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C H A P T E R -III t: fractal GRAPHICS/RECURSIVE PROGRAMMING :
AND

3.1 CREATING NATURAL PATTERNS :

Suppose we want to draw a fine scenery consisting of 

many thousand blades of grass. One approach is to write a

program that produces a single blade of grass and call the

program at different locations of screen, where you want to

produce the blades of grass. (Note that the commands in the 

single blade program must be relative rather than absolute 

to make the duplication successful). So a lawn will be produced 

surely.But the lawn would look utterly unreal, because in nature 

no two grass blades are alike. So a regular art of the 

geometrical shapes with which we have dealt in chapter It will 

not help here. A kind of irregular art is, required to draw 

natural elements such as landscapes. To introduce randomness 

in natural elements, one can, for example, write a separate 

program to produce different grass blades with their varying 

height and orientation. The result will be an unmanageable large £ 

data base. The compiling time for the program will also be 

large. One method to simulate the randomness of natural objects 

is the technique of 'fractals'. This techique is devised by 

BendTt Mandelbrot of IBM and Is popularly known as 'Mandelbrot
r %>X

graphics,



Another major tool to imitate natural patterns is 

recursion . In this chapter programs are developed that 

Illustrate recursion and fractals.

3.2 RECURSIVE^ PROGRAMMING :

A recurisive procedure is one which calls itsef . Certain

type of problems such as choosing the next move in a

computer chess program, can best be solved with a recursive

procedure. Recursion technique has a great value in the field

of 'Artificial Intelligence". By definition y A.I. involves

improving the computer performance in the fields where human

is better. So A.I. always tries to copy human problem

solving activities. Many times human problem solving activities

involve recursion. This is a very classic 'divide and conquer*

approach of problem solving. One example of recursive problem
3solving by human is quoted in reference. It is the problem 

of planning a route for walking through London from Trafalgar 

Square to the British Museum. One way of solving this problem 

might be to pick an intermediate landmark such as Covent 

Garden, and break the original problem down into the problem 

of getting from Trafalgar Square to Covent Garden and from 

Covent Garden to the British Museum. Extreme care has to be 

taken while designing recursive procedure. Recursion must be 

terminated at a level of detail appropriate- both to the problem 

being solved and to the size of the computer available.
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To become a successful recursive programmer, you must 

recognize when a problem can be broken ' down Into easier 

problems. There must be some tests, which will tell whether 

the problem is further divisible or not. The exact sequence 

of operations is not important in a recursive subroutine.

3.3 RECURSION AND COMPLEXITY :

There are two types of complexities, extensive complexity 

Extensive complexity includes repeating the same designs or 

again and again order and over again and generating forms of 

different size, position and even shape from the same function 

and it does appear to represent the way reality is structured. 

In intensive complexity the parts reflect the whole and the 

details are produced by the same function which is used to 

organize the overall structure. The essence of intensive 

complexity is nesting a function within the same function, the 

Sequence of nesting reflects successive levels of detail. The 

principle behind drawing landscapes is the complexity results 

from the repeated application of simpler processes and 

Structures.

3.4 RECURSIVE SQUARES :

There are many complex patterns and curves that can 

easily be described recursively. So recursion is an useful tool 

in computer graphics and computer generated art (computer aided 

drawing). The principle of self-similarity is used in drawing



Ihe recursive shape i.e. the same shape is repeated at 

different scale. Here a program is developed that creates a 

pattern of recursive squares ■ •

The pattern consists of a square, together with a 

recursive half-size copy of the complete pattern centred on 

each corner of the main square.

3.4.1 DESCRIPTION OF THE PROGRAM :

At the start of the program, the required files are

included. Then there is a declaration of a function censqT-

which draws a square.

The main module first sets the drive argument to the

costant DETECT. It sets the mode to 1 and then it calls 

initgraph. The initgraph will automatically determine the type 

of graphics adapter installed and will load the appropriate

driver. Then the censqr function is called to draw the centre 

square. Before shuting down the graphics system, the main 

module also checks whether key 'p' is pressed, if *yes* ! then 

it calls the 'ghardpict' function which Is a prototype in

•»gpmt.h"'.

