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1.1 POTENTIAL ENERGY CURVES1"3

The atoms forming diatomic molecule are in simple harmonic

oscillations along the line joining the nuclei. In classical mechanics

the vibratory motion of two atoms can be reduced to a single

mass point vibrating about equilibrium position. The potential

energy of such a mass point is found to be a quadratic function

of the change in intemuclear distance (r-r ). The potentiale

energy curve is a parabola (A) as shown in Fig. 1.1. The 

frequency of oscillation of the single mass point is given by

Vosc = ( 1/27T ] /^i .........{1A)

where k is the force constant and U is the reduced mass. Quantum 

mechanically the Schrodinger's equation involving the potential 

energy of single mass point is solved to yield the discrete energy 

values as given by,

E (v) = (v + 1/2) h Vqsc .........(1.2)

where v is the vibrational quantum number which takes integral

values 0, 1, 2 ___ In the lowest vibrational state (v=0) the

oscillator possesses a finite energy known as 'zero point energy.'

The term values of oscillator are given by,

G (v) = (v + 1/2) a) ......... (1.3)

where w = vogc/c = vibrational frequency in cm . The allowed 

transitions are governed by the selection rules A v = +, 1. All
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these transitions superpose on each other to predict a single 

line in the vibrational spectrum of the harmonic oscillator model.

The simple harmonic oscillator model fails to explain

the following facts. In real diatomic molecules the restoring force 

for compression and extension is not the same. The bond between

two atoms strongly resists compression as seen from the relative 

compressibility of the solids. On the other hand, the attractive 

force between two atoms becomes zero when these are separated 

by an infinite distance. The potential energy for large atomic

separation attains a constant value as shown by the curve B

(Fig.1.1). However, the symmetry of P.E. curve A does not 

explain these facts. Further overtones and combination terms 

observed in the vibrational spectra cannot be predicted by the 

model. Experimentally vibrational energy level separation decreases 

with increase in v, but the model calculates equal spacing of 

energy levels. In order to take into account these observed facts, 

anharmonic oscillator model is used.

On anharmonic oscillator model the potential energy of 

a diatomic molecule is to a first approximation given by the 

function.

U(r) = f (r-rj2- g (r-rj3 ........ (1.4)

where g «f.

This approximation is effective if (r-rQ) is not too large. For

still better approximation, higher power terms in (r-r ) should
©
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be added to eq.(1.2). This introduction of anharmonicity in 

molecular vibrations can explain the occurence of overtone and 

fundamental bands in the vibrational spectrum.

Quantum mechanically the term values of anharmonic

oscillator are given by,

G(V) = CO (v + 1/2) - co X (v + l/2)2+ to y (V + 1/2)3
C U w c c

......... (1.5)

where co X and w y are the anharmonicity constants withe e eJe ■
to X <. < co and co y <;<<o x . For g > 0, to X > 0, while to y may ee e e°e ee ® e e . eJe J
be positive or negative. Eq. (1.5) shows that energy levels 

of the anharmonic oscillator are not equidistant but their separation 

decreases slowly with increasing v.For v=0, we get 'zero point 

energy' as given below.

GfO) = (1/2) w, - (l/4)u>eXe + (1/8) <*>eye......... (1.6)

If the energy levels are referred to this lowest level as zero, 

we obtain

Go (V)
7 3to v - to x V + (0 V V 

O 0 0 0J (1.7)

where,

w o
CO X 

0 o

co -to x e e e
to X e e

+ (3/4) <oeye 

(3/2) coeye +

0) v = 0) V + cr o e e
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The allowed transitions are governed by the selection rules 

Lv = + 1,2,3... .Among these &v = + 1 predict the most intense 

line in the spectrum, while = + 2, + 3, give transitions with 

rapidly decreasing intensity.

