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CHAPTER - II

THEORY QE FILTER

2.1 DISCUSSION OF LOWER AND HIGHER ORDER FILTER CIRCUITS
Active - filter representations of passive filters can 

be accomplished in many ways. Before discussing the lower 
and higher order filter, we will discuss the order of active 
RC filter .

In the Laplace transform terminology the order" is 
related to the "number of poles". The actual mathematical 
significance of these designations is related to the 
transfer function of the filter. For a given filter type, 
the performance generally becomes closer to the ideal 
characteristic as the number of poles (i.e. the order) 
increases.

The gain roll-off in the stop-band is determined by
the order (n = 1,2,3,....... etc) of the filter. The order
of a filter equals the number of RC pairs in the circuit.
Each increase in order increases the roll-off by 20
db/decade as shown for an LP filter in fig 2.1 Active
filters with order of six or more are practical. The larger
the order, the more closely the response approaches the
ideal one. However, each 20 db increment in the roll-off is

o
accompanied by a phase angle change of -45 at W .

o



28

Fig .21: Gain RolbOff For Low Pass Filter With 
Increasing Order-

Z2tS)

Fig-2-2- First Order Low Pass Filter*

K/b

Fig.2-3* Realization For First Order Low Pass 
Filter-
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In general, the higher order filter is realized by the 

"direct method" where a single circuit is used to realize 

the entire transfer function, as was done for the passive 

filter design or the technique known as "cascade method". 

The transfer function to be realized is first factored into 

a product of first-order and / or second order terms. Each 

term is then individually realized by an active RC circuit. 

The cascade connection of individual circuit realizes the 

overall transfer function.

2.1.1 THE FIRST - ORDER FILTER First order low pass

filters are often used to perform a running average of a

signal having high frequency fluctuations superimposed upon
1

a relatively slow mean variation ; for this purpose it is 

simply necessary to make the filter time constant CR much 

greater than the period of the high frequency fluctuations.

All operational amplifier active high pass filters 

show a band pass characteristic, for their response 

eventually falls off at frequencies beyond the closed loop 

bandwidth limit.

The first order low pass filter is, in inverting 

amplifier structure, shown in fig 2.2. It realizes a first

S + a
H(S) = K ....... .... (2,1)

S + b

where a and b are real
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The voltage- ratio transfer function is

Vo(S) Z (S)
2

H(S) = = - . (2.2)
V (S) Z (S)
In 1

Apart from the minus sign in equation (2.2), our
objective is to identify the impedances Z and Z from the

1 2

right hand side of equation (2.1) so they represent the 
input impedances of the RC one-port networks. An RC 
impedance requires that all of its zeros and poles be 
simple, lie on the negative real axis, and alternate with 
each other, the first critical frequency being a pole. For 
negative K and nonnegative a and b, we can make the 
following identifications :

1 -K
Z (S) = _____ and Z (S) = ..... .... (2.3)

1 2

S + a S + b

The realization is shown in fig 2.3 
2.1.2 The Second Order Filter :- A second order filter 
has a response whose magnitude falls at 40 db/decade in the 
stop band. The sharpness of the transition between the pass 
and stopbands depends upon the choice of filter constants 
which are fixed by circuit parameters.

A band pass filter characteristic can be obtained by 
cascading a high and a low pass filter, but when a highly 
selective (high Q) band pass characteristic is required a 
different approach is necessary. Many examples of active
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c,

Fig-2-4: Second Order Low Ftass Filter-

Fig-2-5'- General Biquadratic Filter-
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bandpass filters will be found in the literature and in 

manufacturer’s notes. High Q bandpass filters, based upon a 

single operational amplifier, have a Q value which is very 

sensitive to component variation. The so called state 

variable filter approach, we will discuss in latter 

section.

The fig 2.4 shows the second order low pass filter 
3

realization .

2.1.3 BIQUAD SECOND ORDER FILTER For certain 

specialized filtering applications, especially those with 

critical phase requirements, a biquadratic network function 

in which the position of the complex conjugate poles and 

zeros can be independently specified may be required. Such a 

function has the form...

2
Vo mS+mS + m

2 1 o

2 2 
V CS) S + (Wo/Q)S + Wo 

1

2
S + cS + d

or H(S) = K _______________
2

S + aS + b

(2.4)

2 2 
S +(W /Q )S+W 

z z z

2 2 
S +(W /Q )S+W 

P P P
The frequency Wz is known as the zero frequency and Qz
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the zero Q, Likewise the frequency Wp is pole frequency & Qp 

the pole Q.

The numerator coefficients determine the filter

bandwidth and the denominator coefficients the filter

response.

The fig. 2.5 shows the general biquadratic filter

which uses two VCVSs, the first an inverting one with a gain 

of -1, the second a noninverting one with a gain of 2. The 

voltage transfer function for this filter is

V (S)
2

2(Y - Y )
1 4

.... (2.5)

V (S)
1

Y - Y
3 4

The values of the admittances Yi are found by dividing

the numerator and denominator of equation (2.4) by the 

factor S+C,C>0 and making partial fraction expansions of the

resulting functions. As an example of the use of this

network, consider the realization of normalized all-pass

(constant magnitude) transfer function.

V (S)
2

2
S - 2S + 1

= .... (2.6)
2

V (S)
1

S + 2S + 1

It is shown that the biquadratic function can be

characterized by its zero and pole frequencies and zero and 

pole Q’s. Depending on these parameters, the biquadratic
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functions can be classified into low-pass, high-pass, band- 

elimination and all-pass functions.