Last part of the program is 'square' module. Basically 

a rectangle is defined of which size depends upon reduction 

factor r. It takes the coordinates of the square defined in

the main module and reduces them by r. Delay is set so that
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ore can observe the pattern while building up. The stopping

condition is triggered by the statement (r < 20} and the program

is terminated without drawing square. Next part of the module

is calculation of proper locations where, the copy of the square

is to be placed. Then a copy of reduced size square is placed

at each comer of main square and the process continue*;.
Refer to listing of program on page number SO

3.5 SNOWFLAKES :

The algorithm for constructing continuous, non-rectifiable,
L

recursive curves was first presented by Helge Von Koch in

1904. He described the process in terms of initiators generator

and cascade. The overall process of drawing is referred to as
that

Koch recursion. The significance of Koch recursion is/the same 

recursive process, can be used to generate a variety of curves 

different from Koch's original curve.

In the Koch or Snowflake curve the initiation is a star 

Of David which is shown in figure number 1_ . Star of David

consists of two equilateral triangle drawn in a fashion shown 

in figure 1 . The generator is a similar smaller triangle which 

is recursively applied to each of the sides of the previous 

pattern.

Many Interesting variations can be tried with this 

pattern e.g. you can vary the reduction factor that determines 

the size of smaller flakes. By using different reduction factor



for the central flake also gives effective picture. One can also 

use two different reduction factors, one for the small flakes

on the points of one of the triangles, and tne other for the 

small flakes on the points of the other triangle. Here, in this 

work we have kept restriction on number of patterns and we 

have defined it as order of the shape.

3.5.1 PROGRAM DESCRIPTION :

The function 'David' Is declared after include part of

the program, wh ich draws the basic star of david pattern.

Another function ' Rekoch' is also declared. Rekoch function

draws the primitive David pattern at a reduced scale at each 

comer of the David pattern drawn in earlier iteration . The 

degree to which the recursive drawing continues i3 denoted 

by 'k'.

The main module of the program asks the user about 

the degree of the Snowflakes, Then it initializes graphics mode. 

Rekoch function is called with x = 350 ,y =150 and r =150 

to draw the initial star of David pattern. Here r denotes the 

reduction factor I.e. In second iteration the basic star of David 

pattern will be reduced by this much amount. Rest part of the 

main module Is to look for key 'p' or key 'q'. With key 

'p' you can take the hardcopy and with 'q' you can exit the 

program. By pressing any other key you can continue with the 

pattern.
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Description of David Function :

The task of David function is to draw the basic star 

of David pattern. This star is drawn with linesegements with 

proper endpoints. This function in its first iteration takes 

the value of x , y and r as x,y and r (i.e. 320,150,150) 

and in successive it erations x,y and r decrease by the amount 

of reduction factor.

Description of Rekoch Function :

Rekoch function first calls the David function. Then there 

is a delay so that one could observe the pattern while building 

up. Then the stopping condition is checked. If reduction factor 

is less than 'degree, the program is terminated. Rest of the 

statements in this module are the calculation of the location 

of corners. Then by proper coordinate pairing the same Rekoch 

function is recursively called to place the reduced copies of

the star at each comer.
Refer to listing of program on page number SI.

3.6 FRACTAL GEOMETRY :

In Latin language fractus means irregular. So the

fractal geometry deals with the structures which are self 

similar in nature but irregular in form. Typical objects of this 

form are coastlines, rock formations and trees. Normally such 

natural forms have the property best summarized by Mandelbrot 

(1982) as follows :"When each piece of the shape is 

geometrically similar to the whole, both the shape and the



cascade that generates it are called ' Self Similar' (quoted 

in reference -1- ).

A deep study of the structure of a coastline was done 

by Mandelbrot (at that time he was a research fellow at IBM).

He concluded with three points as follows :

1) The length of the coastline varies with scale. As scale

becomes finer and finer, more and more detailed features, 

headland, a cosy, sheltered recess and crannies emerged 

which Increase the length of the coastline. So

Mandelbrot concluded that the length of coastline might 

be considered "Infinite or rather, undefinable".

2) Curves like coastlines exhibit an irregularity which is

not smooth, hence can't be studied using the calculus. 

