
CHAPTER -1

INTRODUCTION TO

C - PROGRAMMING

1

INTRODUCTION TO C - PROGRAMMING

C is one of the most popular language today. C was an off-spring
of the "Basic Combined Programming Language (BCPL) called 3,
developed in 1960's at Cambridge University. B language was
modified by Dennis Ritchie and was implemented at Bell Laborato­
ries in 1972 and new language was named C. Today, C is running
under a number of operating systems including MS - DOS. This work
also inculdes all essential features of ANSI C (American National
Standard Institute - ANSI).

1.1.1 IMPORTANCE OF C

(i) It has rich set of built in functions and operators, so can
be used to write any complex program.
(ii) Programs written in C are efficient and fast. This is due to
variety of data types and powerful operators.
(iii) There are only thirtytwo keywords and its strength lies in
"builtin" functions. Several standard functions are available
which can be used for developing programs.

(iv) c is highly portable. This means that C -programs written
for one computer can be run on another with little or no modifi­
cation.

2

(v) C - language is suited for structural programming, thus
requiring the user to think of a problem in terms of function
modules or blocks. A proper collection of these modules would
make a complete program. This modular structure make program
debugging, testing and maintenance easier.

SAMPLE C PROGRAMS
/* Program # 1 - My first C program. */
include "stdio.h"
main{)
{
printf ("This is my frist C program");
}
When run, this program displays
" This is my first C program" on the display screen.
Let us examine the function of each line in the program.
1st line -
/* program #1 -My first C program. */
This is a comment.
In c, as in most other programming languages, you can enter a
remark into a program's source code that is ignored by the com­
piler. The purpose of comment is to provide an explanation of
what the program - or part of program - is doing. In more complex
programs, comments are used to explain what each feature of the
program is for and how it functions.
In C comment begins with a slash followed by an asterisk; that

3

is, the symbol pair /*. A comment is concluded by the same pair
in reverse, */•
Thus comments in program enhance its readability and understand­
ing and can be inserted any where blank space can occur,but never
in the middle of word.
The next line is,
include "stdio.h"
The C language defines several files, called header files, that
contain information either necessary or useful to a program. For
this program, the file stdio.h is needed. Stdio.h refers to the
standard I/O header file containing standard input and output
functions.
The next line is,
main()
All c programs are composed of building blocks called functions.
A program may consists of one or several functions. Each C func­
tion must have a name and the only function that any C program
must have is the one called main(). The main() function is where
program execution begins and, usually, ends. In technical terms,
a C program begins with a call to main() and ends (in most cases)
when main() returns.
The opening brace that follows main() marks the start of the
mainO function code. The next line in the program is printf
("This is my first C program."); This line causes the message.
"This is my first C- program." to be displayed on the screen. It
does this by calling the standard printfO function.

4

1.1.2 CONSTANTS, VARIABLES AND DATA TYPES
A programming language is designed to help to process certain
kinds of data consisting of numbers, characters and strings and
to provide useful output known as information. The task of pro­
cessing of data is accomplished by executing a sequence of pre­
cise instructions called a program. These instructions are formed
using certain symbols and words according to some rigid rules
known as syntax rules (or grammer). Like any other language, C
has its own vocabulary and grammer.
Character set :
The character that can be used to form words, numbers and expres­
sions depend upon the computer on which the program is run. The
characters in C are grouped into the following categories :
1. Letters
2. Digits
3. Special characters
4. White spaces.
The complete charater set is given in Table l.i.l
Table 1.1.1

Letters
Upper case A....Z
Lower case a.....z
Special Characters
, comma
. period
; semicolon

Digits
All digits 0

& ampersand
* caret
* asterisk

5
colon - minus sign
question mark + plus sign

apostrophe

quotation mark

< opening angle bracket
or less than sign

exclamation mark > closing angle bracket
or greater than sign

vertical bar (left paranthesis

slash) right paranthesis

backslash t left bracket

tilde 1 right bracket

underscore { left brace

dollar sign } right brace

percent sign # number sign

White spaces

Blank space

Horizontal tab

Carraige return
New line
Form Feed

6

1.1.3
C Tokens

In a passage of text, individual words and punctuation marks are
called tokens. Similarly, in a C program the smallest individual
units are known as C Tokens. C has six types of tokens as shown
in Fig 1.1.1
C programs are written using these tokens and the syntax of the
language.

[• .1{ }
Fig 1.1.1

Keywords and Indentifiers
Every C word is classified as either a keyword or an identifier.