Neglecting cubic terms the separation of successive
-1

absorption bands ( in cm ) is given by,

A g
v+(l/2)

v+(l/2)

= G(v + 1) - G(v)

= G (v + 1) - G (v) u u

= 0) - 0) X - 2 w X
0 0 0 o o

V (1.8)

The first and second differences between successive absorption

bands determine vibrational constants w and w X .e e e

A real molecule cannot be strictly a rigid rotator while 

it is vibrating as evidenced by the observed fine structure of 

rotation bands of diatomic molecules. So it is regarded as a 

nonrigid rotator i.e. a rotating system consisting of two mass 

points connected by a massless spring. In such a system, the 

centrifugal force causes increase in internuclear distance with 

increasing rotation. On this model the rotational terms are given 

by,

F(J) = BJ(J+1)-DJ2(J+1)2 ......... (1.9)

The rotational constant D depends on the vibrational frequency 

of the molecule through the relation

D = 4 B2/ a) 2 ......... (1.10)

m BAH IT!5ftS»nct**D j
f. i LsDMil
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As U»B, D«B so that we may neglect the departure of the

molecule from the model of rigid rotator. By considering a 

vibrating rigid rotator, the rotational constant By in the

vibrational state v is given by,

B =B - a (V + 1/2) +------------- -------(1.11)
V 6 ©

where B = the equilibrium rotational constant and a = the rotation 

vibration coupling constant. Similarly by taking into account the 

nonrigidity effect we can express the higher order rotational 

constant as,

D,r = D + 3 (v + 1/2) +....... ... ......... (1.12)V e e

where 3 is the higher order spectroscopic constant.
G

Description of P.E. Curve

For equilibrium distance (r ), the potential energy has
G

a minimum value and diatomic molecule is in physically stable 

state. In this state repulsive and attractive forces between the

charged nuclei are balanced. If the internuclear distance decreases 

the repulsion increases which leads to a sharp rise in potential

energy. When the atoms are drawn apart, the potential energy 

again increases due to superior electronic binding force. The

potential energy approaches a limiting value as the internuclear 

distance tends to infinity. The height of asymptote gives the 

limiting value of potential energy called the 'Dissociation energy' 

denoted by De and Dq in Fig. (1.2). Dq is the dissociation energy
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with respect to zero point energy state, while D is dissociation
6

energy as referred to vibrationless state. The dissociation energy 

(heat of dissociation) is the amount of work done to separate

the atoms to an infinite distance.

The correct representation of a potential energy curve

determines the molecular structure. It gives the detailed information
4about the important molecular data listed below.

1. The minima of the curves determine the bond length which 

decides the stability of the molecule.

2. The second derivative of potential energy with respect
2 2to distance ( d U/dr ) gives the force constant and 

determines the vibrational and rotational levels of a 

molecule. Fig. (1.3) shows the relation between force
3

constant and dissociation energy in hydrogen halides

3. The anharmonic constants are evaluated from the third

and higher order derivatives of U.

4. Potential energy curves are useful to apply Franck Condon

principle to the radiative transitions, dissociation and 

predissociation processes.

5. Potential energy curves are helpful in studying many

problems like gas kinetics, steller structure and recent 

astrophysical problems.

6. The determination of dissociation energies is of great 

interest in thermochemistry, combustion physics and



astrophysics. The dissociation energies also play a 

fundamental role in i) quantitative problem of valency 

ii) Statistical calculations of equilibria at high

temperatures. iii) Chemical bonding and many other 

problems.

1.2 DETERMINATION OF POTENTIAL ENERGY CURVES

Potential energy curves for diatomic molecules fall mainly

into two categories, one with appreciable minima (bound states)

and the other exhibiting a very shallow minimum or none at 

all (repulsive states). We shall study only the bound state curves.

Three general methods exist for obtaining curves for the

bound state of diatomic molecules :
5

1. RKRV method
0

2. Dunham method and,

3. Method based on empirical potential functions.

1.2.1 RKRV Method

The RKRV method is a WKB approximation with which 

one obtains reliable potential energy curves from the measured 

vibrational and rotational constants of the diatomic molecule. 

