
HHAPTFR • IIIS a 1 Lhi 1 1 ■ III

FRACTAL GRAPHICS
&

RECURSIVE PROGRAMMING

C H A P T E R -III t: fractal GRAPHICS/RECURSIVE PROGRAMMING :
AND

3.1 CREATING NATURAL PATTERNS :

Suppose we want to draw a fine scenery consisting of

many thousand blades of grass. One approach is to write a

program that produces a single blade of grass and call the

program at different locations of screen, where you want to

produce the blades of grass. (Note that the commands in the

single blade program must be relative rather than absolute

to make the duplication successful). So a lawn will be produced

surely.But the lawn would look utterly unreal, because in nature

no two grass blades are alike. So a regular art of the

geometrical shapes with which we have dealt in chapter It will

not help here. A kind of irregular art is, required to draw

natural elements such as landscapes. To introduce randomness

in natural elements, one can, for example, write a separate

program to produce different grass blades with their varying

height and orientation. The result will be an unmanageable large £

data base. The compiling time for the program will also be

large. One method to simulate the randomness of natural objects

is the technique of 'fractals'. This techique is devised by

BendTt Mandelbrot of IBM and Is popularly known as 'Mandelbrot
r %>X

graphics,

Another major tool to imitate natural patterns is

recursion . In this chapter programs are developed that

Illustrate recursion and fractals.

3.2 RECURSIVE^ PROGRAMMING :

A recurisive procedure is one which calls itsef . Certain

type of problems such as choosing the next move in a

computer chess program, can best be solved with a recursive

procedure. Recursion technique has a great value in the field

of 'Artificial Intelligence". By definition y A.I. involves

improving the computer performance in the fields where human

is better. So A.I. always tries to copy human problem

solving activities. Many times human problem solving activities

involve recursion. This is a very classic 'divide and conquer*

approach of problem solving. One example of recursive problem
3solving by human is quoted in reference. It is the problem

of planning a route for walking through London from Trafalgar

Square to the British Museum. One way of solving this problem

might be to pick an intermediate landmark such as Covent

Garden, and break the original problem down into the problem

of getting from Trafalgar Square to Covent Garden and from

Covent Garden to the British Museum. Extreme care has to be

taken while designing recursive procedure. Recursion must be

terminated at a level of detail appropriate- both to the problem

being solved and to the size of the computer available.

63

To become a successful recursive programmer, you must

recognize when a problem can be broken ' down Into easier

problems. There must be some tests, which will tell whether

the problem is further divisible or not. The exact sequence

of operations is not important in a recursive subroutine.

3.3 RECURSION AND COMPLEXITY :

There are two types of complexities, extensive complexity

Extensive complexity includes repeating the same designs or

again and again order and over again and generating forms of

different size, position and even shape from the same function

and it does appear to represent the way reality is structured.

In intensive complexity the parts reflect the whole and the

details are produced by the same function which is used to

organize the overall structure. The essence of intensive

complexity is nesting a function within the same function, the

Sequence of nesting reflects successive levels of detail. The

principle behind drawing landscapes is the complexity results

from the repeated application of simpler processes and

Structures.

3.4 RECURSIVE SQUARES :

There are many complex patterns and curves that can

easily be described recursively. So recursion is an useful tool

in computer graphics and computer generated art (computer aided

drawing). The principle of self-similarity is used in drawing

Ihe recursive shape i.e. the same shape is repeated at

different scale. Here a program is developed that creates a

pattern of recursive squares ■ •

The pattern consists of a square, together with a

recursive half-size copy of the complete pattern centred on

each corner of the main square.

3.4.1 DESCRIPTION OF THE PROGRAM :

At the start of the program, the required files are

included. Then there is a declaration of a function censqT-

which draws a square.

The main module first sets the drive argument to the

costant DETECT. It sets the mode to 1 and then it calls

initgraph. The initgraph will automatically determine the type

of graphics adapter installed and will load the appropriate

driver. Then the censqr function is called to draw the centre

square. Before shuting down the graphics system, the main

module also checks whether key 'p' is pressed, if *yes* ! then

it calls the 'ghardpict' function which Is a prototype in

•»gpmt.h"'.