All keywords have fixed meanings and these meanings cannot be
changed. Keywords serve as basic building blocks for program
statement. The list of all keywords in ANSI C are listed in Table

7

All keywords must be written in lowercases. Some compilers may
use additional keywords that must be identified from the C
manual.
Table 1.1.2
ANSI C KEYWORS
auto default float register struct volatile
break do for return switch while
case double goto short typedef
char else if signed union
const enum int sizeof unsigned
continue extern long static void

Identifiers refer to the names of variable, functions and arrays.
These are user - defined names and consists of a sequence of
letters and digits, with a letter as a first character. Both
uppercase and lowercase are permitted ,although lowercase letters
are commonly used. The underscore character is also permitted in
identifiers. It is usually used as a link between two words in

>

long identifiers

Constants :
Constants in C refer to fixed values that do not change during
the execution of a program. C supports several types of constants
as in Pig. (1.1.2)

8

Constants
l Numeric constants

1 integer 2 Real
constants constants

2 Character constants

c1 Single character
constants

1
2 string
constants

Fig 1.1.2 Basic types of C constants

Integer constants:
An integer constant refer to a sequence of digits. There are
three types of integers, namely, decimal, octal and hexadecimal.
Decimal integers consists of a set of digits, 0 through 9, pre­
ceded by an optional - or + sign, valid examples of decimal
integer constants are,

123
-321
o'

654321
+78

Embedded spaces, commas and non-digits are not permitted between
digits.
Examples,

15 750
20,000
$ 1000

are illegal numbers.

9
Note that ANSI C supports unary plus which was not defined earli­
er.
An octal integer constants consists of any combination of digits
from the set 0 through 7, with a leading 0 some examples of octal
integers are

037
0
0435

A sequence of digits preceded by OX or ox is considered as hexa­
decimal integer. They may also include alphabets A through F or a
through f. The letters A through F represent the number 10
through 15. Following are the examples of valid hex integers.

0X2
0X9 F
OXabcd
OX

We rarely use octal and hexdecimal numbers in programming.
The largest integer value that can be stored is machine depend­
ent. It is 32767 on 16 - bit machines and 2,147,483,647 on 32 -
bit machines. It is also possible to store larger integer con­
stats on these machines by appending qualifiers such as U, L and
UL to the constants, for example :

56789U or 56789u (unsigned integer)
987612347UL or 987612347ul (unsigned long inteter)

or 98765431 (long integer)9876543L

10

Real Constants

Integer number are inadequate to represent quantities that vary
continuously/ such as distances, heights, temperatures, prices
and so on. These quantities are represented by numbers containing
fractional parts like 17.548 such numbers are called real (or
floating point) contants.Further examples of real constants are

0.0083
-0.75
435.36
+247.0

These numbers are shown in decimal notation, having a whole
number followed by a decimal point, or digits after the decimal
point. That is,

215.
.95
-7.1

are valid real numbers.

A real number also be expressed in exponential (or scientific)
notation. For example, the value 215.65 may be written as
2.1565e2 in exponential notation. e2 means multiply by 102. The
general form is :

mantissa e exponent.
the mantissa is either a real number expressed in decimal nota­
tion or an integer. The exponent is an integer number with an
optional plus or minus sign. The letter e separating the mantissa

11

and the exponent can be written in either lowercase or uppercase.
Since exponent causes the decimal point to "float", this notation
is said to represent a real number in floating point form. Exam­
ples of legal floating poivit constants are

0.65e4
12e-2
1.5e+5
3.18E+3
-1.2E-1

Embedded white space is not allowed.
Exponential notation is useful for representing numbers that are
either very large or very small in magnitude, For example,
75000000000 may be written as 7.5e+10 or 75e9 similarly,
-0.0000000386 is equivalent to -3.86e-8. Floating point constants
are normally represented as double precision quantities. However,
the suffixes f or F may be used to force single precision and 1
or L to extend double precision further.

Single character constants :
A single character constant (or simply character constant) con­
tains a single character enclosed within a pair of single quote
marks. Examples of character constants are :

'5' 'X' 'j' ' '
character '5' is not the same as the number 5. The last constant
is blank space.

12

Character constants have integer values known as ASCII values.
For example, the statement
printf ("%d", "'a');
would print the number 97, the ASCII value of letter a. Similar­
ly, the statement printf {"%c", '97'); would output the letter
'a' .

String constants
A string constant is a sequence of characters enclosed in double
quotes. The characters may be letters, numbers, special
characters and blank space. Examples are
"Hellow !"
"1995"

"5 + 3"
"X"
Remember that a character constant PX") is not equivalent to the
single character string constant ("X").
Backslash character constants:
C supports some special backslash character constants that are
used in output functions. For example, the symbol '\n' stands for
newline character.
Variables :
A variable is a data name that may be used to store a data
value. Unlike constants that remain unchanged during the execu­
tion of a program, a variable may take different values at dif­
ferent times during execution.