2.1.4 HIGHER ORDER FILTERS Higher order filters having 

better gain roll-off characteristics can be obtained by 

cascading, coupling or direct method. In direct method, a 

single circuit is used to realize the entire transfer 

function.

A] CASCADE APPROACH Many filtering applications, however, 

require filters of higher than second order, either to 

provide greater stop-band attenuation and sharper cut off at 

the edge of the passband in the low-pass or high-pass case 

or to provide a broad passband with same special 

transmission characteristic in the bandpass case .

A standard method of realizing a higher order transfer 

function is to express it as a product of second-order 

transfer functions and to realize each second-order transfer 

function as a single amplifier or state variable filter. The 

final filter is obtained by cascading the individual second 

order filter blocks. For example, a 3rd order LP filter may 

be obtained by cascading 1 st order and 2nd order LP 

filters. A 4th order filter may be obtained by cascading 

two second order filters. A fourth order bandpass filter 

response can be obtained by cascading LP filter with an HP

filter with cut off frequencies properly adjusted.
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Since these circuits all have an operational amplifier 

as an output element, their output impedance is low and thus 

a simple cascade of such second-order realizations may be 

made without interaction occurring between the individual 

stages. As a result, the overall voltage transfer function 

is simply the product of the individual transfer functions, 

may be tuned separately, a point of considerable practical 

importance when high-order network functions are to be 

realized. The success of the cascade method, depends on the 

use of operational amplifiers which have as low an output 

impedance as possible. The use of high impedance 

normalization levels for the passive elements, which 

minimizes loading an the interior operational amplifier 

output stages, is also significant in reducing interaction.

4
The general transfer function for cascade approach is

N

T (S) 
i

(2.6)

i = l

where Ti(S) is of the form

2
m S + c S + d

l i l
TI(S) = K (2.7)

l
2

n S + a S + b
l i l



3G
The general cascade topology is shown in figh. 2.6

The output voltage at block T1 is

V = T .V 
ol 1 In

The output voltage at block T2 is

V = T V = T1.T2. V
o2 2 ol In

Extending the argument to cascade of N sections, the output

voltage V is 
o

V = T .T .T .....  T V
o 1 2 3 n In

V
o

__ = T .T .T ....T
12 3 n

V
In

N

i = 1

Thus the transfer function of a cascade of networks is 

the product of the individual transfer functions, provided 

that the input impedance of each network is very large 

compared with the output impedance of the preceding network.

In the N order case; 
th

The general low pass voltage transfer function is

H
T(S) = ____________________________________ _____ (2.9)

n n-1
S + a S + ....  + a S + a

n-1 1 o
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if n is even, equation (2.9) can be written as

n/2
T(S) = *|J

Hi
--- (2.10)

i=l S+aiS+ aio
1

if n is odd equation (2.9) can be written as

1 (n-1)/2 Hi
T(S) = TT

s -a— i = i
o

S + ai S + aio 
1

(2.11)

The general high pass voltage transfer function is

n
HS

T(S) =
N n-1

S + a S + .... + a S + a
n-1 1 o

if n is even, this may be put in the form

. (2.12)

n/2 Hi S
T(S) = ¥ —------------

i=l S+aiS+a
(2.13)

10

if n is odd, this may be written as
2

S (n-1)/2 Hi S
T(s) =-------IT -5---------- (2.14)

S- 0~ i=l 
o S + a S + a

i io
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v

Fig.2-6' The Cascaded Topology.

Fig. 27- Multi loop Feedback Coupled System-
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The general nth order bandpass filter voltage transfer 

function has th form

n/2
H S

T(S) = ................................ ....  (2.15)
n n-1

S + a S + ... + a S + a 
n-1 1 o

where n can only be even. The factored form of this function 

i s

T(S)

n/2 H S 
i

2
S + ai S + a

1 io

(2.16)

B1 COUPLED STRUCTURE OR LEAP FROG FILTER In a second

family of structures the individual biquadratic blocks are

coupled to each other via feedback path. This method of

active synthesis relies on simulation of the interactive

effects in a ladder structure by feedback loops as in a

control system. The passive reactances may then be replaced
5

on a one to one basis by Miller integrators . The

importance of this early procedure is only now being

appreciated in the context of the manifest advantages of 

multi-loop cascade techniques. An example of these so called 

coupled structure is shown in fig. 2.7

These structures are more complex than for the 

cascaded structures, since a change in one biquad affects 

the currents and voltages in all the biquads. Moreover, this 

lack of isolation between the blocks makes their tuning more 

difficult. On the other hand, one distinct advantage of
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using coupled structures is that the sensitivity is usually 
lower than for the equivalent cascaded realization.

The biquad is the basic building block used in both 
cascaded and coupled realizations. Therefore, biquad 
circuits are the fundamental importance in the design of 
active filters.

2.2 SENSITIVITY Active filters are designed to perform 
certain functions such as wave shaping or signal processing. 
Given perfect components, there would be little difference 
among the many possible designs. In practice, however, all 
components deviates from their nominal values because of 
manufacturing tolerances, changes in environmental 
conditions such as temperature and humidity or chemical 
changes due to the aging of the components.As a consequence, 
the performance of a practical filter differs from the 
nominal design. This causes the network transfer function to 
drift away from its nominal value. The cause and effect 
relationship between the network element variation and the 
resulting changes in the network transfer function is known 
as the "Sensitivity". One way to minimize this change or to 
reduce the sensitivity is to chose components with small 
tolerances, low temperature, again and humidity 
coefficients. However, this approach will usually result in 
more expensive networks than necessary. A practical solution 
is to design a network that has a low sensitivity to element 
changes. This is especially important in active filter 
design where active element such as op. amp. is much more



41
sensitive to environmental changes.A good understanding of 

sensitivity is essential to the design of practical active filter.