Last part of the program is 'square' module. Basically

a rectangle is defined of which size depends upon reduction

factor r. It takes the coordinates of the square defined in

the main module and reduces them by r. Delay is set so that

7i

ore can observe the pattern while building up. The stopping

condition is triggered by the statement (r < 20} and the program

is terminated without drawing square. Next part of the module

is calculation of proper locations where, the copy of the square

is to be placed. Then a copy of reduced size square is placed

at each comer of main square and the process continue*;.
Refer to listing of program on page number SO

3.5 SNOWFLAKES :

The algorithm for constructing continuous, non-rectifiable,
L

recursive curves was first presented by Helge Von Koch in

1904. He described the process in terms of initiators generator

and cascade. The overall process of drawing is referred to as
that

Koch recursion. The significance of Koch recursion is/the same

recursive process, can be used to generate a variety of curves

different from Koch's original curve.

In the Koch or Snowflake curve the initiation is a star

Of David which is shown in figure number 1_ . Star of David

consists of two equilateral triangle drawn in a fashion shown

in figure 1 . The generator is a similar smaller triangle which

is recursively applied to each of the sides of the previous

pattern.

Many Interesting variations can be tried with this

pattern e.g. you can vary the reduction factor that determines

the size of smaller flakes. By using different reduction factor

for the central flake also gives effective picture. One can also

use two different reduction factors, one for the small flakes

on the points of one of the triangles, and tne other for the

small flakes on the points of the other triangle. Here, in this

work we have kept restriction on number of patterns and we

have defined it as order of the shape.

3.5.1 PROGRAM DESCRIPTION :

The function 'David' Is declared after include part of

the program, wh ich draws the basic star of david pattern.

Another function ' Rekoch' is also declared. Rekoch function

draws the primitive David pattern at a reduced scale at each

comer of the David pattern drawn in earlier iteration . The

degree to which the recursive drawing continues i3 denoted

by 'k'.

The main module of the program asks the user about

the degree of the Snowflakes, Then it initializes graphics mode.

Rekoch function is called with x = 350 ,y =150 and r =150

to draw the initial star of David pattern. Here r denotes the

reduction factor I.e. In second iteration the basic star of David

pattern will be reduced by this much amount. Rest part of the

main module Is to look for key 'p' or key 'q'. With key

'p' you can take the hardcopy and with 'q' you can exit the

program. By pressing any other key you can continue with the

pattern.

-7 2>

Description of David Function :

The task of David function is to draw the basic star

of David pattern. This star is drawn with linesegements with

proper endpoints. This function in its first iteration takes

the value of x , y and r as x,y and r (i.e. 320,150,150)

and in successive it erations x,y and r decrease by the amount

of reduction factor.

Description of Rekoch Function :

Rekoch function first calls the David function. Then there

is a delay so that one could observe the pattern while building

up. Then the stopping condition is checked. If reduction factor

is less than 'degree, the program is terminated. Rest of the

statements in this module are the calculation of the location

of corners. Then by proper coordinate pairing the same Rekoch

function is recursively called to place the reduced copies of

the star at each comer.
Refer to listing of program on page number SI.

3.6 FRACTAL GEOMETRY :

In Latin language fractus means irregular. So the

fractal geometry deals with the structures which are self

similar in nature but irregular in form. Typical objects of this

form are coastlines, rock formations and trees. Normally such

natural forms have the property best summarized by Mandelbrot

(1982) as follows :"When each piece of the shape is

geometrically similar to the whole, both the shape and the

cascade that generates it are called ' Self Similar' (quoted

in reference -1-).

A deep study of the structure of a coastline was done

by Mandelbrot (at that time he was a research fellow at IBM).

He concluded with three points as follows :

1) The length of the coastline varies with scale. As scale

becomes finer and finer, more and more detailed features,

headland, a cosy, sheltered recess and crannies emerged

which Increase the length of the coastline. So

Mandelbrot concluded that the length of coastline might

be considered "Infinite or rather, undefinable".

2) Curves like coastlines exhibit an irregularity which is

not smooth, hence can't be studied using the calculus.

Though continuous the curves are non-rectifiable (i.e.

they cannot be differentiated).

3) So the basis of the structure of coastline is irregularity

and infinite length. But when the patterns are drawn

they seem to span space. Now the curves are one

dimensional and space is two dimensional. How the shape

can be both one-and two-dimensional ?