< 13

A variable name can be chosen by the programmer in 'a meaningful
way so as to reflect its function or nature in the program. Some
examples of such names are

Average
Height
Class-strength

Variable name may consists of letters, digits and the underscore
(_) , character, subject to the following conditions.
1. They must begin with a letter some system permit underscore as
the first character.
2. ANSI standard recognizes a length of 31 characters. However,
the length should not be normally more than eight characters,
since only the first eight characters are treated as significant
by many compilers.
3. Uppercase and lowercase are significant. That is the variable
Total is not the same as total or TOTAL.
4. The variable name should be not be a keyword.
5. White space is not allowed.
DATA TYPES.
C langunage is rich in its data types. Storage representations
and machine instructions to handle constants differ from machine
to machine. The variety of data types available allow the pro­
grammer to select the type appropriate to the needs of the appli
cation as well as the machine. ANSI C supports four classes of
data types :

14

1. Primary (or fundamental) data types.
2. User - defined data types.
3. Derived data types.
4. Empty data set.
All C compilers support four fundamental data types, namely
integers (int), character (char), floating point (float), double
- precision floating point (double). Many of them also offer ex­
tended data types such as long int and long double.
Fig 1.1.3

Primary Data TypesIntegeral * Type
Character
Signed char
unsigned char

Floating Point Type
Flaot | Double | long double

Integer
Single type unsigned type
int unsigned int
short int unsigned short int
long int unsigned long int

Table 1.1.3
Primary data types in C

Data Type Range of values
Char - 128 to 127
int - 32,768 to 32,767
Float 3.4e -38 to 3.4e + 38
double 1.7 e - 308 to 1.7 e + 308

15

Size and Range of Basic data types :
Various data types and the termenology used to discribe them are
given in Fig. 1.1.3.
The range of the basic four types are given in Table 1.1.3
Integer types Integers are whole numbers with a range of
values supported by a particular machine. Generally, integers
occupy one word of storage, and since the word sizes of machines
vary the size of an integer that can be stored depends on the
computer.
In order to provide some control over the range of numbers and
storage space, C has three classes of integer storage, namely
short int, int and long int, is both signed and unsigned forms.
For example, short int represents fairly small integer values and
requires half the amount of storage as a regular int number uses.
Table 1.1.4 shows all the allowed combinations of basic types and
qualifiers and their size and range on a 16 - bit machine.

Table 1.1.4, Size and
machine

Type
Char or signed char
Unsigned char
int or signed int
unsigned int
short int or signed
short int

Range of Data types on a 16 - bit

Size(bits)
8
8
16
16

Range
- 128 to 127
0 to 255
-32,768 to 32767
0 to 65535

8 -128 to 127

lb*

unsigned short int 8 0 to 255
long int or signed long int 32 -2,149,483,648 to

2,145,483,647

1.1.4 Floating Point types '
Floating point (or real) numbers are stored in 32 bit (with 6
digits of precision). Floating point numbers are defined in C by
the keyword float. When the accuracy provided by a float number
is not sufficient, the type double can be used to define the
number. A double data type number uses 64 bits giving a precision
of 14 digits. These are known as double precision'numbers. to
extend precision further, we may use long double which uses 80
bits.
Character type
A single character can be defined as a charater (char) type data.
Characters are usually stored in 8 bits (one byte) of internal
storage. The qualifier signed or unsigned may be explicitly
applied to char.
Declaration of variables
After designig suitable variable names, we must declare them to
the compiler.
Declaration does two things :
1. It tells the compiler what the variable name is.
2. It specifies what type of data the variable will hold.
Primary type declaration.
The syntax for declaring a variable is as follows
Data - type VI, V2,Vn:

17

Where VI, V2,Vn are the names of variables.
Some examples are,
int count;
float number, total;
double ratio;
Declaration of storage class
Variables in C can have not only data type but also storage class
that provides information about their location and visibility.
Ther are four storage class specifiers as given in Table 1.1.5

Table 1.1.5

Storage class Meaning
Auto Local variable known to only to the function

in which it is declared. Default is auto.
Static Local variable which exists and retains its

value even after the control is transformed to calling function.
Extern Global variable known to all functions in the

file.
Register Local variable which is stored in the

register.

Assigning values to variable :
Variables are created for use in program such as
Value = amount + inrate * amount ;
while (Year <» PERIOD)
{

18

Year = Year + 1;
}
The result is stored in the variable value and called as target
variable.
While all the variables are declared for their type, the varia­
bles that are used in expressions (on the right side of equal (=)
sign of computational statement) must be assigned values before
they are encountered in the program.
Similarly, the variable year and the symbolic constant PERIOD in
the while statement must be assigned values before this statement
is encoundtered.

1.1.5 Overflow and underflow of data
Problem of data overflow occurs when the value of a variable is
either too big or too small for the data type to hold. The lar­
gest value that a variable can hold also depends on the machine.
Since floating point values are rounded off to the number of
significant digits allowed (or specified), an overflow normally
results in the largest possible real value, whereas an underflow
results in zero.
Integers are always exact within the limits of the range of the
integral data types used. However an overflow which is a serious
probelm may occur if the data type does not match the value of
the constant. C does not provide any warning or indication of
integer overflow. It simply gives incorrect results. We should

19

therefore exercise a greater care to define correct data types
for handling the input / output values.
1.1.6 Operators
C supports a rich set of operators.
An operator is a symbol that tells the computer to perform cer­
tain mathematical or logical manipulations. Operators are used in
programs to manipulate data and variables. They usually form a
part of mathematical of logical expressions.
C operators can be classied in to a number of categories. They
include :
1. Arithmatic operators.
2. Relational operators.
3. Logical operators.
4. Assignment operators.
5. Increment and decrement operators.
6. Conditional operators.
7. Bitwise operators.
8. Special operators.

