained in Section 5.2. The necessary molecular data required in this connection have been taken from Refs.(2) and (3) and the same have been listed in Tables 5.1 for alkali halides and hydrides and heavy metal halide molecules. Appropriate computer programs have been written in BASIC so as to carry out fast and accurate evaluation of spectroscopic constants. These programs have been given in Tables 5.2 & 5.4. A WIPRO PC was employed to obtain the print outs of the calculated results.

5.3.1 Calculations of α_{a} Constants

a) ALKALI HALIDE MOLECULES

The estimated q_{e} values on different ionic potential functions for a number of alkali halide molecules are given in Table 5.6. A comparative study of the results shows that our GEP function with n=0 and m=1 yields an average error of \pm 16.65 % which is comparable to the errors evaluated on potentials due to Gupta et al⁴ and Hasan et al⁵. However, this error is found to be considerably large in comparison with those calculated on the potentials due to Sangachin and Bakshi⁶, Harrison⁷, Chaturvedi et al⁸ and Shankar and Kumar⁹.Our GLP function with n = 1 fails to evaluate accurate α_{e} values for alkali halides because the average % error comes out to be abnormally large.

b) ALKALI HYDRIDES

The calculated α_e values are listed in Table 5.7. The results show that the performance of our GEP function with n=0 and m=1 is found to be in agreement with that of the potential due to Varshni and Shukla.¹⁰ In each case the average error comes out to be above \pm 17 %, while GLP function with n =1 evaluates a larger % error. However, the potential functions due to Sangachin and Bakshi⁶, Ali et al¹¹ and Hellmann¹² are found to yield more satisfactory results comparatively.

c) HEAVY METAL HALIDES

The calculated results for this group of molecules are tabulated in Table 5.7. We have reported only the results on GEP function for various combinations of n and m. The α_e values on GLP functions are found to be abnormally high leading to errors of the order of few hundred . Hence these are not reported here. Further to our knowledge spectroscopic constants for heavy metal halide molecules have not been reported in the literature so far. Therefore a comparative study with our results has become difficult in this work. The reported values in Table 5.7 show that the GEP function with n=2 and m=2 proves to be a satisfactory potential in evaluating α_e values for heavy metal halides.

A final look at the Tables 5.6 and 5.7 shows that the GEP function with different n and m paired values is found to be more successful as compared to the GLP function with n=1.

5.3.2 Calculations of $\omega_{e} x_{e}$ Constants

a) ALKALI HALIDES

The vibration anharmonicity constants determined for this group of molecules are reported in Table 5.8. The performance of GEP function is seen to be comparatively satisfactory only for the combination n=0 and m=1. This GEP function estimates an average error of ± 19.87% which is better than that given by the potential due to Hasan et al⁵. However, compared to other potential functions listed in Table 5.8, the performance of the said GEP function is not an encouraging one. Similarly GEP function with n=1 evaluates considerably larger average error of about 68%.

b) ALKALI HYDRIDES

The relevant results are given in Table 5.9. In this case GLP function with n=1 and GEP with n=0 and m=1 determine average errors of the order of 12 to 15%. However, this accuracy is not satisfactory in comparison with the errors presented by other potential functions.

c) HEAVY METAL HALIDES

In Table 5.9 are given the $\omega_{e}x_{e}$ values calculated on GEP potential with two different combinations of n and m values. It is seen that with m=0.5 and n= -1 and -2 the GEP function evaluates errors of \pm 35.63 and \pm 9.93% respectively. To the best of our knowledge $\omega_{e}x_{e}$ constants for heavy metal halides are not reported

in the literature to this date. Therefore our calculations may perhaps be first of their kind. Our GLP function gives large % error values and hence the results are not reported in Table 5.9.

5.3.3 Calculations of Higher Order Spectroscopic Constants

The higher order spectroscopic constants have been reported in the literature by quite a few investigators. Further only the experimental data of rotational constants β_e compiled by Brummer and Karplus¹⁴ is available in the literature.

a) ALKALI HALIDES

The calculated values of constants β_e and H_v are presented in Table 5.10. The GEP function with n=0 and m=1 is found to estimate reasonably accurate β_e values only for fluorides and chlorides of various alkali atoms. In certain cases the values come out to be positive as against negative experimental values. This is in contradiction with the results obtained by Hasan et al.⁵ On the other hand the GLP function evaluates negative and high β_e values for all the alkali halides. Therefore this function is not suitable for calculations of β_c constants of alkali halides.

Regarding the estimation of H_v values it is seen that GEP and GLP functions evaluate negative values in most of the cases as against those given by Hasan et al.⁵

When we compare the H values calculated on GEP function with those reported by Hasan et al 5 it is found that there is a

satisfactory agreement between individual H_V values for the halides of Na, K, Rb and Cs. In case of Li halides GEP function estimates considerably lower values than those calculated by Hasan et al.⁵On the GLP function, in general the H_V results are found to be considerably large when compared with other two potentials in the Table 5.10. Since experimentally H_V data is not available it is difficult to test the accuracy of evaluation by the individual functions.

b) AKLALI HYDRIDES

The higher spectroscopic constants for alkali hydrides are reported in Table 5.11. Since the experimental data on β_e and H_v is not available to our knowledge, it is difficult to compare the calculated values with some standards and to draw any conclusion regarding the merits and demerits of individual functions in the evaluation of higher order spectroscopic constants for alkali hydride molecules.

c) HEAVY METAL HALIDES

The β_e and H_v values calculated for this set of molecules on GEP function with n=-2 and m=0.5 are also listed in Table 5.11. These reported values would be first of their kind as experimental/theoretical data is not found in the literature.

5.4 SUMMARY

In the beginning we have obtained the expressions for the relevant potential parameters involved in the GEP and GLP functions.

Expressions for ${}^{\alpha}_{e}$, ${}^{\omega}_{e}$, ${}^{\beta}_{e}$ and ${}^{H}_{V}$ are reported for each type of functions. For the evaluation purpose computer programs have been developed and presented in separate Tables 5.2-5.4.

In the case of α_e values for alkali halides, the GEP function with n=0 and m=1 calculates satisfactory results, while GLP function with n=1 totally fails. This is more or less true in the case of alkali hydrides also. For heavy metal halides the GEP function with n=2 and m=2 once again proves to be successful,whereas the GLP function leads to abnormally high % errors. The GLP function with n=1 yields considerably large % errors in $\omega_e x_e$ values for alkali halides and heavy metal halides. But in the case of alkali hydrides the performance of this function is found to be comparatively satisfactory. On the other hand GEP function is found to evaluate consistent satisfactory $\omega_e x_e$ values for all the three types of ionic molecules considered in the present work.