The objects like coastline, seem to lie between

dimensions. They are not bounded by scale but are referred

to as scaling. Coastline seem to be more than one dimensional

but not exactly two. So the dimensions of these typical objects

ns

appear to be fractional or nonintegral. Such objects are called

"fractals" by Mandelbrot. Study of fractals has initiated a new

branch of mathematics of major relevance to computer graphics

called as "fractal geometry" by Batty

By-the-way, Fractal Graphics introduced new words to

English language viz.

"FRACTOPHILIC " : Meaning a lover of fractals

"FRACTALICIOUS" : Meaning a delicious fractal.

3.7 APPLICATIONS OF FRACTALS ;
4

Fractals have many important applications in chaos theory

and materials research. Certain fractal systems implemented

on computer closely resemble grains and dust particles. Lucas

used fractal logic to create out the world of landscapes for

the movie "The Return of the Jedi" After observing the

simulation of fractal logic on screen some pathologists believe

that modelling fractal systems on a computer may help in

understanding how cancers develop.

With the aid of a simple fractal program, a computer

can be converted into a kind of microscope for viewing the

boundary of the Mandelbrot set. Zooming in one sees an infinite

regress of detail that astonishes us with its complexity. A

modified fractal technique, computer bimorphing is used in the

recent record breaking movie "Jurasic park"

Now-a-days, fractals are being used to produce still

paintings and sculptures as well as animation. This raises the

interesting question of fractal landscapes should be judged on

the same criteria as the works of conventional landscape
2*

painters. Paul Brown thinks that upto a point they should

but other artists disagree strongly.

3.8 SI ERPINSKI CURVES :

The curve is developed by Waraclaw Sierpinski.

Sireplnskl curves exists from order 0 to order 4. It is

convenient to define a Sirepinski curve of order 0 which
o

consists of a diamond (or a square rotated through 45).

The characteristics of the Sirepinski curve is that it

can be drawn as continuous line, without lifting pencil from

paper. There are two ways of drawing the curve.

First method of drawing is an easy one. Here we must

recognize that the Sierpinski curve of order 1 consists of four

order 0 curves "Joined" at the centre. The order 2 curve

consists of four order 1 curves joined at the centre. So

generalizing, an order N curve consists of four order N-1 curves

joined at the centre when four subcurves are joined. We have

to delete four diagonal lines from the subcuves and join the

subcurves with two horizontal and vertical lines.

77

Another appraoch of drawing Sierpinski curves is

suggested by Wirth (the inventor of programming language

PASCAL). In this approach one can draw the curve as a

continuous line. If you want to take hardcopy of the Sierpinski

curves, you have to implement this approach (because on printer

you can't delete lines).

Any Sierpinski curve of order N can be divided into

four components connected at the corners, a left component, a

top com pone t, a right component, a bottom component.

Now an order N component is made up of a sequence of

order N-1 components joined in a well-defined way. e.g. A Left

component of order N consists of :

a left component of order N-1 .

a diagonal line .

a top component of order N-1 .

a vertical line ,

aa bottom component of order N-1 ,

a diagonal line .

a left component of order N-1 .

This principle of drawing is shown in figure 1, . The

same principle is worked out in the program listings on page

number $3. Refer to listing of program on page number, S3,

1%

3.10 DIRECTIONS FOR EXTENSION :

Colour has the power to attract attention and evoke

complex feelings. CXir world is a colourful world. Coolour gives

new dimensions to the output pattern implemented in this

chapter. Unfortunately we are using HGA for better resolution

purposes . But one can implement these patterns with colours.

If different colours are used at adjacent levels, successively

smaller copies of the shape will appear in different colours

over the larger copies that have already been plotted in another

colour. So one can introduce the colour intelligence in the

recursive square, Snowflakes and Sierpinski curves.

Here we have implemented the Sierpinski curve as a

representative element of space filling curves (i.e. nonrandom

fractals). Using the same principle one can implement Peano

type curves, W curves, C curves and dragon curve.

The first variant on the scheme of Koch recursion is

the construction of Koch landscape or a Koch forest. Here the

star of David pattern is not used as initiator as a whole. But

a horizontal line is drawn which provides a base for the

forest.

The second possible variant of the Koch recursion

involves sweeping around the plane and generating a design

in which the Koch forest results as the complement of the two

dimensional sweep. The result is Peano-Cesaro triangle sweep.

"73

Mountains and coastlines are the structures which are

moduled throughout the ages and have multiple influences. There

is no way to record and reconstitute the multiple influences.