Arithmatic Operators : -
C provides all the basic arithmatic operators. They are listed in
Table 1.1.6
The operators +, * and / all work the some way as they do in
other languages. These can operate on any built - in data type
allowed in C. The Unary minus operator, in effect, multiplies it
single operand by -1. Therefore, a number preceded by a minus

20

sign changes its sign.
Table 1.1.6 Arithmatic operators

Operators Meaning

+

/
%

Addition or unary plus
Subtraction or unary minus
Multiplication
Division
Modulo division.

Integer division truncates any fractional part. The modulo divi­
sion produces the remainder of an integer division.
Note that C does not have an operator for exponentiation. Older
versions of C does not support unary plus but ANSI C supports it.
Relational operators:-
We often compare two quantities, and depending on their relation,
take certain decision. For example, we may compare the age of two
persons, or the price of two items and so on. These comparisons
can be done with the help of relational operators. 'C! supports
six relational operators in all. These operators and their mean­
ing are showin Table 1.1.7.
Table 1.1.7 Relational Operators

Operators Meaning
< is less than<= is less than or equal to
> is greater than
>= is greater than ot equal to
== is equal to
! = is not equal to

21

Arithmatic operators have a higher priority over relational
operators.
Logical Operators
In addition to the relational operators, C has the following
three logical operators.

& & Meaning logical AND
|| Meaning logical OR
! Meaning logical Not

Assignment Operator :_
Assignment operators are used to assign the result of an expres­
sion to a variable. Usual assignment operator is ' = ' . In addi­
tion, C has a set of "Shorthand' assignment operators of the form
illustrated in Table 1.1.8.

Table 1.1.8
Shorthand Assignment Operators
Statement with Simple Statement with shorthand
assignment operator. operator —

d - a + 1 a = a - 1 a = a * (n+1) a - a / (n+1) a - a % b

a + - 1a - - 1a * = n + 1a / - n + 1a % = b

The use of shorthand assignment operators has three advantages

22

1. What appears on the left hand side need not be repeated and
therefore it becomes easier to write.
2. The statement is more concise and easier to read.
3. The statement is more efficient.
Increment And Decrement Operators:
C has two very useful operators not generally found in other
languages. The increment and decrement operators are :

+ + and - -
the operator + + adds 1 to the oprand while - - subtract 1. Both
are unary operators and take the following form :

+ + m ; or m + + ;
- - m ; or m - - ;

* + m is quivalent to m ■ m + 1 ; (or m + ■ 1;)
- - ra is quivalent to m * m - 1 ; (or m - « 1;)

Conditional operators
A ternary operator pair "? :" is available in C to construct
conditional expressions of the form
expression l ? expression 2 : expression 3 ;
The operator ? : works as follows.
expression 1 is evaluated first. If it is nonzero (true), then
the expression 2 is evaluated and becomes the value of the expre-
sion.
Bitwise operators :-
C has a distinction of supporting special operators known as
bitwise operators for manipulation of data at bit level. These

23

are used for testing the bits, or shifting them right to left.
Bitwise operators may not be applied to float or double.
Table 1.1.9 lists bitwise operators and their meanings.
Special operators
C .supports some special operators of interest such as comma
operator, sizeof operators, pointer opertators and member selec­
tion operators.
Table 1.1.9 Bitwise operator.

Operators Meaning
& bitwise AND
! " bitwise or bitwise exclusive OR
< < Shift left
> > Shift right

ones complement

1.1.6(a) Precedence of arithmatic operators
An arithmatic expression without parantheses will be evaluated
from left to right using the rules of precedence of operators.
There are two distinct priority levels of arithmatic operators in
C.
High priority *, /, %
Low priority +, -

The basic evaluation procedure includes two left to right passes
through the expression. During the first pass, the high priority
operators (if any) are applied as they are encountered. During
the second pass, the low priority operators (if any) are applied
as they are encountered.

24

1.1.6(b) Some computational problems.
When expression include real values, then it is important to take
necessary precautions to guard against certain computational
errors. We know that the computer gives approximate values for
real numbers and the errors due to such approximations may lead
to serious problems. For example, consider the following
statements :

a = 1.0 / 3.0 ;
b - a * 3.0 ;

We loiow that (1.0 / 3.0) is equal to 1. But there is no guaran­
tee that the value of b computed in a program will give 1.
Another problem is division by zero. On most computers, any
attempts to divide a number by zero will result in abnormal
termination of the program. In some cases such a division may
produce meaningless results. Care should be taken to test the
denomenator that is likely to assume zero value and avoid any
division by zero.
The third problem is to avoid overflow or underflow errors. It is
our responsibility to guarantee that operands are of correct type
and range and result may not produce any overflow or underflow.