Regarding the calculations of higher order spectroscopic constants it is seen that, in the case of alkali halides, the GEP function with n=0 and m=1, estimates reasonably accurate β_e values only for fluorides and chlorides. Also the H_V values on this function satisfactorily agree with those reported by Hasan et al.⁵ However, GLP function with n=1 fails to give accurate results. In the case of alkali hydrides and heavy metal halides our reported values for β_e and H_V may be first of their kind in the absence of any reliable exprimental data.

11/
5.1
TABLE

MOLECULAR DATA USED IN

DATA USED IN THE CALCULATIONS

Molecule	µ (a.m.u.)	$\omega_{e}(cm^{-1})$	ω _{exe} (cm ⁻¹)	B _e (cm ⁻¹)	$\alpha_{e}^{(cm^{-1})}$	r _e (Å)	D _e (10 ⁻⁷ cm ⁻¹)
1	2	Э	4	5	9	7	8
			ALKALI H	ALIDE MOLECULE	SS		
LiF	5.1238103	910.34	7.929	1.3452576	0.0202868	1.563864	117.54
LiCl	5.8435744	643.31	4.5	0.7065222	0.0080096	2.020673	34.087
LiBr	6.4431916	563.1	3.5	0.555399	0.005644	2.170427	21.59
LiI	6.648441	498.1	3.3	0.443182	0.004090	2.391924	14.48
NaF	10.4021896	536	3.4	0.4369012	0.0045586	1.92594	11.6
NaC1	13.8706867	366	2.0	0.218063	0.0016248	2.36079	3.120
NaBr	17.803435	302	1.5	0.1512533	0.0009409	2.50203	1.553
NaI	19.463754	258	1.0	0.1178056	0.0006477	2.71145	0.973
KF	12.7712442	428	2.4	0.27993741	0.00233503	2.17145	4.834
KCI	18.4291764	281	1.3	0.1286347	0.0007899	2.66665	1.087
KBr	26.0849820	213	0.8	0.08122109	0.00041481	2.82078	0.4461
KI	29.8108348	186.53	0.574	0.06087473	0.00026776	3.04784	0.2594
RbF	15.5248345	376	1.9	0.210664	0.0015227	2.270333	2.683
RbC1	24.7685361	228	0.92	0.0876404	0.0004536	2.78673	0.4947
RbBr	40.902717	169.46	0.463	0.04752798	0.00018596	2.94474	0.14959
RbI	50.872801	138.51	0.335	0.3283293	0.00010946	3.17687	0.07380