Defination ;-One of the earlier definations of sensitivity was
6made by Bode H.W.

Sensitivity function is defined as the ratio of the

fractional change in network function to the fractional change in 
an element for the s 
are differentially small
an element for the situation when all changes concerned

2

The symbol S is used to denote sensitivity. In addition, 

a superscript character is used to indicate the performance 

characteristic that changes and subscript character is used to 

indicate the specific network element that is causing the change.

classically the sensitivity of a network function F(S) w.r.t. 

a parameter x is defined as

SX
F(X) d In F(S) X d F

a In x F d x
(2.17)

Let the transfer function (open 

ratio) of a network N be T(S) = P(S) 

of T(S) with respect to the parameter

circuit voltage transfer 

/ q(S). Then the sensitivity 

x can be shown to be

STX Sqx

l .:,)24A
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1 d P 1 d q

= X [ ---- .------- ----- ' -----] .......... ( 2.18)
p d x q a X

2.2.1 W AND Q SENSITIBITY In a qualitative sense, the

sensitivity of a network is a measure of the degree of 

variation of its performance from nominal, due to change in 

the elements constituting the network. The biquadratic filter 

function can be expressed in terms of the parameter W , W ,Q ,Q

s2 ♦ Wz 2S + Wz
T(S) = K W (2.19)

2S + 2 S + W,
Qt

Let us first consider the sensitivity of the pole frequency

W to a change in a resistor R. Pole sensitivity is defined as the P

per unit change in the pole frequency, AWp/Wp, caused by a per -

unit change in the resistor, AR/R. Mathematically, 
wr R. 9UJP
SR= lim Tr-- = -- ---AR —> o ___ W d R

R P

This is equivalent to

Wp d(ln V)
R d (In R)

(2.20)



Note that the cost of manufacturing a component is a 

function of the percentage change (100 x A R/R) rather than the 

absolute change (A R) of the component. For this reason it is 

desirable to measure sensitivity in terms of the relative changes 

in components

Similarly,

QP R * Q p
SR = ----- . ............ ................. (2.21)

2.2.2 MAGNITUDE AND PHASE SENSITIVITY The computation of the 

sensitivity functions for the magnitude and phase functions 

are given below.

We express a transfer function in polar form and substitute S 

by jw to give

H( jw) H (jw) | eJ$(w)
.. (2.22)

Then the sensitivity function becomes

X d„H(jw)

H (jw) d X
[ | H(jw) | e j^(w)] (2.23)

Which can be expanded by making use of the product rule for 

differentiation of a product to give

H(jw) |H (jw)| 0(w)
S = S + j <p (w) S ..............  (2.24)

X X

They state that the magnitude and phase sensitivity of a transfer



function with respect to an element are simply related to the

real and imaginary parts of the transfer function sensitivity with 

respect to the same element.

2.2.3 THE MULTIPARAMETER SENSITIVITY So for we have

considered the situation where a network function is changed 

due to a change in a particular network element. In this section, 

we extend this concept by considering the change of a network 

function due to the simultaneous variation of many elements in the 

network.

Let H be the network function and let X. (j = 1, 2, .... m)J

be the network elements such as resistores, capacitors, inductors

or the parameters describing the active devices that are subject

to change in values. Then the change A H in H due to the

simultaneous variations of all the elements X. may be obtained
*}•

by the multivariable Taylor series expansion of H with respect to

X .J

m
AH = £ 

j = l
_d_H
d X . J

m m _2_d H
ax. + e E

i=i j=i ax. ax, i j

A X. A X

2 !

+ .................. (2.25)

If the changes in the elements A X are small,the second and higher

order terms can be ignored and the first order approximation is
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given by

m d H
A H = £ A X . (2.26)

j=l * X.J
To bring the sensitivity function in to evidence,the 

equation (2.26) can be written as

m X. AX.
A H = £ (---1 .----- ) (---^ H )

j=i h . ax XJ j
m Hr sX .J=1 J J 

A X

= H £ S V u X X

Where VX

(2.27)

denotes the fractional change in the element X and is
j

can be approximated by expression

A H m H
— = £ S . V . . . (2 .28)
H j=i x_ xTJ J

The multiparameter sensitivity defination above is somewhat

simplisitic and does not take into account the random element

variations. A more realistic and accurate measure is known as

"Statistical multi parameter sensitivity " .

2.2.4 GAIN SENSITIVITY :-In the filter design, requirements are 

frequently stated in terms of the maximum allowable deviation 

in gain over specified band of frequencies. In such 

situation, it is convenient to consider the logarithm of

the transfer function of a networkoperating under the sinusoidal
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steady state. Thus the magnitude of the transfer function in db 

can be written as.

G(W) = 20 log I T(JW)| .... .......... (2.28)

Where T(JW) is given by equation (2.19).