In this method classical turning points on the potential energy

curve are calculated from experimentally known vibrational energy

levels. One major disadvantage of the method is that the potential 

curve can be constructed numerically only in the region for which 

sufficient spectroscopic data are available. There are many
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modified versions of this method found in the literature. We 

quote below a few of them.

7
Vaidyan and Santaram proposed a modification of RKRV 

method to obtain true turning points rapidly with sufficient 

accuracy. In this method the internuclear distances corresponding

to energy U(r) of the molecule is represented by an equation

of the form

Y(r) = mr + C.

which represents a straight line. Two r . and mm two r valuesmax
from RKRV data are needed to evaluate m and c values. The

metho d is also extended to electronic states whose a) X ise e
not very large.

However, the method has disadvantages due to reasons

quoted below.

1. It is very laborious,

2. It can be efficiently used only when sufficient spectroscopic

data is known,

3. It cannot be applied with accuracy for lower vibrational

states.

8Recently Reddy and Reddy have further modified the 

method due to Vaidyan and Santaram. They have given a procedure 

in which r values from RKRV are not needed to evaluate the 

true turning points. Instead the consecutive term values

corresponding to v = 3 and 4 are sufficient. They have obtained
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the following relations :

M = In +

w + ( 4 u X U.) e e e 4
1/2

w + ( 4 w X U0) e e e 3
1/2

where ( r - r ) 
4 3

' bl ^2 

. 2 Sb 2/g „
K + (

in which b± = 3.75/1^ - b'/h2 + 135 P2

( V r3] (1.13)

/s'. ^2> 4 ( W

(1.14)

g1 = 18 P + 1/1^

h^ = 1 - 3 m

b' = 3.75 - 12.15 m

b± = (2.917/h2) - (b"/hp + 82 P* 

g2 = 14 P2 + ( l/h2)

h2 = 1 ( 7 m/3) 

h" = 2.917 - 7.35 m

X4 - X3 = P (0.501 + 5 K + 43.1 K")

P = (B / w ) e e

and K = w x / w e e e

1/2 , m = a / ’ e /
03

r3 + 

r3 + C.

(1.15)

(1.16)

For r>re, In [ -(4^exe U3)1/2]= m+

For r<re, In ^ + (4W0Xe U3)1/2] = m_

r+ r3 = [Cb2 K/2 /g2) + f%2 + P (3.74166 + 10.9131 K +

49.273 K2 1 r ......... (1.17)
G

For

Knowing the values m+ from eq. (1.13) and C+ from eqs.(1.15) 

and (1.16) one can evaluate true turning points rapidly by varying 

'U' value in the Vaidyan and Santaram relation.
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8There is a printing mistake in the eq.(5) of Reddy and Reddy 

for r„. The R.H.S. should be multiplied by r as correctly given
o G

in the above eq. 1.17.

Franck-Condon Factors and r-Centroids

The intensities of diatomic molecular bands in electronic 

spectra are governed by the overlap integral the square of which
i

is known as the Franck-Condon factor

qv'v"= f drv'v ....(1.18)

where and ¥ are the wavefunctions of the upper and lower

vibrational levels between which transitions occur. The average 

internuclear separation associated with the transition is known 

as the r-centroid and is defined by

= If v1 dr//v V dr (1.19)

A knowledge of r-centroids is useful for the determination of 

electronic transition moment of the band system.

1.2.2 Dunham's Method

6Dunham0 assumed a potential energy curve of the form

00

U(r) = a xf ( 1 + Z an X? ) ......... (1.20)
o 1 n=l n 1

where X. = (r-r )/r . By employing well known expression for
1 G G

the energy levels of a diatomic molecule viz.
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E . = 2 2
V,J j=b j=0

y.^v + 1/2)1 [j (J+l)]j
(1.21)

We can relate the coeffficients a.'s eq. ( 1.20)

t0 the coefficients y.j's determined from the experimental

rotational vibrational constants. This method has certain advantages

and disadvantages.