Contd...118

GF 16.523003 32.56 1.61 0.18436969 0.0011756 2.345351 2.0168 Csc1 27.6847083 214.17 0.731 0.731 0.0033756 2.90627 0.32675 Csc1 27.6847083 214.17 0.731 0.73203439 0.00033756 2.90627 0.32675 CsBr 49.516045 149.66 0.374 0.3606925 0.00012401 3.0725 0.0033746 CsBr 0.9613933 1405.65 0.3505 0.00012401 3.0725 0.033746 LiH 0.9654956 119.178 0.3505 0.21323 3.31519 0.033746 KH 0.96549366 1172.2 19.72 19.72 19.72 13.30 KH 0.96549366 1172.2 19.72 14.4912 0.1333 1.45567 1500 KH 0.9654936 1172.2 19.72 14.312 0.1333 1.456 1500 KH 0.9664396 1172.2 19.21 3.2412 0.1324 1.232 <th>t</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th>	t	2	3	4	5	6	7	8
C5C1 27.6847033 21417 0.734 0.0720149 0.00033756 2.90627 0.23575 C5Br 49.516045 149.66 0.374 0.0360925 0.0012401 3.0725 0.033746 C5Br 64.917826 119.178 0.2305 0.2362335 0.00063263 3.31519 0.033746 LH 0.88123833 1405.65 0.2320 0.2362735 0.00063263 3.31519 0.03746 KH 0.98123833 1405.65 0.2320 0.2362735 0.00063263 3.31519 0.03746 KH 0.98241434 983.6 14.21 14.32 14.32 1.2132 1.5957 8617 KH 0.9824134 983.6 14.21 3.020 0.03157 1.5957 1.500 KH 0.9824134 983.6 14.21 3.020 0.0172 2.367 1.230 KH 1.0024037 981.0 12.3 2.02334 0.001230 0.03149	CsF	16.6223003	352.56	1.61	0.18436969	0.0011756	2.345351	2.0168
GSBr 49.516045 149.66 0.374 0.03606925 0.00012401 3.07255 0.0337145 Cs1 64.917826 119.178 0.2505 0.2362735 0.00066263 3.31519 0.037145 LiH 0.88123833 1405.65 $0.23.00$ 7.5131 0.21322 1.5957 8617 NH 0.88123833 1405.65 23.20 7.5131 0.21322 1.5957 8617 NH 0.98549966 1172.2 19.72 4.9012 0.1333 1.8974 3320 KH 0.98241434 983.6 14.21 3.412 0.031 1.242 1500 NBH 0.99600357 891.0 14.21 3.020 0.031 1.242 1230 KH 0.99600357 891.0 12.9 2.7099 0.072 2.367 1230 CH 1.00024037 891.0 12.9 2.7099 0.072 2.44386 1.926 TiF 1.7386877 477.3 2.3 0.223150163 0.00150365 2.44386 1.926 TiF 17.386877 273 0.223150163 0.00150365 2.944386 0.9376 TiF 17.386877 283.7 0.233150163 0.00150365 2.944386 0.9376 TiF 17.3868726 283.7 0.233150163 0.00150365 0.001379 0.9367 TiF 17.3868736 0.93176 0.023997 0.001279 0.03379 0.0376 TiF 17.9867366 192.10 0.2324	CsC1	27.6847083	214.17	0.731	0.07209149	0.00033756	2.90627	0.32675
Cs1 64.917826 119.178 0.2505 0.02362735 0.00068263 3.31519 0.037146 LiH 0.88123833 1405.65 $2.3.20$ 7.5131 0.2132 1.5957 8617 NaH 0.96549966 1172.2 19.72 1.912 0.1353 1.8874 3.320 KH 0.96549966 1172.2 19.72 4.9012 0.1353 1.8874 3.320 KH 0.99624134 983.6 14.21 3.412 0.081 1.242 13320 KH 0.9960357 983.6 14.21 3.020 0.072 2.367 1320 KDH 0.9960357 981.0 14.21 3.020 0.072 2.367 1320 KDH 0.9980357 981.0 12.9 3.2351613 0.001379 2.4938 1.130 KDH 1.0024037 283.73563 0.013979 0.0013036 2.194366 0.337 TIC 2.98	CsBr	49.516045	149.66	0.374	0.03606925	0.00012401	3.07225	0.08380
ALKALI HYDRIDE MOLECULESLiH 0.88123833 1405.65 23.20 7.5131 0.2132 1.5957 8617 NeH 0.96549966 1172.2 19.72 4.9012 0.1353 1.8874 3320 KH 0.9950357 936.9 14.3 3.412 0.1353 1.8874 3320 KH 0.99600357 936.9 14.21 3.020 0.031 1.242 1500 KH 0.99600357 936.9 14.21 3.020 0.072 2.4938 1130 CsH 1.00024037 891.0 12.9 2.7099 0.072 2.4938 1130 TiF 1.00024037 891.0 12.9 2.7099 0.072 2.4938 1130 TiF 17.3869727 477.3 2.3 0.223150163 0.00150365 2.084438 1.948 TiCl 29.8725631 283.7 0.81 0.091397 0.00130365 2.648436 0.375 TiBr 58.014373 192.10 0.39 0.023150163 0.001275 2.61819 0.035 TiBr 58.014373 192.10 0.39 0.0231676 0.0001275 2.61819 0.035 TiBr 78.375666 150.0 $ 0.0271676$ 0.0001275 2.61819 0.035 TiBr 192.10 0.39 0.0271676 0.0012775 2.61819 0.035 TiBr 16.3028614 535.3 2.64 0.0012792 2.91367 0.03579 TiBr	CsI	64.917826	119.178	0.2505	0.02362735	0.00068263	3.31519	0.037146
Lith 0.88123833 1405.65 23.20 7.5131 0.2132 1.5957 8617 Nath 0.96549966 1172.2 19.72 4.9012 0.1353 1.8874 3320 Kth 0.96549666 1172.2 19.72 4.9012 0.1353 1.8874 3320 Kth 0.98241434 983.6 14.3 3.412 0.081 1.242 1500 RbH 0.99600357 936.9 14.21 3.020 0.072 2.367 1230 RbH 0.99600357 891.0 12.9 3.720 0.072 2.367 1230 RbH 0.99600357 891.0 12.9 3.720 0.072 2.367 1230 RbH 0.99600357 891.0 12.9 3.723 0.072 2.4338 1130 IFF 17.3868727 477.3 2.3 0.223150163 0.00150365 2.084438 1.946 ITC 29.8725631 283.7 0.81 0.023397 2.434826 0.375 ITC 29.8725631 283.7 0.81 0.023395 2.061438 1.94826 ITIC 29.8725631 192.10 0.39 0.023395 2.061438 0.083 III 78.378506 150.0 -1 0.02324 0.0001275 2.61819 0.083 III 78.378506 150.0 -1 0.262324 0.0001275 2.61819 0.083 III 78.378506 150.0 -1 0.262324 0.00018797				ALKALI H	YDRIDE MOLECULE	S		
NaH 0.96549966 1172.2 19.72 4.9012 0.1353 1.8874 3320 KH 0.98241434 983.6 14.3 3.412 0.031 1.242 1500 RbH 0.99600357 936.9 14.21 3.020 0.072 2.367 1230 RbH 0.99600357 936.9 14.21 3.020 0.072 2.367 1230 RbH 0.99600357 936.9 14.21 3.020 0.072 2.367 1230 RbH 1.00024037 891.0 12.9 2.77999 0.072 2.367 1230 RbH 1.00024037 891.0 12.9 2.77999 0.072 2.4938 1130 TIF 17.3868727 477.3 2.3 0.223150163 0.00150385 2.084438 1.948 TIC1 29.8725631 283.7 0.81 0.223150163 0.00150385 2.084438 1.948 TIC1 29.8725631 283.7 0.81 0.0423895 0.0012755 2.61819 0.375 TIR 78.378506 150.0 0.381 0.0221676 0.0001275 2.61819 0.036 TIR 78.378506 150.0 $ 0.0212676$ 0.0001275 2.61819 0.036 TIR 78.378506 150.0 $ 0.0212676$ 0.0001275 2.61819 0.036 TIR 78.378506 150.0 $ 0.0212676$ 0.0001275 2.61819 0.036 TIR 76.3 2.64 <	LiH	0.88123833	1405.65	23.20	7.5131	0.2132	1.5957	8617
KH 0.98241434 983.6 14.3 3.412 0.081 1.242 1500 RbH 0.99600357 936.9 14.21 3.020 0.072 2.367 1500 RbH 0.99600357 936.9 14.21 3.020 0.072 2.367 1230 CsH 1.00024037 891.0 12.9 2.7099 0.0579 2.4938 1130 Th HEAVYMETALHALIDE MOLECULES 2.4938 1130 Th 17.3868727 477.3 2.3 0.223150163 0.00150385 2.49436 1.948 Th 17.3868727 477.3 2.3 0.023397 0.00150385 2.084438 1.948 Th 17.3868727 283.7 0.817 0.0233957 0.0001275 2.61819 0.375 Th 78.378506 150.0 0.39 0.0423895 0.0001275 2.61819 0.083 Th 78.378506 150.0 $ 0.2231676$ 0.0001275 2.61819 0.083 Th 78.378506 150.0 $ 0.223234$ 0.0001275 2.61819 0.036 Th 78.378506 150.0 $ 0.223234$ 0.001877 2.81367 0.036 Th 16.3028614 535.3 2.64 0.223244 0.001877 2.61819 0.036 Th 16.3028614 535.3 2.64 0.202324 0.001877 2.40169 2.52 Th 1.019958 0.0005178 0.001877 2.40	NaH	0.96549966	1172.2	19.72	4.9012	0.1353	1.8874	3320
RbH 0.99600357 936.9 14.21 3.020 0.072 2.367 1230 CsH 1.00024037 891.0 12.9 2.7099 0.0579 2.4938 1130 HEAVYHEAVYHEAVYHALIDE MOLECULES 2.14938 1.948 TlF 17.3868727 477.3 2.3 0.223150163 0.00150385 2.084438 1.948 TlC1 29.8725631 283.7 0.81 0.223150163 0.00150385 2.084438 1.948 TlC1 29.8725631 283.7 0.81 0.091397 0.0003979 2.484826 0.375 TlC1 29.8725631 283.7 0.31 0.091397 0.0003979 2.484826 0.375 TlDr 58.014373 192.10 0.39 0.0423895 0.0001275 2.61819 0.038 TlDr 78.378506 150.0 $ 0.0271676$ 0.0001275 2.61819 0.038 InF 78.378506 150.0 $ 0.223244$ 0.0001275 2.81367 0.038 InF 16.3028614 535.3 2.64 0.262324 0.00018797 1.985396 2.52 InC 26.8097927 317.4 1.01 0.109058 0.0005178 2.401169 0.51	КН	0.98241434	983.6	14.3	3.412	0.081	1.242	1500
CsH 1.00024037 891.0 12.9 2.7099 0.0579 2.4938 1130 HEAVY METAL HALIDE MOLECULES 1130 1130 TIF 17.3868727 477.3 2.3 0.223150163 0.00150385 2.4938 1.948 TIC1 29.8725631 283.7 0.81 0.0233150163 0.00150385 2.484826 0.375 TIC1 29.8725631 283.7 0.81 0.091397 0.0003979 2.484826 0.375 TID1 29.817373 192.10 0.39 0.0423895 0.0001275 2.61819 0.083 TID1 78.378506 150.0 0.39 0.022334 0.0001275 2.61819 0.083 TID 78.378506 150.0 - 0.022324 0.00018797 1.985396 2.033 InF 16.3028614 535.3 2.61819 2.52 1.0365 2.52 InF 16.3028614 535.3 2.61819 1.9365396 2.523 InF 2.68097	RbH	0.99600357	936.9	14.21	3.020	0.072	2.367	1230
HEAVY METAL HALIDE MOLECULES TIF 17.3868727 477.3 2.3 0.223150163 0.00150385 2.084438 1.948 TIC1 29.8725631 283.7 0.81 0.091397 0.0003979 2.484826 0.375 TIC1 29.8725631 283.7 0.81 0.091397 0.0003979 2.484826 0.375 TIBr 58.014373 192.10 0.39 0.0423895 0.0001275 2.61819 0.083 TIBr 58.014373 192.10 0.39 0.02231676 0.0001275 2.61819 0.083 TIBr 78.378506 150.0 - 0.02271676 0.00001275 2.61819 0.083 InF 16.3028614 535.3 2.64 0.035 2.81367 0.035 InF 16.3028614 535.3 2.64 0.035 2.52 InC1 26.8097927 317.4 1.01 0.109058 0.0005178 2.401169 0.51	CsH	1.00024037	891.0	12.9	2.7099	0.0579	2.4938	1130
TIF 17.3868727 477.3 2.3 0.223150163 0.00150385 2.084438 1.948 TIC1 29.8725631 283.7 0.81 0.013979 2.484826 0.375 TIBr 58.014373 192.10 0.39 0.0423895 0.0001275 2.61819 0.083 TIBr 58.014373 192.10 0.39 0.0423895 0.0001275 2.61819 0.083 TII 78.378506 150.0 $ 0.0271676$ 0.0001275 2.61819 0.036 InF 78.378506 150.0 $ 0.0271676$ 0.000663 2.81367 0.036 InF 26.809727 317.4 1.01 0.109058 0.0018797 1.985396 2.52 InC1 26.809727 317.4 1.01 0.109058 0.0005178 2.401169 0.51				HEAVY META	L HALIDE MOLECI	JLES		
TIC129.8725631283.70.810.0913970.00039792.4848260.375TIBr58.014373192.100.390.390.0423895'0.00012752.618190.083TII78.378506150.0-0.02716760.00006632.813670.036In78.378506150.0-0.02716760.00006632.813670.036In78.378506150.0-0.02716760.000187971.9853962.52In26.8097927317.41.010.1090580.00051782.4011690.51	TIF	17.3868727	477.3	2.3	0.223150163	0.00150385	2.084438	1.948
TIBr58.014373192.100.390.04238950.00012752.618190.083TII78.378506150.0-0.02716760.00006632.813670.036InF16.3028614535.32.640.2623240.00187971.9853962.52InCl26.8097927317.41.010.1090580.00051782.4011690.51	TICI	$29.87_{2}5631$	283.7	0.81	0.091397	0.0003979	2.484826	0.375
TII78.378506150.0-0.02716760.0006632.813670.036InF16.3028614535.32.640.2623240.00187971.9853962.52InC126.8097927317.41.010.1090580.00051782.4011690.51	TlBr	58.014373	192.10	0.39	0.0423895	0.0001275	2.61819	0.083
InF 16.3028614 535.3 2.64 0.262324 0.0018797 1.985396 2.52 InC1 26.8097927 317.4 1.01 0.109058 0.0005178 2.401169 0.51	TII	78.378506	150.0	I	0.0271676	0.0000663	2.81367	0.036
InCl 26.8097927 317.4 1.01 0.109058 0.0005178 2.401169 0.51	InF	16.3028614	535.3	2.64	0.262324	0.0018797	1.985396	2.52
	InC1	26.8097927	317.4	1.01	0.109058	0.0005178	2.401169	0.51