N „ W ., , „2 zi „G(W) = [ 20 log S + ---— S
i = l zi
N W .- £ 20 log | S2 + —S 
i=l Qpi

+ 20 log | K | .... ........ (2.29)

"Gain sensitivity " is defined as the gain in dB due to a

4per-unit change in an element (or parameter)X :

+ Wzi >S=jW
<

+ Wpi 1 S=jw

sG(w)
X

d G(W)

d X/X

d G(W)
= X ---------  dB .... .....(2.30)

d X

From this equation

A G(w) 1 im
Ax—>0

,G(w) A X 
X

and for small changes in X

A G(w) sG(w) A X 
X

(2.31)
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Gain variation is affected by

A. The approximation function.

B. The choice of circuit topology .

C. The types of components used in realization.

2.2.5 ROOT SENSITIVITY The functions and the filter transfer 

functions are often specified by their poles and zeros. The 

location of the poles of an active filter determines the stability 

of the network. The poles and zeros themselves, being functions of 

network parameter get perturbed due to variation in these 

parameters. The change in pole-zero location changes the frequency

response characteristics of a filter and may indeed indicate

potential instability of the 8fi1 ter . In order to study this

aspect the sensitivity of a root (a pole or a zero) is found to be 

useful.

Let S. be a root of either the numerator or denominator. 1

Then the root sensitivity is defined as

S six
dS.l ,dX 's=S.

l
(2.32)

The root sensitivity in contrast to the transfer - function 

sensitivity is a complex constant. When S is the neumeratorl

polynomial of the network function, equation (2.32) defines

sensitivity". Likewise if S is the denominatorl
the zero
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polynomial equation (2.32) is referred to as the "pole 

sensitivity".

We have defined several sensitivity functions and interrelated 

them. However, in the final anlysis we are interested in 

minimizing the deviation of the filter response due to 

increamental variation of some network parameters. In highly 

selective networks (i.e. high Q networks) the pole sensitivity is 

an important factor to consider because of the stability of the 

network. In the design of the active filters the sensitivity of 

the filter transfer function to the variation of the active 

parameters is a major considerations.

2.3 VARIOUS APPROXIMATIONS IN FILTERS IN FILTER CIRCUIT THEORY

AND DESIGN CONSIDERATION The modern fi1 ter design is based on

the selection of the filter transfer function to satisfy the

specification and then the ralization of this function by
9synthesis techniques . The step involved in the modern

8filter design can be summarized as .

1. Selection of the filter specification.

2. Selection of a realizable rational function which satisfies 

this specication.

3. Ralization of the transfer function and calculation of the

component values of the chosen filter structure.
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4. Construction and testing of the filter.

Filter performance is prescribed in the frequency or time 

domain. Since electrical-network reactances have continuous 

frequency characteristics (except at a resonance), the adrupt 

cut off inherent in the ideal response of fig. (2.8) cannot 

actually be attained by any finite connection of elements.

Hence arises the so called ’approximation problem’ that is, the

determination of system functions which approximate the given

5curve within specified tolerances which are at the same time 

realizable as physical networks.

For LP filter, The filter is required to pass all frequencies

below W with no attenuation and frequencies above W withc c

infinite attenuation. The phase of the filter network is to be a

linear function of W.

These specifications cannot be achieved by a physical network.

If we consider the magnitude as the Fourior transform, the 

corresponding time function is of the form sin a / a and exits
I* L

for all t. This makes the empulse response of the filter network 

non-causal and hence non-realizable. It can be shown that any 

band limited frequency response results in a non causal time 

response.

In order to overcome this problem the filter specificaions are
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STOPBAND
w. W

Fig-2-8*. An Ideal Low Pass Filter-

* \

“ ' Stop band■■■■■■■■■■§

Kimx
W0 W3

—>
w

Fig. 2.9: The Specification For A Realizable 
Low Pass Filter-
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modified. Instead of seeking an idealistic performance

criterion, we specify the maximum permissible loss or attenuation 

over a given frequency band of interest called the ’pass band’ the 

minimum allowable loss over another frequency band called the

"stop band" and a statement about the selectivity or the 

tolerable interval between these two bands called the "transitinal 

band".

4A method of approximation is based on the Bode plots . This 

method is suitable for low order simple filter designs. More 

complex filter characteristics are approximated by using some 

well-described rational functions whose roots have been tabulated. 

The most popular among these approximations are the Butterworth, 

Chebyshev, Bessel and the elliptic (or cauer) types. These 

approximations are directly applicable to low-pass filters. 

However, they can also be used to design high pass filters, and 

symmetrical band pass and band reject filters by employing the

frequency transformation functions.

2.3.1 BUTTERWORTH APPROXIMATION Butterworth approximation^

(1936) is a special form of Taylor series approximation in which 

the approximating function and specified function are identical at 

W = 0. Butterworth polynomials can be used to approximate more 

practical characteristic function as shown in fig. (2.9).From fig.

(2.9), the requirement are characterized by pass band from dc to



52

Fig-2-10: Butterworth Filter For Various 

Values Of n ■

Fig-2-11: Chebyshev Equiripple Low Pass Fitter
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w , the stopband from ¥ to infinity, the maximum passband loss p s
A , and the minimus stop band loss A . . max min

The rational function Lp approximations, which have geneal

form.

2 2 N(jw)t H (j w) I =1+1 K( jw) I = 1+1 -■?.. v I ......(2.33)II l l l D(jw) l

where H(s) is desired loss function and K(S) = N(S)/D(S) is a
rational function in S. The function K(S) must be chosen so that 

its magnitude is small in pass band, to make the magnitude of

H(jw) close to unity. In the stop band the magnitude of K(S) must

be large in order to satisfy the stopband loss requirements. For

this approximation KCS) is selected.

Tr,„. _ , „ _ 2 n , 0 „ .KCS) = P (S) = a + a,s +a,s + ......... +a s ....(2.34)n o 1 2 n

thwhere the coefficients of the n order polynomial P (s) aren
chosen so that the corresponding loss function H(S) satisfies the 
given filter requirements.