Advantages

1. Using eq. (1.20) the wave equation can be solved to a 

very good degree of accuracy.

2. Accurate potential energy curve close to the minimum is 

obtained with the help of eq.(1.20).

3. The method is flexible.

Disadvantages

The most serious drawback is that the potential energy 

curve becomes divergent as r tends to + 00 for 0 •$ r ■^0o.So the 

method must be used carefully for higher vibrational levels.

9 10Simons and Thakkar have proposed a new alternative

to the Dunham method. They assumed the same type of power

series expansion, but instead of substituted the quantity

X„ = (r-r )/r. This potential also suffers from certain drawbacks. 
Z 6

At smaller r (r « (rg/2) or less ) potential energy curve has 

oscillatory behaviour and it converges very slowly.
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1.2.3 Semiempirical Potential Energy Functions

11Another general method to determine potential energy 

curve is based on semiempirical potential functions. In this a 

certain type of algebraic expression is assumed for a potential 

energy curve, and the parameters in it are evaluated from the 

known spectroscopic constants. The requirements for a good 

potential are listed below.

1. It must have minimum number of parameters.

2. It must be adequately close to the dispersion forces at 

large internuclear distances.
4

3. It should obey Varshni's criteria.

Most of the potentials are constructed in terms of three

parameters which depend on the bond dissociation energy (D )
©

equilibrium internuclear distance (r ) and the vibrational force 

constant (k0). These molecular constants are most readily obtained

from the study of band spectrum of a diatomic molecule. It is 

well known that the more the number of parameters in a potential, 

the greater is its ability to produce RKRV curve. So potential

with four or five parameters should be constructed in such a

way that the fourth and fifth parameters are expressed in terms

of the remaining three. We can develop such a potential in terms 

of constants D , r , k , a (rotation vibration coupling constant)
G G © G

and 00 exe (anharmonicity constant). The last two are expressed

in terms of D , r , k .e e e
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A large variety of analytical functions meeting with the 

above requirements have been suggested to this date.

12Morse Function

U = Dg jjL - exp ( - a ( r - rj)J2 ......... (1.22)

where a is potential parameter. It satisfies Varshni's criteria 

at r = 0; however, it yields large finite value instead of infinity.

It is found that this function is not suitable for randomly 

chosen molecules .Though this simple function has been very widely 

used, it gives rather a poor performance in many branches.

13Hulburt- Hirschfelder Function

It is a modified form of Morse function given as,

U = D ( 1 - exp (-x)2 + ex2(exp(-2x))(1+bx)

(1.23)

w ( r - r )
where X = —-------------- - and,

2 r (B D )1/2 
6 6 6

b,c are simple algebraic functions of the five spectroscopic 

constants.

Rydberg Function

14Rydberg proposed

U ( r ) = D ( 1 + bp ) exp ( - bp ) ©
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The function is similar to the hydrogen atom wave function. It 

satisfies criteria 1 and 2 but does not become infinite at r=0, 

though it attains a large value. Its performance is better in

predicting transition probabilities of molecule than that of

Morse and Hulburt-Hirschfelder functions.

Linnett Function

15Linnett suggested the function.

mU (r) = (a/r ) - b exp ( - nr)

where m and n are constants for a given state of the molecule,

while the parameters a and b are given by, 
m „r D nr e e e
( m - nrg) 

hrm a e e

n rm+1

Lippincott Function

as

i R
Lippincott proposed a potential to a first approximation

2n
U = D 1 - exp ( 1 - _iL_)

2 r J

v/here n = k r /D e e e
At r = 0, U = D

r = r , U = 0 e
r =°° , U = D
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16Lippincott et al evaluated u) x values in terms of n which
6 6

is empirically given by,

" - "o ' :/vl/2 '^Vb'2

where ( I/Iq)^ b are the ionization potentials of atoms A and 

B respectively relative to those of the corresponding atoms in 

the same row and first column of the periodic table.