* Ref.(2)

•

Contd...119

118

(Contd.....Table 5.1

5.1)
lTable
(Contó

8	0.135	0.076	5.0	1.01	0.320	0.157
7	2.54318	2.75365	1.774369	2.201690	2.35248	2.57467
9	0.0001862	0.000104	0.0028642	0.0007936	0.0003207	0.000139
Ð	0.0548944	0.036867	0.3595161	0.1499045	0.081839	0.056934
4	0.65	0.4	3.2	1.2	0.81	0.5
œ	221.0	177.1	622.2	365.3	263.0	216.6
2	47.480276	60.303194	14.8932747	23.1990149	37.220586	44.666098
1	InBr	InI	GaF	GaC1	GaBr	GaI

* Ref.(2)

COMPUTER PROGRAM TO CALCULATE \checkmark e ,wexe AND

HIGHER ORDER CONSTANTS USING GEP FUNCTION

```
10 'Gen.Exp Potential I proposed by Shri.V.M .Patil
20 'file Erot-vib
30 'Rotation vib. coupling const. & vib anharmonic const.
40 'M1=Mass, W=We, WX=WeXe, BE=Be, RC= 🔩, RE=re, DE=De, RC1=cal 🕰
    WX1=cal.wexe,ERC1=% in 🔏 ,EWX1=% in wexe,BE1= 👌,HV=Hv
50 'ERC1=% in \alpha_e , EWX1=% in wexe, BE1= \beta_e, HV=Hv
60 INPUT M1, W, WX, BE, RC, RE, DE
70 PRINT "N", "m
80 PRINT "rc1", "erc1", "wx1", "ewx1", "be1", "hv
9\emptyset FOR N = -3 TO -1 STEP -1
100 FOR M = 5 TO 2 STEP .5
11Ø E1 =4.8E-1Ø
12Ø KE=.Ø5888*M1*(W)^2
13Ø A=N*(KE*(RE)^3 + (N+1)*(E1)^2)/(E1)^2
14Ø B=M *(KE*(RE)^3+(2*N+M+1)*(E1)^2)*((RE)^M/(E1)^2)
15Ø L1=+B/(2*A)
16\emptyset L2 = -B/(2*A)
17Ø C=(M)^2*(RE)^(2*M)
18Ø Q=(((B)^2-4*A*C)^.5/(2*A))
190 Q1 = -L1 + Q
200 A1=N*(N-1)*(N-2)
210 B1=M*(N*(N-1)+(M+2*N-1)*(M+N-2))
22Ø C1=3*(M^2)*(M+N-1)
230 D1=M^3
240 P=M*(A1+24)+B1*(M+N-3)
25Ø U=M*B1+C1*(2*M+N-3)
26\emptyset S=C1*M+D1*(3*M+N-3)
270 T1=N*(N+1)+M*(M+2*N+1)*(RE^M/Q1)+(M^2)*(RE^M/Q1)^2
28Ø X1=-(6*N+(6*M-B1)*((RE^M)/Q1)-A1-C1*((RE^M)/Q1)^2-D1*
    ((RE^M)/Q1)^3)/(RE*T1)
29Ø Y1=(24*N+P*(RE^M/Q1)+A1*(N-3)+U*(RE^M/Q1)^2+S*
    (RE^M/Q1)^3+D1*(RE^M/Q1)^4)/(RE^2*T1)
300 RC1=-(6*BE^2)*((X1*RE/3)+1)/W
31Ø WX1=(2.1Ø78E-16)*((5*X1^2/3)-Y1)/M1
32Ø BE1=DE*((8*WX1/W)-(5*RC1/BE)-((RC1)^2*W/(24*BE^3)))
33Ø HV=((2*DE)/(3*W^2))*(12*BE^2-RC1*W)
34Ø ERC1=((RC1-RC)/RC)*1ØØ
35Ø EWX1=((WX1-WX)/WX)*1ØØ
360 PRINT N, M
370 PRINT RC1, ERC1, WX1, EWX1, BE1, HV
380 NEXT M
390 NEXT N
400 GOTO 60
41Ø END
```