So for modelling such objects we have to turn to the concept

of random fractals. Their details and irregularity can't be

described in any deterministic way. One can modify the Koch

recursion program by making the displacement random but

witnin certain limits of the midpoint interms of its orientation

and magnitude.

One more direction of extension in recursive programming

Is the implementation of recursively generated trees. It is truly

said that,

"A tree is a branch with a tree on the end of it*

A simple subroutine that draws a branch of tree can

be called recursively to draw a lull tree with many branches.

With the facility of random number generation of many languages,

randomness can be introduced in tree drawing.

You will come to know many more directions of extension

of the work on fractals if you just go through the twenty-two

unique fractal programs found on the diskette into the back
6

cover of Judd Robin's book "Fun with fractals". This is a

software of about 3 Megabytes. The book also explains how

the program works and how to use them for greatest enjoymant.

It also gives to create infinite possibilities of fractal

programming.

/*(E€<Ee(E(EflE(E(E(E(E(EflE(EflE(E(E(E(E(E(EflE(EflE(EflE(t€(E(E<EfEflEft(E<E(E«EK(E<E£«E€(E(ESfE(EiEflECSIEC
* PROGRAM DEMONSTRATING FRACTAL
flE SIMPLE RECURSIVE SQUARES ARE IMPLEMENTED.
<E DATE : 29-02-1994

*/

^include <stdio.h>
#include <graphics.h>
#include <stdlib.h>
^include <roruo.h>
#include <dos.h>
#include “gprnt.h"

void censqr (in t, in.t, int) ; /* draws the square %/

®ain()
x

int drive = DETECT;
int mode =1;

initgraph!&drive,&mode, **”) ;
censqr(320,220,lOO);
if(getch() == 'p') ghardpict(50,50,600,300);
closegraph();

a

void censqr(int xc,int yc,int r)
/* r reduction factor */

x
int xl,yl,x2,y2;
rectangle!xc-r».5,(yc-r*.5)*.7,xc+rl.5,(yc+r*.5)*.7);

/* draws the rectangle %/
delay!lOO);

if!r < 20) return;
xl = xc — r/2;
yl = yc - r/2;
x2 = xc + r/2;
y2 = yc + r/2;

censqr!xl,yl,r/2);
censqr!x2,y1,r/2);
censqr!xl,y2,r/2);
censqr(x2,y2,r/2);
return;

IP
l ^

/* PROGRAM DEMONSTRATING FRACTAL
PROGRAM DEMONSTRATING SIRPINSKI CURVES
DATE : 29-06-1994 */

/* X?0???? PROGRAM STARTS HERE +++++++++*/
^include <stdio.h>
^include <graphics.h>
^include <stdlib.h>
#include <conio.h>
#include <dou.h>
^include "gprnt.h"
^include <nath.h>
void spinki(int,int,int, int);

/* draws the square */
void dianond(int,int,int);
nain()

«
int drive = DETECT;
int node = 1;
initgraph(&drive,Anode,"");
spinki(320,140,5,4);
if(geteh() == 'p')

ghardpict(50,50,600,300);
e!osegraph();

&

void spinki(int xc,int ye,int h,int
/* r reduction factor */

int xl,yl,x2,y2,x3,y3,nl;
setcolor(1);
delay(100);

ft

if(n==0) e
dianond(xc,yc,h);
return;

xl = xc - (pow(2,n)) * h ;
yl = yc - (pow(2,n)) * h ;
nl = n - 1;
spinki(xl,yl,h,nl);
xl = xc + (pow(2,n)) * h ;
yl = yc - (pow(2,n)) * h ;
nl = n - 1;

spinki(xl,yl,h,nl);

xl - xc + (pow(2,n)> * h ;
yl = yc + (pow(2,n)) * h ;
nl = n - 1;
spinki(xl,yl,h,nl);

xl = xc - (pow(2,n)) * h ;
yl = yc + <pow(2,n)) * h ;
n 1 n -- 1;
spinki(xl,yl,h,nl);
seteolor(O);
1ine(xc-2*h,ye-h,xe-h,yc-2*h);
1ine(xo+h,yc-2*h,xe+2*h,ye-h);
line(xc+2*h,yc+h,xc+h,yc+2*h);
line(xe-h,yc+2*h,xc-2*h,yc+h);
seteolor(l);
line(xc-h,yc-2*h,xe+h,ye-2*h);
line(xe+2*h,yc-h,xc+2*h,yc+h);
line(xe+h,yc+2*h,xc-h,ye+2*h);
iine(xe-2*h,yc+h,xe-2*h,ye-h);

return;a
void dianond(int x,int y,int h)