The value of ag on this potential was found to be zero

16and hence Lippincott et al modified it in the following manner.

U

where af(r)

= Dg J^l - exp ( - ne2/2 rjj £ 1 + a f (rfj

, /.6r. , ,2 11. _ 12.1 1/2= -a (r /r) I 1 - exp ( - b nr /2rg ) +

, / -v -L2 , . 2 11 . „ 12a(re /r) [1 - exp ( -b nr / 2rg )

They obtained the expressions

= u?D = or / 2 nr B e e e e

a = ab ( nr / 2)1/2 6 B2 / w 
e Ke e e

0) X =1.5 B fD.25 + (nr / 4) + ab ( nr/2 )1/2 
3 e e L. e

+ (5a2b2 - ab2} nr / 2^

For most of the molecules ab and b are found to be nearly

constants from which the values of a and m x were calculatede e e

in agreement with the experimental values.
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Varshni Functions

.4
Varshni has proposed seven new potential functions. Most 

of these are the modifications of Morse, Rydberg and Lipincott 

functions. Varshni's functions V(II), V(IV), V(V) are not applicable 

whereas the remaining are better in performance.

Noor Mohammad Functions

17Noor Mohammad proposed some potential functions of 

much better forms than most of the three parameter potentials 

already known. These potentials though much improved in quality, 

are still unlikely to predict true potential curves. These are 

divided into two types.

Morse Family of Curves

In this type all double exponential potentials are included. 

These are expressed in general by,

U (r) =DeJl- (r0 /r)n exp ( - b(rm - r“) 2

......... (1.25)

where,

b = ( s - n)/ (m r“) (1.26)

m and n are two different constants. Special potentials can be 

deduced from eq.(1.25) by the appropriate choice of m and n 

values.

Potential I ( with b = b^, m = m^, and n = 0)
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r mi mi -i2U{r)=De [l-exp(-b1(r x- ) J

Potential II ( with b=b2, m= 2 and n= n2)

U(r) = D
l-^/r)*2exp(-b2(r2-i^)) j

Potential III ( with b=bg, m=m3 and n=n^)

m3 *3U(r) = Dg j^l-(re/r)n3 exp(-b3(r "-r^ ))

Rydberg Family of Curves

The potential energy curves of this category are represented

by,

U(r) = - D fl+ 8(r /r)q(rp-rp) exp f - 8(rp-rp)~] 
e L e eJ *- e J

(1.26)

where,

a r , 2 „ 2.1/2p=l-q+(q +2s) / (P r£) (1.27)

and p and q are two constants which take different values thereby 

leading to particular potentials as given below.

Potential IV ( with 8= 8^, p = p^ and q = 0)

U(r) = - D
P1 P1 ' 

1 + 31(r - r* ) exp L'B(rp, P-,

81 = 1.414 s/ (p1 rex )

where,
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This potential satisfies first and second criteria of Varshni. 

It does not become infinite at r = 0, though it is sufficiently 

large at r = o.

Potential V ( with 6= 8^ P = P2 and q = 1)

U(r) = -De 1 + e2(re/r) r - r/ ) *

where,

This potential satisfies all criteria of Varshni. With application 

of KH criteria, an average value of P2 for each molecule is 

obtained. The value of P2 is appropriate for reproducing RKR 

curve and predict a w x accurately.
6 j G 6

1-2.4 Combination Potentials

18In the past a number of attempts have also been made

to formulate superposition potentials by combining the functions
19 12 14due to Kratzer Morse and Rydberg .