TABLE 5.3 COMPUTER PROGRAM TO CALCULATE de , wexe AND HIGHER ORDER CONSTANTS USING GEP FUNCTION IN THE CASE OF n=Ø 10 'Gen.Exp Potential I proposed by Shri.V.M .Patil 20 'file Erot-vib 30 'Rotation vib. coupling const. & vib anharmonic const. 40 'M1=Mass, W=We, WX=WeXe, BE=Be, RC=~, RE=re, DE=De, RC1=cal.~ WX1=cal.wexe, ERC1=% in 🔏 , EWX1=% in wexe, BE1= A, HV=Hv 50 'ERC1=% in 🖌 ,EWX1=% in wexe,BE1= 🖧,HV=Hv 6Ø INPUT M1, W, WX, BE, RC, RE, DE 70 PRINT "N", "m 80 PRINT "rc1", "erc1", "wx1", "ewx1", "be1", "hv 9Ø N=Ø 100 FOR M = 5 TO 2 STEP .5 110 E1 =4.8E-10 12Ø KE=.Ø5888*M1*(W)^2 13Ø A=N*(KE*(RE)^3 + (N+1)*(E1)^2)/(E1)^2 14Ø B=M *(KE*(RE)^3+(2*N+M+1)*(E1)^2)*((RE)^M/(E1)^2) 15Ø L1=+B 17Ø C=(M)^2*(RE)^(2*M) 180 Q1=-C/L1 200 A1=N*(N-1)*(N-2) 210 B1=M*(N*(N-1)+(M+2*N-1)*(M+N-2)) 220 Cl=3*(M^2)*(M+N-1) 23Ø D1=M^3 240 P=M*(A1+24)+B1*(M+N-3) 250 U=M*B1+C1*(2*M+N-3) 26Ø S=C1*M+D1*(3*M+N-3) 27Ø T1=N*(N+1)+M*(M+2*N+1)*(RE^M/Q1)+(M^2)*(RE^M/Q1)^2 28Ø X1=-(6*N+(6*M-B1)*((RE^M)/Q1)-A1-C1*((RE^M)/Q1)^2-D1* ((RE^M)/Q1)^3)/(RE*T1) 29Ø Y1=(24*N+P*(RE^M/Q1)+A1*(N-3)+U*(RE^M/Q1)^2+S* (RE^M/Q1)^3+D1*(RE^M/Q1)^4)/(RE^2*T1) 300 RC1=-(6*BE^2)*((X1*RE/3)+1)/W 31Ø WX1=(2.1Ø78E-16)*((5*X1^2/3)-Y1)/M1 32Ø BE1=DE*((8*WX1/W)-(5*RC1/BE)-((EC1)^2*W/(24*BE^3))) 33Ø HV=((2*DE)/(3*W^2))*(12*BE^2-RC1*W) 34Ø ERC1=((RC1-RC)/RC)*1ØØ 35Ø EWX1=((WX1-WX)/WX)*1ØØ 360 PRINT N, M 370 PRINT RC1, ERC1, WX1, EWX1, BE1, HV 38Ø NEXT M 400 GOTO 60 410 END

ţ,

122

TABLE 5.4

COMPUTER PROGRAM TO CALCULATE ~e, wexe AND

HIGHER OEDER CONSTANTS USING GLP FUNCTIONS

10 REM"File rot.vib" 20 REM" Gen Log. Potential proposed by Shri V.M. Patil" 20 REM Gen Log.Fotential proposed by Shri V.M.Patil 30 REM"RC=cal. ~ ", "ERC=%.in ~ ", "WX=cal.wexe", "EWX=% in wexe" 40 REM"BE1= / ", "HV=Hv", "M=mass", "W=we", "WX1=wexe" 50 REM"B=Be", "RC1= ~ ", "RE=re", "DE=De" 60 PRINT "G", "H" 70 PRINT "G", "H" 70 PRINT "n", "RC", "ERC" 80 PRINT "BE1", HV 90 PRINT "WX", "ewx" 100 E1=4 OE 100 1ØØ E1=4.8E-1Ø 110 INPUT M, W, WX1, B, RC1, RE, DE $120 \text{ KE} = .05888 * M * (W^2)$ 13Ø X=KE*RE+(E1/RE)^2 140 FOR N = -1 TO 2 STEP 1150 Y =X/(X-4*(E1)^2/(N*(RE)^2)) $16\emptyset \ G = N*(E1)^{2*}(1-Y)/(4*RE)$ $170 \text{ H} = -2^{(N-1)*(RE)^{(4/N)/Y}}$ 18Ø P=(2*(G/E1)*(H/E1))/N 190 Q= 2^(N-1)*((4/N)+1)*(RE)^(4/N)+H 200 S= $2^{(N-1)*(RE)^{(4/N)}+H}$ 21Ø T=4*(P*RE/S)*((Q-H)/S) 22Ø U=(P*RE/S)*(Q/S) $23\emptyset X3 = -(3*N+T-(2*U*N*(Q/S)))/(N*RE*(1-U))$ 240 X4= 2*(-6*N^2+3*U*N^2*(Q/S)^2-12*N*U*((Q-H)/S)+(4-N)* (T/2))/((RE)^2*N^2*(U+1)) 250 RC=-(6*(B)^2/W)*((RE*X3)/3+1) 26Ø WX=(2.1Ø78E-16/M)*((5/3)*(X3)^2-X4) 27Ø BE1=DE*((8*WX/W)-(5*RC/B)-(RC^2*W)/(24*B^3)) 28Ø HV=(2*DE/(3*W^2))*(12*B^2-RC*W) 29Ø ERC=((RC-RC1)/RC1)*1ØØ 300 EWX=((WX-WX1)/WX1)*100 310 PRINT G,H 320 PRINT N, RC, ERC 330 PRINT WX, EWX 340 PRINT BE1, HV 350 NEXT N 360 GOTO 100 37Ø END