1.1.6(c) Type conversions in expressions :
Automatic type conversion.
C permit mixing of constants and variables of different types in
an expression, but during evaluation it adheres to very strict
rules of type conversion. We know that the computer considers one

25

operator at a time, involving two operands.
If the operands are of different types, the 'lower' type is

automatically converted to the 'higher' type before the operation
proceeds. The result is of higher type. A typical type conversion
process is illustrated in Fig. 1.1.4
Fig. 1.1.4

int i, x ;
float f ;
double d ;
long int 1 ;

X . 1 / i +I *4 Long
Long

4
float

1---------* float *-----
4
int

i *
4

float
oat

* double
i_____ —i

double

Given below is the sequence of the rules that are applied while
evaluating expressions.
All short and char are automatically converted to int; then .
1. if one of the operand is long double, the other will be con­
verted to long double and the result will be long double;
2. else, if one of the operands is double, the other will be
converted to double and the result will be double;
3. else, if one of the operands is float, the other will convert-

2b

ed to float and the result will be float;
4. else, if one of the operands is unsiged long int, the other
will be converted to unsigned long int and the result will be
unsigned long int;
5. else, if one of the operands is long int and the other is
unsigned int, then :

a) if unsigned int can be converted to long int, the un­
signed int operand will be converted as such and the result
will be long int.
b) else, both operands will be converted to unsigned long
int and the result will be unsigned long int;

6. else if one of operands is unsigned int, the other will be
converted to unsigned int and the result will be unsigned int,
7. else, if one of the operand is long int, the other will be
converted to long int and the result will be long int;

The final result of an expression is converted to the type of the
variable on the left of the assignment sign before assigning the
value to it. However, the following changes are introduced during
the final assignment.
1. float to int causes truncation of the fractional part.
2. double to float causes rounding of digits.
3. long int to int causes dropping of the excess higher order
bits.

27

1.1.6(d) Casting a value
C performs type conversion automatically. However, there are
instances when we want to force a type conversion in a way that
is different from the automatic conversion.

The process of a local conversion is known as casting a value.
The general form of a cast is :
(type name) expression.
Where type name is one of the standard C data types. The expres­
sion may be a constant, variable or an expression.
1.1.6(e) Operator Precedence And Associativity
Each operator in C has a precedence associated with it. This
precedence is used to determine how an expression involving more
than one oprerator is evaluated. There are distinct levels of
precedence and an operator may belong to one of the same prece­
dence are evaluated either from left to right or right to left,
depending on the level. This is known as the associativity prop­
erty of an operator.
Table 1. 1.10.
Summary of c operators °

Operator Description Associativity Rank

0 Function call left to right l
□ array element reference

+ unary plus right to left 2unary minus
increment Decrement

+ +

28

Operator Description Associativity Rank
i
*
&sizeof(type)

logical negative ones complementpointer reference (indirection) adresssize of an object type cast (conversion)
*
/%

MultiplicationDivisionmodulus
left to right 3

+ additionsubtraction left to right 4

< <> > left shift right shift left to right 5

n
ii

V V A A

less thanless than or equal togreater thangreater than or equal to

left to right 6

1 - EqualityInequality left to right 7

& Bit wise AMD left to right 8
A Bit wise XOR left to right 9
1 Bit wise OR left to right 10& & Logical AMD left to right 11
I 1 Logical OR left to right 12conditional expression right to left ' ■ 13

* = /» %= Assignmentoperators right to left 14

+= &=

<<= >>=

comma operator left to right 15

29

Table 1.1.10 provides a complete list of operators, their prece­
dence levels and their rules of association.
The groups are listed in the order of decreasing precedence (rank
l indicates the highest precedence level and 15 the lowest).
Mathematical functions
Table 1.1.11 Math functions.

Punetion Meaning
Trignometric

acos(x)
asin(x)
atan(x)

Arc cosine of x
Arc sin of x
Arc tangent of x
Arc tangent of x/y
cosine of x
sin of x
tangent of' x

atan2 (x,y)
cos(x)
sin(x)
tan(x)

Hyperbolic
cosh(x)
sinh(x)
tanh(x)

Hyperbolic cosine of x
Hyperbolic sin of x
Hyperbolic tangent of x

Other functions
ceil(x) X rounded upto the nearest

integer
e to the power X(ex'
Absolute value of x
X rounded down to the nearest
integer

exp (x)
fabs(x)
floor(x)
fmod(x,y)
log(x)

Remainder of x/y
Natural log of x, x > 0
Base of lOlog of x, x > 0
X to the power y (x^)
square root of x, x >= 0

loglO(x)
pow(x,y)
sqrt(x)

Note :-
l. x and y should be declared as double.
2. In trignometric and hyperbolic functions, x and y are in
radians.