Though continuous the curves are non-rectifiable (i.e.

they cannot be differentiated).

3) So the basis of the structure of coastline is irregularity

and infinite length. But when the patterns are drawn 

they seem to span space. Now the curves are one

dimensional and space is two dimensional. How the shape

can be both one-and two-dimensional ?

The objects like coastline, seem to lie between 

dimensions. They are not bounded by scale but are referred

to as scaling. Coastline seem to be more than one dimensional

but not exactly two. So the dimensions of these typical objects
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appear to be fractional or nonintegral. Such objects are called 

"fractals" by Mandelbrot. Study of fractals has initiated a new 

branch of mathematics of major relevance to computer graphics 

called as "fractal geometry" by Batty

By-the-way, Fractal Graphics introduced new words to 

English language viz.

"FRACTOPHILIC " : Meaning a lover of fractals 

"FRACTALICIOUS" : Meaning a delicious fractal.

3.7 APPLICATIONS OF FRACTALS ;
4

Fractals have many important applications in chaos theory 

and materials research. Certain fractal systems implemented 

on computer closely resemble grains and dust particles. Lucas 

used fractal logic to create out the world of landscapes for 

the movie "The Return of the Jedi" After observing the 

simulation of fractal logic on screen some pathologists believe 

that modelling fractal systems on a computer may help in 

understanding how cancers develop.

With the aid of a simple fractal program, a computer 

can be converted into a kind of microscope for viewing the 

boundary of the Mandelbrot set. Zooming in one sees an infinite 

regress of detail that astonishes us with its complexity. A 

modified fractal technique, computer bimorphing is used in the

recent record breaking movie "Jurasic park"



Now-a-days, fractals are being used to produce still

paintings and sculptures as well as animation. This raises the

interesting question of fractal landscapes should be judged on

the same criteria as the works of conventional landscape
2*

painters. Paul Brown thinks that upto a point they should 

but other artists disagree strongly.

3.8 SI ERPINSKI CURVES :

The curve is developed by Waraclaw Sierpinski.

Sireplnskl curves exists from order 0 to order 4. It is

convenient to define a Sirepinski curve of order 0 which
o

consists of a diamond (or a square rotated through 45 ).

The characteristics of the Sirepinski curve is that it 

can be drawn as continuous line, without lifting pencil from

paper. There are two ways of drawing the curve.

First method of drawing is an easy one. Here we must 

recognize that the Sierpinski curve of order 1 consists of four 

order 0 curves "Joined" at the centre. The order 2 curve 

consists of four order 1 curves joined at the centre. So 

generalizing, an order N curve consists of four order N-1 curves 

joined at the centre when four subcurves are joined. We have 

to delete four diagonal lines from the subcuves and join the 

subcurves with two horizontal and vertical lines.
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Another appraoch of drawing Sierpinski curves is 

suggested by Wirth (the inventor of programming language 

PASCAL). In this approach one can draw the curve as a 

continuous line. If you want to take hardcopy of the Sierpinski 

curves, you have to implement this approach (because on printer 

you can't delete lines).

Any Sierpinski curve of order N can be divided into 

four components connected at the corners, a left component, a 

top com pone t, a right component, a bottom component.

Now an order N component is made up of a sequence of 

order N-1 components joined in a well-defined way. e.g. A Left

component of order N consists of : 

a left component of order N-1 . 

a diagonal line . 

a top component of order N-1 . 

a vertical line ,

aa bottom component of order N-1 , 

a diagonal line . 

a left component of order N-1 .

This principle of drawing is shown in figure 1, . The

same principle is worked out in the program listings on page 

number $3. Refer to listing of program on page number, S3,
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3.10 DIRECTIONS FOR EXTENSION :

Colour has the power to attract attention and evoke 

complex feelings. CXir world is a colourful world. Coolour gives 

new dimensions to the output pattern implemented in this 

chapter. Unfortunately we are using HGA for better resolution 

purposes . But one can implement these patterns with colours. 

If different colours are used at adjacent levels, successively 

smaller copies of the shape will appear in different colours 

over the larger copies that have already been plotted in another 

colour. So one can introduce the colour intelligence in the 

recursive square, Snowflakes and Sierpinski curves.