»
moveto(x-h, y);
linerel(h,-h);
linerel(h,h);
lirierel(-h, h);
linerel(-h,-h);a

83

/* PROGRAM DEMONSTRATING KOCH RECURSION KOCH.C */
/* A PRIMITIVE DAVID STAR IS RECURSIVELY PLACED */
/* ON ITSELF. */
/* DATE :04-07-1994 */
/* PROGRAM STARTS HERE */
/* ___________ INCLUDE MODULE __________________ */
♦include <stdio.h>
♦include <graphics.h>
♦include <stdlib.h>
♦include <eonio.h>
♦include <dos.h>
♦include "gprnt.h"

void reekoch(int,int,int);
/* draws the square */

void david(int , int , int);
int k;
mainC)
e
int drive = DETECT;
int node = 1;
char op;

do®
printf("give degre : ");
scant(“Xd",&k);
initgraph(&drive,&mode,””);
reekoch(320,150,150);
op = geteh();
if(op == 'p') ghardpict(50,50,600,300);
closegraphC);
£while(op != 'q');

a

void reckoeh(int xc,int yc,int r)
/* r reduction factor */

®
int xl,x2,yl,y2,y3,y4,x3;
david(xc,yc,r);

/* draw the rectangle */
delay(1000);
if(r<k) return;
xl = xc - r/2;
y2 = yc - r/4;
x3 = xc + r/2;

8^t

y3 = yc + r/4;
x2 = xc;
yl = yc - r/2;
y4 = yc + r/2;

reekoeh(xl,y2,r/2);
reekoeh(x2,yl,r/2);
reekoeh(x3,y2,r/2);
reekoeh(x3,y3,r/2);
reckoch(x2,y4,r/2);
reckoeh(xl,y3,r/2);
return;

&

void duvid(int x,
line(x - r/2,y
line(x - r/2,y
li.ne(x - r/2,y
iine(x + r/2,y
line(x - r/2,y
line(x + r/2,y

&

int y, int r)
- r/4,x + r/2,y - r/4);
+ r/4,x + r/2,y + r/4);
- r/4,x,y + r/2);
- r/4,x,y + r/2);
+ r/4,x,y - r/2);
+ r/4,x,y - r/2);

2S

Fig. 1 ; star of David Pattern. It's Recursion Gives Snowflakes

Fig.2 : Principle of Drawing Slerpinski Curve

Recursive squares for r <50

ra-.x-7* niu-uri pro-ci rx-fTi
Lj_5 Uj UP L+J LfJLJ LM L+J
ru ipj |IIP [
t I . ,
IJTftU

O'

r rtI-- -a e

E-a d
H-Q

B- &
Ld
LU t: J -Lid—SJ El

Ei
a

Q-ffl
jijii] eta Eta

U.E]
Recursive square for r<20
CXjtput of program for recursive squares

27

74-i

KOCH recursion for degree 100

!r

°1
0>

"><1

KOCH reoursion for degree 50

88

i _ o _ (* r o i1 " j _ o _ (. i o' OJO XJ_0
] i r i f] i i f i f■>

<
y ■

r
O

:i (
O'

<@
.-o

i
V,

l

3 i:

[i i

•v S'

I

C
Implementation of Sierpinski curve printout
taken by using header file GPRNT. h

»
23

KOCH forest for degree 2
Remarkan totally different shape appears by recursion of
of star of David pattern

90

REFERENCES

1 Batty M., Microcomputer Graphics , Chapman and Hall

Computing, 1987 pp. 144-186.

2 Michie D and Johnston R.,The Creative Computery Viking

Publishing 1984.pp. 150-151.

3 McGregor J. andWatt.A.^The Art of Graphics for the IBM

PC, Addiscn-Wesley Publishing Company, 1986 pp.250-283.

4 Pasupathy S.,Having fun with fractals, Online-a Publication

of Birla Institute of Technology and Science, Pilani, Jcne

1990, pp. 22-23.

5 Sproull R.F. ,Suytherland W.R.,Ullner

M .K., Dev ice-independent Graphics McG raw Hill Book Co.

1989,pp. 134-144.

Robbins J. , Fun with Fractals, Tech.Publications PTE

Ltd.,1993.

6