CALCULATED VALUES OF POTENTIAL PARAMETERS IN THE PRESENT WORK FOR ALKALI HALIDE, HYDRIDE AND HEAVY METAL HALIDE MOLECULES

Molecule	GE P ₁ (10 ⁻⁹)	$P (n=0, m=1) Q_1(10^{-9})$	GLP (n=1) G(10 ⁻¹²)	H(10 ⁻³²)
LiF	1.12	ALKALI HALIDE - 2.54	MOLECULES - 12.81	- 1.34
LiCl	1.94	- 2.85	- 5,43	- 5.74
LiBr	2.22	- 2.95	- 4.54	- 8.19
Lit	2 93	- 3.08	- 3.47	_13 30
DIT.	2.30	- 5.00	- 3.47	-13.39
Naf	2.11	- 2.58	- 4.87	- 5.23
NaCl	4.51	- 2.86	- 3.01	-13.91
NaBr	5.32	- 2.94	- 2.63	-18.28
NaI	5.37	- 3.15	- 2.36	-25.60
KF	4.40	- 2.67	- 3.40	- 9.75
KC1	8.15	- 2.95	- 2.13	-25.44
KBr	6.09	- 3.21	- 2.15	-30.79
KI	10.67	- 3.21	- 1.68	-45.71
RbF	6.21	- 2.65	- 2.84	-12.51
RbCl	8.29	- 3.06	- 2.01	-30.60
RbBr	11.90	- 3.07	- 1.70	-40.18
RbI	15.93	- 3.18	- 1.45	-56.57
CsF	7.48	- 2.66	- 2.58	-14.76
CsCl	16.94	- 2.92	- 1.60	-39.51
CsBr	20.12	- 3.01	- 1.44	-50.43
CsI	25.97	- 3.13	- 1.24	-70.38

Contd...124

(Contd....Table 5.5)

.

Molecule	GEP (1 P ₁ (10 ⁻⁹)	n=0, m=1) Q ₁ (10 ⁻⁹)	GLP G(10 ⁻¹²)	(n=1) H(10 ⁻³²)
	ga da ang ang ang ang ang ang ang ang ang an	ALKALI HYDRIDE	MOLECULES	
LiH	0.17	- 4.19	12.11	2.75
NaH	0.21	- 4.41	16.94	2.79
КН	0.25	- 4.73	39.12	1.78
RbH	0.28	- 4.76	262.87	0.29
CsH	0.31	- 4.85	- 62.75	-1.37

Contd....125

(Contd....Table 5.5)

,

Molecule	GEP(n=- P ₁ (10 ⁻²⁰)	2, m=0.5) Q ₁ (10 ⁻⁶)	GEP(n= P ₁ (10 ⁻²⁶	=-2, m=2)) Q ₁ (10 ⁻¹⁷)	GEP(n=2, P ₁ (10 ⁺⁵)	m=2) Q ₁ (10 ⁻¹⁷)
	HE	AVY METAL	HALIDE	MOLECULES		
TlF	1.269	-8.420	5.533	- 8.841	28.513	- 5.997
TICI	2.492	-8.921	7.370	-12.231	18.721	- 8.377
TlBr	0.414	-10.288	5.153	-15.057	10.813	- 9.932
TII	9.113	-8.876	10.845	-14.765	16.590	-10.322
InF	1.694	-8.051	5.681	- 7.876	35.457	- 5.377
InCl	3.086	-8.643	7.527	-11.274	21.877	- 7.756
InBr	4.733	-8.706	8.659	-12.406	19.935	- 8.593
InI	9.940	-8.728	10.079	-14.068	18.116	- 9.853
GaF	0.179	-8.732	3.163	- 7.105	31.616	- 4.637
GaC1	0.333	-9.461	4.294	-10.674	18.026	- 7.034
GaBr	0.451	-9.628	4.832	-12.019	15.524	- 7.962
GaI	1.487	-9.388	6.754	-13.527	14.959	- 9.168

CALCULATED α_{e} (cm⁻¹) VALUES ON DIFFERENT POTENTIALS FOR

ALKALI HALIDE MOLECULES

.

Molecule	Expt1	GEP	GLP	Harrison	Chaturvedi	Shankar	Gupta	Hasan	Sangachin
		n=0, m=1	n=1	Potential	et al	et al	et al	et al	et al
1	2	Э	4	5	6	7	8	9	10
LiF	0.0203	0.01856	0.03013	0.01095	0.01839	0.01616	0.01901	0.018066	0.02048
LiCl	0.00801	0.008854	0.01491	0.00798	0.00841	0.00793	0.00841	0.00645	0.00816
LiBr	0.0056	0.006534	0.01108	0.00571	0.00583	0.00582	0.00606	0.00571	0.00586
LiI	0.0041	0.005090	0.008688	0.00429	0.00421	0.00436	0.00454	0.00333	0.00425
NaF	0.0046	0.004337	0.00738	0.00438	0.00473	0.00403	0.00435	0.00438	0.00469
NaCl	0.0016	0.001800	0.003122	0.00161	0.00161	0.00151	0.00171	0.00154	0.00169
NaBr	0.00094	0.001089	0.001899	0.000899	0.00098	0.000882	0.00101	0.000915	0.000981
NaI	0.00065	0.0007850	0.001371	0.000660	0.00067	0.00069	0.000724	0.000728	0.000683
КF	0.0023	0.002488	0.004304	0.00221	0.00221	0.00202	0.00245	0.00289	0.00245
KCI	0.00079	0.0009149	0.001611	0.00077	0.00077	0.000767	0.000873	0.000787	0.000812
KBr	0.00042	0.0004642	0.0008135	0.000404	0.0004	0.000402	0.000448	0.000483	0.000435
KI	0.00027	0.0003273	0.0005804	0.000267	0.00026	0.000274	0.000306	0.000414	0.000281
RbF	0.0015	0.001714	0.002991	0.00149	0.00145	0.0013	0.00168	0.00126	0.00156

Contd...127

5.6)
.Table
(Contd

1	2	r	4	ß	9	4	æ	6	10
RbCI	0.00045	0.0005282	1.1000311	0.00045	0.00048	0.000436	0.000516	0.000510	0.000484
RbBr	0.00019	0.0002248	0.0003982	0.000184	0.00019	0.000182	0.000211	0.000207	0.000201
RbI	0.00011	0.0001361	0.0002431	0.000108	0.00012	0.000111	0.000128	0.000168	0.000117
CsF	0.0012	0.001450	0.002542	0.00109	0.00117	0.000956	0.00142	0.000941	0.00122
CSC1	0.00034	0.0004230	0.0007549	0.00033	0.00034	0.000322	0.000393	0.000457	0.000368
CsBr	0.00012	0.0001560	0.0002794	0.000122	0.00013	0.000120	0.000142	0.000215	0.000139
CsI	0.000068	0.0000876	0.0001774	0.000065	0.0000.71	0.000068	0.0000796	0.0000818	0.000075
Average % err(ors	+ 16.65	+ 101.56	+ 2.96	+4.03	+6.48	+ 11.02	+20.75	+ 5.27