1.3 IONIC POTENTIAL ENERGY FUNCTIONS

Dissociation energy is the energy corresponding to the 

convergence limit i.e. position in the spectrum where vibrational 

bands converge and become continuous beyond it. The dissociation 

energy of an electronic state Dq may be defined as the energy 

difference between the isolated atoms at infinite separation and 

the lowest vibrational level of the electronic state in question.
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i.e. D = D + (zero point energy).
G 0

However, the molecule may dissociate into two ions which

may also be in excited states. This corresponding energy of 
dissociation is the ionic dissociation energy or the binding energy

of the electronic state concerned.
For the evaluation of dissociation and binding energies

various experimental as well as theoretical methods have been

developed with varying degree of accuracy. Different potential

energy functions proposed for the non-ionic diatomic molecules

by many workers have already been discussed inSec. .1.2.3.

The common features of all these functions is that they are

expressed in terms of known dissociation energy (De). As a

consequence one cannot calculate the value of unknown dissociation

energy from these potentials.

2oIn an alternative approach adopted by Varshni and Shukla^ , 

a simple potential energy function is formulated by using an 

attractive term of electrostatic origin and the repulsive term 

arising from the overlap of the outermost electrons of the two 

atoms or ions. Further refinements of the function can be achieved 

by considering the contributions due to polarization forces, Van 

der Waal interactions ^ dipole-dipole interactions etc. Such a

potential function therefore, in general j consists of the following

. 20-21 terms:

i) ( -e /r) representing charge-charge interaction, 

ii) t —e2( ai+a 2)/2r4) _(2e2a1a2/r7) arising due to charge-
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dipole interaction dipole-dipole interaction and quasi­

elastic energy stored in the induced dipoles with a - 

and a2 as the polarizabilities of the alkali and halide 

ions.

iii) A van der Waals attraction term ( -C/r)

iv) Kinetic energy term representing the difference in the 

translational, rotational and vibrational energy between 

the molecule and the free ions from which it is composed.

v) A short range repulsive term \|> (r)

Usually the kinetic energy term is quite small and hence 

neglected. The repulsive term contribution is a prominent one 

and is calculated by considering various forms of this term. 

This leads to a variety of ionic potential energy functions.

Various potentials considered here have two features in 

common. All of them have coulombian attractive term and have 

two unknown constants in the repulsive term which are determined 

by the conditiions :

(dU/dr) = or=re

and

(d2U/dr2) = k
r=re e

Born-Land e Potential

22-23Born and Lande proposed the potential energy function

U(r) 2, ne /r + b/r
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where b and n are constants. This potential is extensively used

in investigating ionic crystals and the nature of binding in LiH

molecule For alkali hydrides this potential yields very high

values of a and w x and very low values of binding energy 
6 6 6

(D.) and hence not suitable for alkali hydrides.

Bom-Mayer Potential

24Bom and Mayer suggested that an exponential term is 

preferable to take into account the repulsive interaction and 

is found to be satisfactory for alkali halide crystals. The potential 

proposed is given by,

U(r) = - e2/r + B exp(-r/p)

where B and P are constants. The % errors in a and wx
6 <3 6

calculated on this potential are found to decrease rapidly from

LiH to CsH while the % error in is nearly the same for all 

the molecules.

Wasastjema Potential

9R-9RWasastjema have proposed two potential functions

for alkali metal halide crystals. The simplest form of the two 

potentials is given by,

U(r) = -e2/r + Q. r? exp (-0 r)

where C and R are constants. This function is successful in

evaluating D. values; however, it fails to evaluate a and w x
1 6 6 6
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values accurately.

Rittner Potential27

U(r) = - e2/r - e2(al+a2)/(2r4)-(2e^ ^ 2)/(r7)-C/r6 

+ A exp ( -r/P)

where A and p are repulsion constants and C is van der Waals

constant. All calculated values of a are negatives w x values
© © ©

are several times greater than the observed values for alkali 

halides. Devalues are comparatively better.