30

3. All the functions return a double.
Mathematical functions such as cos, sqrt, log etc. are freqently
used in analysis of real life problems. There are systems that
have a more comprehensive math library and one should consult the
reference manual to find out which functions are available. Table
(1.1.11) lists some standard math functions.
1.1.7 Managing Input and output Operations
Reading a character
Reading a single character can be done by using the function
getchar. (This can also be done with the help of scanf function).
The getchar takes the foilwing form :

variable - name * getchar ();
variable - name is a valid C name that has been declared as char
type.
Like getchar, there is an analogous function putchar for writing
characters one at a time to the terminal. It takes the form as
shown below :

putchar (variable - name);
Where variable - name is a type char variable containing a char­
acter. This statement displays the character caontained in the
variable - name at the terminal.
Commonly used scanf format code is given in table 1.1.12
Table

Scan format codes
%c read a single character
%d read a decimal integer
%e read a floating point value
%f read a floating point value

1.1.12

31

%g read
%h read
%i read
%o read
%s read
%n read
%x read
% [...] read

a floating point value
a short integer
a decimal, hexadecimal or octal integer
an octal integer
a string
an unsigned decimal integer
a hexadecimal integer
a string of words

The following letters may be used as prefix for certain charac­
ters .

h for short integers
1 for long integers or double
L for long double

Commonly used printf format codes are given in Table 1.1.13
Table 1.1.13 Printf Format Codes

Code
%c
%d
%e
%f
%g
%i
%o
%s
%n
%x

Meaning
print a single character
print a decimal integer
print a floating point calue in exponent form
print a floating point without exponent
print a floating point value either e type or
f type
print a single decimal integer
print an octal integer, without leading zero
print a string
print an unsigned decimal integer
print a hexadecimal integer without leading
ox.

The following letters may be used as prefix for certain conver
sion characters

h for short integers,
1 for long integers or double
L for long double

1.1.8 Decision making and branching
C program is a set of statements which are normally executed
sequentially in the order in which they appear. This happens when
no options or no repetitions of certain calculations are neces­
sary. However in practice, we have a number of situations where
we may have to change the order of execution of statement based
on certain conditions, or repeat a group of statements until
certain specified conditions are met. This involves a kind of
decision making to see whether a particular condition has occured
or not and then direct the computer to execute certain statements
accordingly.

C language possesses such decision making capabilities and sup­
ports the following statements known as control or decision
making statements.
1. if statements
2. switch statement
3. conditional operator statement
4. goto statement
lrDecision making if statement
The if statement is used to control the flow of execution of
statements It is basically a two-way decision statement and is
used in conjunction with an expressions. It takes the following
form

if(test expression)
It allows the computer to evaluate the expression first and

Entry

True

False Statement-block

Statement-x f I

Next statement
Flg.l. 1.6

Flowchart of simple if control

False

Fig.l.i.5

Flow chart of if-sStatement

34

then,depending on whether the value of expression (relation or
condition) is "true"(nonzero) or "false"(zero), it transfers the
control to a particular statememnt. This type of program has two
paths to follow, one for the true condition and the other for the
false condition as shown in Fig 1.1.5
The if statement is implemented in different form depending on
the complexity of conditions to be tested.
A) Simple if statement
B) if_______else statement
C) Nested if____else statement
D) elseif statement

A) Simple if statement-The general form of a simple if statement
is
if(test expression)
{statement -block;
}
statement-x;
The statement block statement may be single staement or a group
of statements. If the test expression is true, the statement
block will be executed; otherwise the statement-block will be
skipped and the execution will jump to the statement-x.When the
condition is true both the statement block and the statement-x
are executed in sequence.
This is illustrated in Fig 1.1.6

35

Fig 1.1.6. Flowchart of simple if control.
B) The if____else statement
The general form is,
if(test expression)
{
True block statement(s)
}
else
{False block statement}
statement-x;
If the test expression is true ,then the true block statement(s)
following if statement are executed ; otherwise, the false-block
statement(s) are executed.
C) When series of decisions are involved,we may use more than one
if___else statements in nested form.
D) elseif-There is another way of putting ifs together ,when
multipath decision are involved.A multipath decision is a chain
of ifs in which the statement associated with each else is an if.
2. The switch statement
We have seen that when one of the many alternatives is to be
selected, we can design program using if statements to control
the selection. However, the complexity of such a program increas­
es. When the alternatives increases.The program becomes difficult
to read and follow.Fortunately, c has a built in multiway deci­
sion statement known as Switch. The switch statement tests the

value of a given variable (or expression) against a list of case
values and when a match is found ,a block of statements associat­
ed with that case is executed. The general form of the swith
statement is as shown below:
switch(expression)
{
case value-1:
block-1
break;
case value-2:
block-2
break;

default:
default block
break;
}
statement-x;
Here, value-1, value-2,__- are constants or constant expressions
and block-1, block-2,___-are statement list and may contain zero
or more statements.
The selection process of switch is illustrated in the flowchart
shown in the figure 1.1t7.