* Ref.(2)

I

CALCULATED $\alpha_{e}(cm^{-1})$ VALUES ON DIFFERENT POTENTIALS FOR A) ALKALI HYDRIDE MOLECULES

Molecule	Exptl *	GEP n=0,m=1	GLP n=1	Sangachin et al	Ali et al	Hellmann et al
LiH	0.2132	0.1367	0.157	0.24	0.2333	0.2023
NaH	0.1353	0.0984	0.133	0.14	0.1297	0.1237
КН	0.081	0.0712	0.104	0.07	0.0826	0.00826
RbH	0.072	0.0640	0.0566	0.08	0.0715	0.0726
CsH	0.0579	0.0578	0.0830	0.06	0.0630	0.0646
Average %	errors	<u>+</u> 17.27	<u>+</u> 28.4	1 <u>+</u> 8.87	<u>+</u> 4.99	<u>+</u> 5.61

Molecule	Exptl *	- 19	GEP		
		n= -2, m=0.5	n=-2,m=2	n=2, m=2	
TlF	15.0385	22.34	18.96	16.53	
TICI	3.979	6.455	5.50	4.84	
TlBr	1.275	2.123	1.82	1.62	
TlI	0.663	1.138	0.979	0.877	
InF	18.797	27.969	23.81	20.89	
InCl	5.178	8.312	7.10	6.27	
InBr	1.862	3.077	2.64	2.32	

B) HEAVY METAL HALIDE MOLECULES

Contd...129

(ContdTable	5.	7)
-------------	----	----

Molecule	* Exptl		GEP	
	-	n=-2, m=0.5	n=-2, m=2	n=2,m=2
InI	1.040	1.784	1.53	1.37
GaF	28.642	40.603	33.86	28.39
GaCl	7.936	12.28	10.28	8.72
GaBr	3.207	4.564	4.32	3.68
GaI	1.390	3.195	2.71	2.36
,				
Averge % errors		<u>+</u> 63.65	<u>+</u> 41.0	<u>+</u> 27.5

* Ref.(2)

CALCULATED $\omega_{\mathbf{x}e}(\mathbf{cm}^{-1})$ values on different potentials for

ALKALI HALIDE MOLECULES

Molecule	Exptl *	GEP n=0, m=1	GLP n=1	Harrison Pot.	Chaturvedi et al	Shankar et al	Gupta et al	Hasan et al	Sangachin et al
1	2	3	4	2	6	7	8	6	10
LiF	7.929	8.025	11.15	7.99	7.96	7.95	7.967	6.652	8.21
LiCl	4.5	5.379	7.55	4.41	4.70	5.22	4.893	2.987	4.89
LiBr	3.5	4.471	6.28	4.10	3.69	4.83	3.978	3.339	3.97
LiI	3.3	3.931	5.532	3.51	3.51	3.75	3.353	1.704	3.54
NaF	3.4	3.612	5.08	3.75	3.68	3.61	3.526	3.729	3.98
NaCl	2.0	2.135	3.011	1.91	1.62	2.04	1.931	1.556	1.93
NaBr	1.5	1.557	2.196	1.26	1.31	1.49	1.354	1.241	1.35
NaI	1.0	1.237	1.744	1.10	1.09	1.21	1.091	1.037	1.09
KF	2.4	2.670	3.766	1.36	2.28	2.23	2.535	3.177	2.54
KCI	1.3	1.471	2.073	1.20	2.29	1.27	1.331	1.089	1.33
KBr	0.8	0.884	1.246	0.80	0.81	0.85	0.855	0.967	0.8
KI	0.574	0.755	1.063	0.62	0.62	0.67	0.675	1.078	0.66

Contd...131

	-								
1	2	ε Ω	4	വ	9	7	8	6	10
تا د د	C •			2 1 7	L C				
KDF	л•л	2.190	3.097	1.72	1.85	1.00	2.073	1.192	2.07
RbC1	0.92	1.015	1.430	0.85	0.91	0.88	0.983	0.948	0.98
RbBr	0.463	0.606	0.853	0.49	0.49	0.51	0.546	0.506	0.55
RbI	0.335	0.444	0.623	0.35	0.37	0.37	0.398	0.600	0.38
CsF	1.61	2.016	2.842	1.59	1.64	1.56	1.938	0.887	1.93
CsCl	0.731	0.968	1.360	0.73	0.76	0.71	0.849	1.103	0.84
CsBr	0.374	0.506	0.709	0.37	0.39	0.38	0.434	0.868	0.43
CsI	0.2505	0.351	0.482	0.26	0.28	0.27	0.307	0.441	0.31
Average % erros		+19.87	+68.38	+ 5.49	+10.03	<u>+</u> 8.64	+10.53	+39.22	+10.74

* Ref.(2)

131

(Contd....Table 5.8)

CALCULATED $\omega_{e}x_{e}(cm^{-1})$ values on different potentials for

A) ALKALI HYDRIDE MOLECULES

.

		•					
Molecule	Exptl	GEP n=0,m=1	GLP n=1	Sangachin et al	Ali et al	Hellmann Pot.	VS Pot.
LiH	23.20	18.39	23.57	23.8	22.52	21.13	25.58
NaH	19.72	15.1880	19.80	20.9	16.80	16.81	19.04
КН	14.3	12.832	17.08	15.5	13.48	13.85	15.12
RbH	14.21	12.367	16.62	15.4	12.72	13.23	14.26
СѕН	12.9	11.848	16.04	13.4	12.12	12.60	13.46
Average % errors		+15.02	<u>+</u> 12.57	<u>+</u> 5.84	+7.07	<u>+</u> 7.20	<u>+</u> 4.82

Contd...133

B) H	EAVY METAL	HALIDE MOLECI	JLES .
Molecule	Exptl	GEP	
		n=-1, m=0.5	n=-2, m=0.5
TIF	2.3	1.355	2.27
TICI	0.81	0.557	0.944
TlBr	0.39	0.259	0.447
TII	ł	0.166	0.290
InF	2.64	1.598	2.698
InCl	1.01	0.667	1.135
InBr	0.65	0.986	0.577
InI	0.4	0.226	0.394
GaF	3.2	2.133	3.442
GaCl	1.2	0.895	1.456
GaBr	0.81	0.543	0.84
GaI	0.5	0.346	0.578
Average & errc	Jrs	+35.63	+9.93

(Contd....Table 5.9)

CALCULATED VALUES OF β_{e} and H_{v} on different potential.