Hellmann Potential

In order to represent the interaction between the valence
28electron and the core in the alkali atoms, Hellmann proposed 

the following potential

U(r) = -e2/r + T exp(-A/r)

20-21where T and A are constants. Varshni and Shukla found

that the potential yields satisfactory results for representing the 

shape of potential energy curves of alkali hydrides. However, 

values on this potential are lower than the observed ones, 

while the average % errors in a and u> x are reasonable.
G G G

Varshni-Shukla Potential

20-21Varshni and Shukla proposed two potential energy

functions.
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U(r)= -e2/r + P exp(-kr2).........VS 1

U[r) = - e2/r + S exp (-n r)/(r2).........VS II

where P,k, S and n are the constants. Potential VS-I is reasonably

statisfactory for the alkali halides. The calculated values of

a for alkali hydrides are unsatisfactory on both potentials.

But the average % error in w x comes out to be the least on
6 ©

both the potentials. Also D. values are satisfactory on VS-I, 

while these are lower by about 10% on VS-II.

Recently ^ + i29Kaur et al have critically examined the VS

potentials by introducing the concept of effective charge

parameter. By introduction of this concept, the results obtained

are close to experimental values. Further they predicted that

the potential functions yield better results than those obtained

from the inverse power form for the repulsive term.

Harrison Potential

30Harrison derived a potential function quantum mechanically 

by taking account of various contributions arising from coulomb 

energy, kinetic energy and exchange energy. This potential 

successfully predicts crystalline state properties as well as molten

state dynamics and the structural properties of alkali halides.

Kumar 31et ai and Shankar et 32al have given the modification

appropriate for gaseous state. Accordingly the binding energy

and vibrational constants of alkali halide molecules can be 

calculated through an analysis of interionic forces. On this model
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binding energy is written as follows:

where a^,a2 are the electronic polarizabilities of the ions, and 

C is the dipole-dipole interaction coefficient. The second term

is polarization energy, the third term ( W } is a measure ofT8p
repulsive energy and the last one represents van der Waals dipole 

dipole interaction. In the Rittner model the repulsive interaction 

term is taken to be simple exponential Bom-Mayer type. However, 

this potential form is not consistant with the quantum mechanical 

perturbation treatment.

30Recently Harrison developed analytical form for the 

potential function by using quantum mechanical first principles. 

Within the frame work of this treatment one takes the kinetic 

energy, exchange energy and the coulomb energy term in the 

expansion of total energy of an electron gas. The following 

analytical form is used for cation-anion overlap repulsive energy.

where nQ-the repulsive strength parameter

K -is the hardness parameter

V - is the arithmetical average for the two types of ions 

derived from valence state energies.

31
Using the potential parameters Kumar et al have calculated

the binding energy w, a , oo x and the higher order spectroscopic
8 © ©
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constants. The results obtained from Harrison potential are quite 

superior to those from Bom-Mayer exponential form. The agreement 

between the calculated and experimental values is much better 

for higher order constants also.

1.4 SUMMARY

At the outset the basic concepts leading to the description 

of a potential energy curve have been made clear. The importance 

of potential energy curves in the determination of molecular 

structure has also been brought out. Next the RKRV and Dunham's 

methods for the determination of potential energy curves are 

described in detail. The details regarding different analytical 

functions employed in the representation of P.E. curves for non­

polar diatomic molecules are briefly outlined. Finally the role 

of various types of ionic potential energy functions in the 

determination of binding energies and spectroscopic constants 

of polar diatomic molecules has been discussed at length.
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FIG. M - REAL ANDCUJADRATIC POTENTIAL ENERGY CURVES

FOR A DIATOMIC MOLECULE .



FIG

SCHEMATIC MODEL OF DIATOMIC MOLECULE

STATES OF A DIATOMIC MOLECULE .
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FIG. 1-3 - RELATION BETWEEN FORCE CONSTANT AND DISSOCIATION

ENERGY IN HYDROGEN HALIDES .