For the Taylor series approximation the function KCS) must be 
"maximally flat" at the origin (w = 0). Hence as many derivatives

of KCS) as possible must vanish at w = 0. Hence for butterworth

approximation 4
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s
K(S) = P (S) = £ (—--- )n ............ (2.35)

n ¥P

where s is constant, n is the order of the polynomial and Wp is 

desired passband edge frequency. The corresponding loss function 

is

H( jw)

( jw)

( jw)

= ( i + e2C
W
— ) 2n }l/2 (2.36)
WP

This expression shows that the first (2n - 1) derivatives are 

zero at w= 0. Since K(S) was chosen to be an n th order polynomial, 

this is the maximum number of derivatives that can be mode zero. 

Thus the slope is as "flat as possible" at dc. For this reason

the Butterworth approximation is also known as " maximally fiat 

approximation.

So the n th order Butterworth polynomial and approximation

10K(S) satisfies the following conditions.

th1. K (S) is an n order polynomial.n

2. K (o) = 0n
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3. K (S) = 1 is maximally flat at the origin
n

4. K (1) = 1n

5. As n (order of filter) is increased, the passband is flat over 

a wider interval.

6. As n is increased, the stopband loss is increased.

The frequency response of a Butterworth filter for various 

values of n is shown in fig(2.10). All the curves pass through the 

same point at w = Wp and this point is determined by a .

The price that is paid for this simplicity is a very slow 

transition between the pass band and stop band. However 

Bitterworth filter does provide a convenient foundation on which 

other more practical maximumally flat filters are realisable.

2.3.2 CHEBYSHEV APPROXIMATION Butterworth approximation

concentrates on the polonomial at w = 0 instead of

distributing it over range 0 < w < 1. This yields maximally 

flat lowpass filters. These networks had the

disadvantage of requiring a very high order polynomial for a sharp 

transition region.

A better result in this regard may be obtained if we look for 

a rational function that approximates the constant value unity

throughout this range in an oscillatory manner, rather than in a



monotonic manner1*. One such approximation is *' Chebyshev 

approximation".

Chebyshev approximation can be defined as follows :

"A function C(w) is a Chebyshev approximation of F(w) if the 

available parameters are adjusted so that The magnitude of the 

largest error is minimized".

In definition, the " availabe parameters” refer to the 

quatities that determine the function C(w) ( for example, they 

meight be resitors in a specific network). Since the Chebyshev 

approximation minimizes the maximum error, it is often called a 

"min- max" approximation.

The increased stopband attenuation is achieved by changing 

the approximation conditions in the pass band. The criterion used 

is to minimize the maximum deviation from the ideal flat 

characteristic. We get the equiripple characteristic shwon in fig. 

(2.11).

H0 ......... (2.37)
2 21 + £ C (w /w ) n c

t hWhere C (w) is the n order chebyshev polynomial of the first n
2kind and £ < 1 and H is a constant. The response of equation

56

H (jw )

(2.37) is called n th order Chebyshev or equiripple response



Chebyshev polynomials are defined as linearly independent 

solutions of the differential equation.

( 1 - W2) y“ - Wy*- n2y = 0 ....  (2.38).

One of the solution is, a nth order chebyshev polynomial is

Y = C (w) = COS (n COS”1 w ) , 0 < w < 1 (2.39)
n

= COSh ( n C0Sh~"*w) , w > 1 (2.40)

In fact, these two expressions are completely equivalent, each 

being valid for all W.

2The properties of the Chebyshev polynomials are given below

1. C (w) is either an even or an odd functions depending on n

whether n is even or odd. Thus,we can write.

Cn (- w) = C (w) , n even ........  (2.41 A)
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n (- w) = -Cn(w), n odd (2.41 B)

2. Every coefficient of Cr(w) is an integer, and the One

associated with w is 2n
n-1

Thus, in the

C (w) — n

limit as w approaches

n-1 n ’> 2 w

infinity

(2.42)



3. In the range - 1< w < 1, all of the Chebyshev polynomials 

have the equal ripple property, varying between a miximum of 1 and 

a minimum of -1. Outside of this interval, their magnitude 

increases monotonically as w is increased and approaches infinity 

in accordance with equation (2.42).

4. The Chebyshev polynomials posses special values at w = 0,1 or

-1.
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C (0) = (-l)n^ , n even .....  (2.43 A)
n

= 0 , n odd ..... (2.43 B)

C (- 1) = 1 , n even .....  (2.44 A)n

= - 1 , n odd ...... (2.44 B)

There is a practical problem that arises if one attempts to 

realize an even - order Chebyshev low- pass filter with a passive 

network. Even order Chebyshev low pass filters have a zero - 

frequency loss which is equal to the pass band ripple maximum 

gain. However, this implies that the source resistance cannot be 

equal to the load impedance. One way around this restriction is to 

use a frequency transformation which changes the loss at dc. 

However, it should also be pointed out here that active and 

digital filters can easily realize lowpass characteristics that 

have nonzero loss at dc.

2.3.3 THE INVERSE CHEBYSHEV APPROXIMATION The Butterworth
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lowpass filter is maximally flat at origin. The input/output

transfer function H(S) is a polynomials; that is, it has no poles

of attenuation . The inverse Chebyshev low pass fi1 ter is also

maximally flat at the origin, but it does have poles of

attenuation. The attenuation poles give the inverse

chebyshev filter a transition region much steeper than that of 

the Butterworth approximation.