FOR ALKALI HALIDE MOLECULES

		β _e (10 ⁻⁸)		H	(10 ⁻¹¹)
	Exptl *	GEP GLP	t Hasan	GEP GLP	Hasan †
		n=0, m=1	et al	n=0.m=1 n=1	et al
1	2	3 4	വ	6 7	8
LiF	- 12.44	- 4.458 - 33.07	- 14.21	+ 4.557 - 5.399	+ 7.206
LiCl	- 1.9013	- 0.594 - 9.708	- 4.16	+ 0.161 - 1.978	+ 0.766
LiBr	ı	- 0.248 - 5.876	- 1.91	+ 0.0102 - 1.152	+ 0.205
LiI	I	- 0.069 - 3.934	- 1.79	- 0.695 - 0.766	+ 0.281
NaF	- 0.070	- 0.088 - 2.686	+ 0.12	- 0.0092 - 0.488	- 0.227
NaCl	- 0.0834	+ 0.0195 - 0.627	- 0.15	- 0.137 - 0.0888	- 0.0000669
NaBr	- 0.0497	+ 0.0142 - 0.275	- 0.00794	-0.00619 - 0.0339	- 0.000390
NaI	- 0.0047	+ 0.00958- 0.160	- 0.0217	-0.00351 - 0.0182	- 0.00209
KF	- 0.0233	+ 0.0217 - 1.040	- 0.303	-0.0219 - 0.159	- 0.0497
KCI	- 0.00834	+ 0.0188 - 0.194	- 0.0349	- 0.00537 - 0.0233	- 0.00280

Contd....135

(Contd....Table 5.10)

1	2	3 4		5	9	7	8
KBr	- 0.0002	+ 0.00477- 0.0	335 +	11.50	- 0.00129 -	- 0.00617	- 0.00168
KI	+ 0.00043	+ 0.00475 - 0.0	355 +	0.0307	- 0.000824 -	- 0.00317	- 0.00183
RbF	- 0.0366	+ 0.0306 - 0.5	- 6	0.197	- 0.0141 -	- 0.0749	+ 0.00511
RbCl	+ 0.00233	+ 0.00768 - 0.0	750 -	0.00019	- 0.00179 -	- 0.00762	- 0.00168
RbBr	+ 0.0005	+ 0.00265 - 0.0	- 081	0.00065	- 0.000377 -	- 0.0014	- 0.000285
RbI	+ 0.000527	+ 0.00136- 0.0	+ 687	0.00654	- 0.000152 -	- 0.000532	- 0.000709
CsF	+ 0.0300	+ 0.0305 - 0.3)5 –	0.157	- 0.0112 -	- 0.0528	+ 0.00350
CsCl	+ 0.005	+ 0.00848 - 0.0	194 +	0.0174	- 0.00134 -	- 0.00471	- 0.00175
CsBr	+ 0.00002	+ 0.00181 - 0.00	939 +	0.0135	- 0.000193 -	- 0.000654	- 0.000474
CsI	+ 0.00025	+ 0.00080- 0.0)261 +	0.00243	- 0.000065 -	- 0.00019	- 0.000686

* Ref.(2) † Ref.(5)

CALCULATED VALUES OF β_{e} and H_{v} on different potentials for

ALKALI HYDRIDE AND HEAVY METAL HALIDE MOLECULES

A) ALKALI HYDRIDE MOLECULES

		B _e (1)	0 ⁻⁸)			Н _V (10 ⁻¹¹	(
Molecule	AH*	Hellmann	VS	GEP	GLP	GEP	GLP
				n=0, m=1	n=1	n=0, m=1	n=1
LiH	- 3046	- 1802	- 3408	+ 958.87	+ 2258	14108	13271
NaH	- 882	- 652	- 1058	- 26.493	- 257.6	2784.4	2133
КН	- 328	- 279	- 413	- 77.40	359.5	720.39	390.3
RbH	- 224	- 202	- 290	76.18	361.85	462.13	185.1
CsH	- 163	- 152	+ 215	- 75.43	377.92	346.78	89.62

* Ref.(11)

Contd....137

5.11)
Table
٠
•
٠
•
70
يت ا
-
H
0
C

B) HEAVY METAL HALIDE MOLECULES

Molecule	β ₆ (10 ⁻⁹)	$H_{v}^{(10^{-13})}$
	On GEP	On GEP
	n= -2,m=0.5	n=-2, m=0.5
TIF	- 4.0718	- 2.671
TICI	- 0.5676	- 0.2575
TlBr	- 0.0926	- 0.0289
TlI	- 0.00343	- 0.00877
InF	- 5.710	- 0.394
InCl	- 0.0844	- 0.4086
InBr	- 0.167	- 0.0587
InI	- 0.0841	- 0.0247
GaF	-10.703	- 8.397
GaCl	- 1.604	- 0.9034
GaBr	- 0.1984	- 0.1223
GaI	- 0.184	- 0.0676

REFERENCES

- 1. Varshni Y.P., Rev. Mod.Phys. 29, 664 (1957).
- 2. Huber K.P. and Herzberg G., Molecular spectra and Molecular structure IV (Van Nostrand Reinhold Co. N.Y.)1979.
- Weast R.C. (ed. in chief) Handbook of Chemistry and Physics (CRC Press Inc. Boca Raton, Florida) 66th Edn., 1985-86 E-62 and 74.
- 4. Gupta R.K., Kaur A. J.Bakshi P.S. and Shankar J., Ind. J. Phys., 56B, 344 (1982).
- 5. Hasan M.M., Pathak A.N. and Thakur K. Ind. J. Phys., 55B, 187 (1981).
- Sangachin A.A. and Bakhshi P.S., Ind. J. Phys.63B, 234 (1989).
- 7. Harrison W.A., Phys. Rev., 23B, 5230 (1981).
- 8. Chaturvedi S.D., Sharma S.C., Arora I.s. and Kumar M., Ind. J. Phys, **62B**, 101 (1988).
- 9. Shankar J., Kumar M and Kaur A.J., Ind. J. Phys.60B, 171 (1986).
- 10. Varshni Y.P. and Shukla R.c., Rev. Mod. Phys, **35**, 130 (1963).
- 11. Ali M.S. and Hasan M.M., Ind. J. Pure and Appl. Phys. 28, 203 (1990).
- Hellmann H., Acta Physicochim. U.R.S.S.1, 913 (1934), J.
 Chem. Phys. 3, 61 (1918).
- Herzberg G. Molecular Spectra and Molecular Structure, I, (Van Nostrand Reinhold Co. 1950).
- 14. Brummer P. and Karplus M., J. Chem. Phys. 58, 3903 (1973).

WIR UNERGITY, KOLHAPUL