37

Entry

Fig.1.1.7
Flowchart of switch statement

38

C) The ?: operator
The c language has an operator, useful for two-way decisions
For example, the segment
if(x<0)
flag = 0;else
flag = 1;
can be written as, flag =(x<0)?0:l;
D) GoTo staement
C supports the goto statement to branch unconditionally from one
point to another in the program.
The general form of goto and lable statement(any valid variable
name) is shown below:

goto lable: —lable:
______ statement

lable: *■----
statement; ----------
forword jump goto lable;
statement;
Forword jump
1.1.9 Decision making and looping
In c it is possible to execute a segment of a program repeatedly
by introducing a counter and later testing it using the if state­
ment. While this method is quite satisfactory for all practical
purposes, we need to initialize and increment a counter and test

33

its value at an appropriate place in the program for the comple­
tion of the loop.
In looping, a sequence of statements are executed until some
conditions for termination of the loop are satisfied. A program
loop therfore consists of two segments, one known as the body of
the loop and the other known as the control statement. The con
trol statement tests certain conditions and then directs the
repeated execution of the statements contained in the body of the
loop.
Depending on the position of the control statement in the loop, a
control structure may be classified either as the entry con­
trolled loop or as the exit controlled loop. The flowcharts in
Fig 1.1.8 (a) and (b) illustrates these structures. In entry con­
trolled loop , the control conditions are tested before the start
of the loop execution. If the conditions are not satisfied, then
the body of the loop will not be executed. In the case of an exit
controlled loop, the test is performed at the end of■the body of
the loop and therfore the body is executed unconditionally for
the first time.
The test condition should be carefully stated in order to perform
the desired number of loop executions. It is assumed that the
test condition will eventually transfer the control out of the
loop. In case, due to some reason it doesnot do so, the control
sets up an infinite loop and the body is executed over and over
again.

40

Fig.1.1.8 (a)
Entry controlled loop

Fiig. 1.1.8(b)
Exit controlled loop

41

A looping process , in general, would include the following four
steps:
1. Setting and initialization of a counter.
2. Execution of statements in the loop.
3. Test for a specified condition for execution of the loop
4. Incrementing the counter.
The test may be either to determine whether the loop has been
repeated the specified number of times or to determine whether a
particular condition has been met.
The c language provides three loop constructs for performing
loop operations. They are :
1. While statement.
2. Do statement.
3. For statement.
l. While statement:The basic format of while statement is
while(test expression)
{
body of the loop

}
The while is entry controlled loop in which the test condition is
evaluated first and if it is true the body of the loop is execut­
ed. This process continues until the test condition becomes false
and the control is transferred out of loop. On exit, the program
continues with the statement immediately after the body of the
loop.

13213

42

2. Do statement:
on some occasions it might be necessary to execute the body of

the loop before the test is performed. Such situations can be
handled with the help of the do statements . This takes the form:
do{
body of the loop}
while(test condition);
On reaching the do statement , the program proceeds to evaluate
the body of loop first. At the end of the loop, the test-condi­
tion in the while statement is evaluated until test condition
becomes false,the loop will be terminated and the control goes to
the statement that appears after while statement.
Thus while loop is exit control loop.
For statement:
The for loop is another entry controlled loop.
The general form of the for loop is:
for(initialization;test condition;increment)
{
body of the loop
}
The execution of the for statement is as follows:
1. Initialization of the control variable is done first , using
assignment statements with loop control variables.
2. The value of the control variable is tested using the test
condition. The test condition is relational expression, that

43

determines when the loop will exit . If the condition is true,
the body of the loop is executed; otherwise the loop is terminat­
ed and the execution continues with the statement that immediate­
ly follows the loop.
3. When the body of the loop is executed, the control is trans­
ferred back to the for statement after evaluating last statement
in the loop.Now the control variable is incremented usig an
assignment statement and the new value of the control variable is
again tested to see whether it satisfies the loop condition . If
the condition is satisfied, the body of the loop is again execut­
ed This process continues till the value of the control variable
fails to satisfy the test condition.

1.1.10 Junqas in loops
Loop performs a set of operations repeatedly until the control
variable fails to satisfy the test condition . The number of
times a loop is repeated is decided in advance and the test
condition is written to acheive this. Sometimes, when,executing a
loop it becomes desirable to skip a part of the loop or to leave
the loop as soon as a certain condition occurs, c permits a jump
from one statement to another within a loop as well as a jump out
of loop.
1.1.11 Arrays
Arrays are helpful in storing and retrieving data of homogeneous
type. An array describes a contiguously allocated nonempty set of
objects with the same basic type. Hence, many number of same type

44

of variables can be grouped together with a common name as an
array.
Array Declaration
Arrays also should be declared as an basic type with subscripted
numbers given within square brackets . By declaring an array, the
specified number of locations are fixed in the memory. Naming an
array follows the same rules as that of a variable. There is no
limit for array dimensioning in c language. The limit can only be
the computers main memory .
SYNTAX:
type var[n];/*One dimentional array*/
type -variable type, var -variable name, n -a positive constant.

1.1.12(a) * —
Strings/ Character array and initialization.