Here we have implemented the Sierpinski curve as a 

representative element of space filling curves (i.e. nonrandom 

fractals). Using the same principle one can implement Peano 

type curves, W curves, C curves and dragon curve.

The first variant on the scheme of Koch recursion is 

the construction of Koch landscape or a Koch forest. Here the 

star of David pattern is not used as initiator as a whole. But 

a horizontal line is drawn which provides a base for the 

forest.

The second possible variant of the Koch recursion 

involves sweeping around the plane and generating a design 

in which the Koch forest results as the complement of the two 

dimensional sweep. The result is Peano-Cesaro triangle sweep.
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Mountains and coastlines are the structures which are 

moduled throughout the ages and have multiple influences. There 

is no way to record and reconstitute the multiple influences. 

So for modelling such objects we have to turn to the concept 

of random fractals. Their details and irregularity can't be 

described in any deterministic way. One can modify the Koch 

recursion program by making the displacement random but 

witnin certain limits of the midpoint interms of its orientation 

and magnitude.

One more direction of extension in recursive programming 

Is the implementation of recursively generated trees. It is truly 

said that,

"A tree is a branch with a tree on the end of it*

A simple subroutine that draws a branch of tree can 

be called recursively to draw a lull tree with many branches. 

With the facility of random number generation of many languages, 

randomness can be introduced in tree drawing.

You will come to know many more directions of extension 

of the work on fractals if you just go through the twenty-two

unique fractal programs found on the diskette into the back
6

cover of Judd Robin's book "Fun with fractals". This is a 

software of about 3 Megabytes. The book also explains how 

the program works and how to use them for greatest enjoymant. 

It also gives to create infinite possibilities of fractal 

programming.
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* PROGRAM DEMONSTRATING FRACTAL
flE SIMPLE RECURSIVE SQUARES ARE IMPLEMENTED.
<E DATE : 29-02-1994

*/

^include <stdio.h> 
#include <graphics.h> 
#include <stdlib.h> 
^include <roruo.h> 
#include <dos.h> 
#include “gprnt.h"

void censqr ( in t, in.t, int) ; /* draws the square %/

®ain() 
x

int drive = DETECT; 
int mode =1;

initgraph!&drive,&mode, **” ) ; 
censqr(320,220,lOO);
if(getch() == 'p') ghardpict(50,50,600,300); 
closegraph();

a

void censqr(int xc,int yc,int r)
/* r reduction factor */ 

x
int xl,yl,x2,y2;
rectangle!xc-r».5,(yc-r*.5)*.7,xc+rl.5,(yc+r*.5)*.7);

/* draws the rectangle %/ 
delay!lOO);

if!r < 20) return; 
xl = xc — r/2;
yl = yc - r/2;
x2 = xc + r/2;
y2 = yc + r/2;

censqr!xl,yl,r/2); 
censqr!x2,y1,r/2); 
censqr!xl,y2,r/2); 
censqr(x2,y2,r/2); 
return;

IP
l ^



/* PROGRAM DEMONSTRATING FRACTAL
PROGRAM DEMONSTRATING SIRPINSKI CURVES 
DATE : 29-06-1994 */

/* X?0???? PROGRAM STARTS HERE +++++++++*/
^include <stdio.h>
^include <graphics.h>
^include <stdlib.h>
#include <conio.h>
#include <dou.h>
^include "gprnt.h"
^include <nath.h>
void spinki(int,int,int, int);

/* draws the square */ 
void dianond(int,int,int);
nain()

«
int drive = DETECT; 
int node = 1;
initgraph(&drive,Anode,""); 
spinki(320,140,5,4); 
if(geteh() == 'p')

ghardpict(50,50,600,300); 
e!osegraph();