The Chebyshev lowpass filter has an equiripple passband and 

its input/output transfer function H(S) is a polynomial. Even 

though it has no attenuation poles, its transition region is just 

as steep as that of the inverse Chebyshev. Inverse Chebyshev 

filters are sometimes better than Chebyshev filters because of the 

maximally flat passband which results in better delay performance.

Delay is a frequency domain parameter that indicates how much a 

pulse will be distorted.

Fig. (2.12) demonstrates that the inverse Chebyshev filter 

For Chebyshev filter

T (jw)
2 2£ T (w) _____ n

l+£2 T2(W) 
n

(2.45)

Where T = C for equation (2.37) n n

By replacing w by (1/w), we have
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I Kjw> f

Fig.2-13- Elliptical Low Pass Fitter-
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Tt (jw) Ic

£* Ta (1/w) 
n

2 21+s T (1/w) n
(2.46)

or

H (jw)
2 2Ene C (w / w) One
2~2l+£ C (w / w) n c

(2.47)

Tt (jw) is a low pass function with monotonic pass band and Ic 1

equiripple stop band ( stop band edge being w = 1 ).This is called 

"Inverse Chebyshev" approximation.

2.3.4 ELLIPTIC APPROXIMATION The Chebyshev approximation has 

an equiripple pass band. It yields a greater stop band loss than 

the maximally flat Butterworth appoximation. In both 

approximations the stopband loss keeps increasing at the maximum

thpossible rate of 6n dB/octave for an n order

function. Therefore these approximations provide increasingly

more loss than the flat A . needed above the edge of themin

stopband.

If we are to improve the performance of a filter beyond that

which is achived by the chebyshev filter, we have to allow

equirepple response in both pass and stop band. This leads to

narrower transition band. These fi1ters are found by using

elliptic function and referred to as " elliptic filters”. The
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approximation is called "elliptical approximation. They are also

known as "Cauer" or "Zolotarev” approximation. These filter are

also called " Darlington filters", as S. Darlington did

w . . , ,10 much original work.

A typical elliptic approximation fuction is sketched in fig. 

(2.13).

The distinguishing feature of elliptic approximation is that 

it has poles of attenuation in the stopband. Thus the elliptic 

approximation is a rational function with finite poles and zeroes, 

while the Butterworth and Chebyshev are polynomials and such have 

all thier loss poles at infinity. In particular, in the elliptic 

approximation the location of the poles must be chosen to provide 

the equiripple stopband characteristic shown. The pole closest to 

the stop band edge (wp^) significantly increases the slop in the

transition band. The further poles (wp and infinity) are needed
m

to maintain the required level of stopband attenuation. By using 

finite poles, the elliptic approximation is able to provide a 

considerably higher flat level of stopband loss than the 

Butterworth and Chebyshev approximations. Thus for a given 

requirement the elliptic approximation will, in general, require a

lower order than the Butterworth or Chebyshev12. Since a lower

order corresponds to less components in the filter circuit, the
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elliptic approximation will lead to the least expensive filter 

realization.

2.3.5. BESSEL APPROXIMATION In all approximation techniques 

discussed so far, we have concentrated on approximating the 

magnitude of the transfer function. In many signal processing 

requirements linearity of the phase or constant phase delay is 

an important factor. The phase distortion is more in the

Chebyshev filter than in the Batterworth filter. It can be 

shwon that a sudden change in the amplitude is accompanied by a 

similar change in the phase. An equiripple filter has greater 

amount of phase distortion than the maximally flat filter. 

Bessel’s approximation deals with phase and delay charactristics.

A constant delay response can be approximated by a maximally 

flat delay at w = 0 by using Bessel polynomials. It turns out 

that the coefficients of the polynomials used in the transfer 

function H(S) are closely related to Bessel polynomials and 

Thomson was the one of the first to use these polynomials in the

2approximation for this response" .

The lose function for the indeal delay characteristic is

given by 4

STHCS) = e o (2.48)
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w WT 3
Fig-215: Magnitude Error Of Bessel Approximation-
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Fig.2-14- Delay Error Of Bessel Approximation-
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The Bessel approximation is a polynomial that approximates 

this ideal characteristic. In this approximation the delay at the

origin is maximally flat, that is, as many derivatives as possible 

are zero at the origin. It is convenient to consider the 

approximation of the normalized function, with the dc delay Tq=1.

H (S) = eS ..........  (2.49)

The Bessel approximation to this normalized function is
B (s)

H (S) = ...-..... ....... (2.50).
B (o) n

thWhere B (s) is the n order Bessels polynomial which is

defined by following equation

and

Vs) 1

B (S) = S + 1 n
B (S) = ( 2n-l) B (®}+ S2 B<S^ 
1 n-1 n-1 (2.51)

The polynomial B (S) is called Bessel polynomal of order n.

The delay and magnitude of Bessel approximation are 

sketched in fig.(2.14) and fig.(2.15) respectively.

The delay characteristic of the Bessel approximation are 

far superior to thsose of the Buttreworth and Chebyshev. It 

concentrated on the requirement of flatness of the time delay. As 

a result ,the step responce is also superior having no



overshoot.However ,the flat delay is achived at the expance of 

the stopband attenuation which, is even lower than that for the 

Butterworth.
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The poor stopband characteristics of the 

Bessel approximation makes it an impratical approximation for most 

filtering applications .An alternate solution to the problem of 

attaining a flat delay characteristic is by the use of delay 

equalizers.

2.4 FREQUENCY AND IMPEDANCE SCALING In most of examples, the

values of the elements R,L,C have been of the order of unity. 