&

void spinki(int xc,int ye,int h,int 
/* r reduction factor */

int xl,yl,x2,y2,x3,y3,nl; 
setcolor(1); 
delay(100);

ft

if(n==0) e
dianond(xc,yc,h); 
return;

xl = xc - (pow(2,n)) * h ; 
yl = yc - (pow(2,n)) * h ; 
nl = n - 1;
spinki(xl,yl,h,nl);
xl = xc + (pow(2,n)) * h ; 
yl = yc - (pow(2,n)) * h ; 
nl = n - 1;



spinki(xl,yl,h,nl);

xl - xc + (pow(2,n)> * h ; 
yl = yc + (pow(2,n)) * h ; 
nl = n - 1;
spinki(xl,yl,h,nl);

xl = xc - (pow(2,n)) * h ; 
yl = yc + <pow(2,n)) * h ; 
n 1 n -- 1;
spinki(xl,yl,h,nl);
seteolor(O);
1ine(xc-2*h,ye-h,xe-h,yc-2*h); 
1ine(xo+h,yc-2*h,xe+2*h,ye-h); 
line(xc+2*h,yc+h,xc+h,yc+2*h); 
line(xe-h,yc+2*h,xc-2*h,yc+h);
seteolor(l);
line(xc-h,yc-2*h,xe+h,ye-2*h); 
line(xe+2*h,yc-h,xc+2*h,yc+h); 
line(xe+h,yc+2*h,xc-h,ye+2*h); 
iine(xe-2*h,yc+h,xe-2*h,ye-h);

return;a
void dianond(int x,int y,int h) 

»
moveto(x-h, y); 
linerel(h,-h); 
linerel(h,h); 
lirierel( -h, h); 
linerel(-h,-h);a
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/* PROGRAM DEMONSTRATING KOCH RECURSION KOCH.C */ 
/* A PRIMITIVE DAVID STAR IS RECURSIVELY PLACED */ 
/* ON ITSELF. */
/* DATE :04-07-1994 */
/* PROGRAM STARTS HERE */
/* ___________ INCLUDE MODULE __________________ */
♦include <stdio.h>
♦include <graphics.h>
♦include <stdlib.h>
♦include <eonio.h>
♦include <dos.h>
♦include "gprnt.h"

void reekoch(int,int,int);
/* draws the square */ 

void david(int , int , int );
int k;
mainC)
e
int drive = DETECT; 
int node = 1; 
char op;

do®
printf("give degre : "); 
scant(“Xd",&k); 
initgraph(&drive,&mode,””); 
reekoch(320,150,150); 
op = geteh();
if(op == 'p') ghardpict(50,50,600,300); 
closegraphC);
£while(op != 'q');

a

void reckoeh(int xc,int yc,int r) 
/* r reduction factor */

®
int xl,x2,yl,y2,y3,y4,x3;
david(xc,yc,r);

/* draw the rectangle */ 
delay(1000); 
if(r<k) return; 
xl = xc - r/2; 
y2 = yc - r/4; 
x3 = xc + r/2;
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y3 = yc + r/4; 
x2 = xc; 
yl = yc - r/2; 
y4 = yc + r/2;

reekoeh(xl,y2,r/2); 
reekoeh(x2,yl,r/2); 
reekoeh(x3,y2,r/2); 
reekoeh(x3,y3,r/2); 
reckoch(x2,y4,r/2); 
reckoeh(xl,y3,r/2);
return;

&

void duvid(int x,
line(x - r/2,y 
line(x - r/2,y 
li.ne(x - r/2,y 
iine(x + r/2,y 
line(x - r/2,y 
line(x + r/2,y

&

int y, int r)
- r/4,x + r/2,y - r/4); 
+ r/4,x + r/2,y + r/4);
- r/4,x,y + r/2);
- r/4,x,y + r/2);
+ r/4,x,y - r/2);
+ r/4,x,y - r/2);
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Fig. 1 ; star of David Pattern. It's Recursion Gives Snowflakes

Fig.2 : Principle of Drawing Slerpinski Curve
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KOCH recursion for degree 100

!r

°1
0>

"><1

KOCH reoursion for degree 50



88

i _ o _ (* r o i1 " j _ o _ (. i o' OJO XJ_0
] i r i f ] i i f i f■>

<
y ■

r
O

:i (
O'

<@
.-o

i
V,

l

3 i:

[ i i

•v S'

I

C
Implementation of Sierpinski curve printout 
taken by using header file GPRNT. h



»
23

KOCH forest for degree 2
Remarkan totally different shape appears by recursion of 
of star of David pattern
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