It is very difficult, to build a capacitor of 1 Farad. The 

circuits considered so far have normalized element values. 

There are mainly two reasons for resorting to normalized 

designs. The first reason is simplicity in numerical computation. 

It is easier to manipulate numbers of the order of unity. The 

round-off errors that occur in normalized designs is less 

sever. The second reason is that if we have a normalized 

design of, a band - pass filter, then it is easy to generate

band -pass filters of similar characteristics, of varying center 

frequencies and impedance levels without redesigning the whole 

circuit. To obtain the element value of the required band pass

filter we amplitude (impedance) and frequency scale the

normalized design.
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After obtaining the nominal design, " impedance scaling" is 

used to change the element values of the circuit in order to make 

the circuit practically realizable. The empedance normalizing

8factor is given by

desired impedance level 
n normalized impedance level

Frequency scaling is used to shift the frequency response of
a filter to a different part of the frequency axis. This is useful
in designing filters using normalized frequency requirement, such

as those given in standerd tables.
One example of frequency scaling is in denormalization of an LP

transfer function which has a cut off frequency of 1 rad/sec, to

realize a LP function with cut off frequency at W rad/sec.P
In general, the frequency 

can be scaled up by a factor a 
resistors) by the factor a.

The frequency normalizing

response of a given 

by decreasing all

8factor is given by

active filter 

capacitors (or

desired frequency 
^n normalized frequency

2.5 STATE VARIABLE ANALYSIS The network may be divided into
13three basic aspects

a] Linear system A system containing linear componants e.g.
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resistor, capacitor and inductance, etc.

b] Non - linear system A system containing non linear

elements e.g. diode, transistors, FET, Tunnel diode, etc.

c] Time varying system The value of the element changes with 

time e.g. Capacitor microphone, mass of a rocket.

To analyse the system, we have two usual circuit analysis 

methods.

1] Mesh analysis KVL.

21 Nodal analysis KCL

These analysis methods are not convienient for the higher

order system, non-linear systems and time varying systems. So all 

these difficulties are removed by " State variable technique ".

A ” State Variable ” is the term used to define the effect of 

an evergy-storing element in a physical system. There is one state 

variable for each energy storage element representad by the

capacitor voltages and inductor currents1^.

Ec - C V2 and ^ - i L I2.

These currents and voltages inform us about energy stored in 

system.

Response to a given input depends on the zero - input response. 

The zero - input response in an RLC network is completely 

determined once the initial inductor currents and capacitor



voltages are known. Hence, we call the initial capacitor

voltages and inductors currents ( initial conditions) as the 

initial states of the system. The knowledge of capacotor voltages 

and inductor current, at a given time is sufficient to calculate 

any of the network variables ( Current and Voltages) at that 

particular time. Hence, we call the capacitor voltages and the 

inductor currents at a specified time, as the " state Variables 

of the network.

The state of a network as a set of real or complex quatities

8that satisfy the following conditions .

al The state at any time t^ and the inputs from t^ to t (t > t^) 

uiquely determine the state at time t.

b] The state at time t and the inputs at time t determines 

uniquely the value at time t of any network varible.

The network equations are written in the form of a set of 

first order differential equations. Such equations are called 

"State Equations". The concept of state and of state equations 

form an important part of the study of optimal control system.

The state equations of a linear time-invariant network can 

be written as.

dX (t)
----- = A X (t) + B U (t) ......... (2.52)
dt

and the output equations
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Y(t) = C X (t) + D U (t) (2.53)

where X is the state vector, U (t) the input vector and Y(t) the

output vector. A,B,C and D are matrices of appropriate

dimensions. If the network is time varying, then the elements of 

these matrices are functions of time. An advantage of the state 

equations is that similar equations can be written even for a 

nonlinear network where the conventional network function 

technique is, in general, not applicable.In writing equation 

(2.52) and (2.53) we have made a tacit assumption that the network 

does not have any cicuit (cut-off) of capacitor (inductors), or 

capacitor (inductor) voltage (current) sources. If it were not the 

case, the state and output equations take the general form (here 

the tiem t isnot written to simplify notation).

d X d UA X + B U + E -r—■ d t (2.54)d t

(2.55)

2.5.1. STATE VARIABLE FILTER A state variable is one way

of representing the effect of the an evergy storing element in any 

physical system. The electrical method is to implement an analog

cumputer simulation cicuit, where the integrator outpot voltages
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represents the state variables. It requires one integrator to 

represent each energy - storing element. Thus one can count 

the integrators and know how many energy storing elements are 

in the system being represented. The analog computer having a 

biquadratic transfer function of fig. (2.16), is called 

state - variable biquad"

Several circuits are available for implementing the 

biquadratic equations. The first of these is the KHN state 

variable circuit, named after Kerwin, Huelsman and New-Comb, which 

is illustread in fig. (2.16). This cicuit can simultaneoulsy 

represent the regular low - pass, high pass and band pass filter

14at three different output points

An infinite - gain state variable network configuration is 

illustrated in fig. (2.17). This configuration makes use of op. 

amps, in the same way they would be used in an analog computer 

realization of transfer functions (i.e. using integrators and 

summers).

The voltage transfer function has the form.7

V a +a S+...... +an *S+ a Sn
o 0 1 n n

V b +b. S +....... +b Sn_1+ b Sn
1 01 n-1 n

(2.56)
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Fig.2-16- KHN State Variable Biquad Circuit-

Fig.2-17'. State Variable Infinite Gain Network 
Configuration.
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So the state variable technique is the only viable direct 

approach presented. The state-variable realization in general

provides low Q sensitivity to element variation than a

single- amplifier realization and for this reason is sometimes

used for high -Q band pass applications (Q > 50). A single method

for tunning a state - variable bandpass filter over more than

octave without serious loss in the Q " value is presented by

Antonio L. Eguizabal - 15Rivas One of the advantages is the

implementation of the higher order filter with few op.amps.Although 

op. amps, are cheap and physically small, they still consume power 

and are the predomianant sources of noise.

One of the important drawbacks of state variable approach is 

that, it is applicable to low pass and high pass applications. 

It is a rather expensive circuit to use. The most widely used 

method in industry for highr order filter is the cascade approach 

because the systhesis procedure needed for determining the 

element values of a biquiad is relatively simple and minimization 

of sensitivity is usually ease to attain.

2.6 FILTER TOPOLOGY :- Topology formalizes the formulation of 

the network equilibrium equations (loop equations,node equations). 

Most of the computer aided analysis and design methods utilize 

topological formulation. The deviation of the state equations of a

network inherently depends on the topological matrices of the
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network.Topology or geometry of the network, is concerned with the 

interconnections of the element in the network.The network is 

represented by a linear graph.So the study of topology proves 

helpful 1 in solving complex problem.

In this section we discuss the commonly used single 
amplifier biquad topologies.These structures require an RC-network 

in conjuction with one op.amp.and can be used to realize a 

complex pole-zero pair.The transfer function of an RC-network will 

have poles on the negative real axis while the zeros can be 

anywhere in the S plane. The general biquad circuit must 

realize complex poles as well as complex zeros. The op.amp. must

somehow be used to realize complex poles instead of the RC-Network

poles are real.There are many circuits that can accomplish this. 

The majority of circuits can be classified into two basic 
categories, namely,the negative feedback topology and the positive 

feedback topology.This classification is based on to which input 
terminals of the op.amp.,the RC-Network is connected.

2.6.1 NEGATIVE FEEDBACK TOPOLOGY Consider the RC-Network
associated with amplifier fo fig.(2.18).where the RC-Network
provides a feedback path to the negative input terminal of

op.amp.Such a structure is capable of realizing a biquadratic
2function and is termed the "Negative feedback topology " .The

transfer function of this general structure can be expressed in
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Fig-2 18: The Negative Feedback Topology.

Fig-2.19* Positive Feedback Topology.
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terms of the feedforward and feedback transfer functions of the RC 

network defined by the equations.

The transfer function of negative feedback topology is

given by
nff

T ............... ............ ............................... (2.57)v N FB

Where N ^ and N__ represents the zeros of RC network at FF FB

feedforward and feedback ports .

4Summerizing the negative feedback topology we have

1. The zeros of the feedback network determine the poles of the 

transfer function .

2. The zeros of the feedforward network determine the zeros of 

transfer function .

3. The poles and zeros can be complex ; however for a stable network 

the poles cannot lie in the right half S plane .

4. The poles of the RC network donot contribute to the transfer 

function (assumming the op.amp.to be ideal).

2.6.2 POSITIVE FEEDBACK TOPOLOGY The positive feedback topology 

is shown in fig.(2.19), where a feedback provided by the RC 

network is connected to the positive terminal of the op.amp. In 

addition to this feedback, a part of output voltage is also 

fedback to the negative terminal via the resistor r and r .This
Jl «

is realy a mixed feedback topology containing both positive as



well as negative feedback. The negative feedback is used to
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define a positive gain for the VCVS.

As in the case for the negative feedback 

topology , the transfer function of the network of fig.(2.19) can 

be expressed in term of the feedforward and feedback transfer 

function of the RC network . The transfer function is given by

Tv

K NFF

D - K NFB
(2.58).

where NFF aan NFB represents the zeros of an RC network which can 

be complex .

D represents the poles of an RC network which must be
*

real .

K 1 +
r

r

2

1

The zeros of T are determined by N„_ while the poles of v FF
Summerizing the positive feedback topology :

1. The zeros of the transfer function are the zeros of the 

feedforward RC network which can be complex .

2. The poles of the transfer function can be located anywhere in 

the left half S plane, being determined by the poles of the RC 

network and factor K.
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27. CONCLUDING REMARKS The selection of active filter 

structure depends mainly on sensitivity of transfer function to 

the variation in the passive elements and active element 

parameters. A standard method of designing a higher order filter 

is to realize it a cascade of second order filters. However, 

a coupled biquad structure has lower sensitivity than the 

cascade structures. Here we have discussed various types of 

sensitivities e.g. w and Q sensitivity.magnitude and phase 

sensitivity, the multiparameter sensitivity.gain and root 

sensitivity. Since the ideal response cannot be attainable by 

many finite connection of element, the determination of system 

functions which approximate the given curve within a specified 

tolerance is called "approximation problem". We discussed several 

types of low pass filter approximations . They are 

Butterworth (maximally flat) response , the Chebyshev (equiripple) 

response ,the inverse Chebyshev response and Bessel-Thomson 

(maximally flat delay ) response.The frequency transformation 

techniques were applicable to design for high pass filter and 

symmetrical bandpass and band reject filter

State variable approach has found application in 

network analysis and synthesis .A state variable is one way of 

representing the effect of an energy storing element in any 

physical system. The state variable realization provides less Q 

sensitivity to element variable than a single amplifier
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realization . For this reason, it is used for high Q bandpass 

applications .

Finally we discussed the negative feedback and 

positive feedback topologies for the realization of the basic 

building block of active filters , the biquad.
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