An array of characters can be declared and hence a chain of
characters called as string can be stored in that array.
Arrays can be initialized at the time of declaration as the other
variable. example,
int reg_no[5] - {10,20,30,40,50};
char city [3] - {'m','a','\o'};
char city [7] * "madras"
\o inidicates end of string character.
1.1.12 (b) Rules to initialize array
1. Array can be initialized only with constants.
2. Numeric array automatically initialized with 0.

45

3. The whole array can be referenced by the array name.
4. Fewer initializers than the specified size are allowed.
5. Too many initializers more than specified size, gives erroneous
result.
6. The middle elements can not be initialized.
7.If all the elements should be initialized with a specific
number,the repetition of the data can not be avoided.
8.Arrays can be initialized without mentioning the number of
elements.
1.1.13 e-Pointers:
C provides the appreciating feature of data manipulation with the
adress of the variables and hence the execution time is very much
reduced. Such concept is possible with spcial data type called
pointer. Pointer is variable which holds the address of another
variable. This allows indirect access to the objects.
A varible can be declared as a pointer variable and can point to
the starting byte address of any data type variable.
1.1.13 (a) Declaring a pointer variable:
To declare and refer a pointer type variable, c provides two
special unary operators & and *. A pointer variable can be de­
clared in the same way as the other variables, but an asterisk
symbol should precede the variable name.
Example:
char *c; Here c is a pointer variable pointing to a character
type variable.Hence a pointer variable can be declared with the

46

type of what it is pointing to, with the asterisk symbol preced­
ing the variable name.
They can also be initialized with the adress of the variable.
Example:
int i ? z &i;

Here j is a pointer variable initialized with the adress of i.

1.1.14 C- Piles:
In the prfcvious discussion, data stored in all these variables
are only temporary. When the program execution is over, all the
entered data will be lost and for the subsequent execution again
the data should be fed. "In real time enviomments. the data fed
should..be_stored permanently_ton_subsequent_processing1!. c
provides the new data type PILE and file operations, through
which the data can be stored in a secondary storage device and
hence enables permanent storage.
FILE DATA TYPES:
This data type name should always be given in capital letters.
This type expects the variables to the pointer variables. Exam­
ple:
FILE *ptr *, *fopen(),-
Here ptr is a PILE type pointer varible fopen{) is a function,
which returns a PILE type pointer.
FILE OPEN WITH fopenO .To open file the function fopenO is used.

47

This function returns a pointer to a file. The usage is as fol­
lows :
Syntax:
file-pointer = fopen("datafile","mode");
Before this assignment, file_pointer and fopen() should be de­
clared as FILE pointer type variables.file_pointer this is the
logical name given to the data file and throughout the program,
the data file (physical file) is referred by this file pointer,
data file is a file name in which the data is stored or re­
trieved. This is the physical file name for the data in the
secondary storage device.
mode is file in c and can be opened in various ways. This mode
decides the read/write operations with data file .
1.2 FILE OPEN MODES IN fopen () :
Consider the syntax shown above for file open modes.
1.2.1 w(write) mode : C compiler checks for the existance of
data file specified , If not available, it creates a file in the
name of "data file". If the "data file" exists, the old data is
deleted and new fresh data is written in the file. If for some
reason, a file cannot be created (may be secondary storage is
full), NULL is returned to file_pointer.Example:
ptr « fopen("pay.dat","w");file = fopen("Inventry","w");

Legal values for mode are shown in Table 1.2.1 given below

48

Table 1.2.1
MODE

n j»n

"W"

"a"
"rb"
"wb"
"ab"
"r+"
"W+"

»'a+"
"r+b"
"w+b"
"a+b"

MEANING
Open a text file for reading

Creates a text file for writting
Append to a text file
Open a binary file for reading
Create a binary file for reading
Append to binary file
Open a text file for read/write
Create a text file for read/write
Append a text file for read/write
Open a binary file for read/write
Create a binary file for read/write
Append a binary file for read/write

1.2.2 FILE CLOSE WITH fclose():
All the files that are opened should be closed after all input
and output operations with the file, to prevent the data from
getting currupted.
Syntax: fclose(file_pointer); Where file_poiter is returned value
of fopenO . After this fclose , no I/O with the file can take
place. Further access and storage , the file has to be opened
again.
1.2.3 GRAPHICS FEATURES IN C - LANGUAGE :
ANSI C does not define any text screen or graphics functions

43

because of capabilities of diverse hardware environments.But
Turbo C version 1.5 and higher support extensive screen and
graphics support facilities.
1.2.4 MODES:
Basically there are two modes namely, text mode and graphics
mode.In graphics mode any type of figures can be displayed,cap­
tured and animated.
1.2.5 GRAPHICS MODE :
In this mode it is possible to display text as well as grapical
figures The basic element of the graphics is picture'element or
pixel. The monitor type can be monochrome,bga,cga,ega etc. To
execute these functions <graphics.h> file should be included in
the c program.
1.2.5 (a) initgraph(int driver,int mode,char path);
Whenever any graphics figure has to be drawn this initgraphO
function should be used to initialize the graphics mode on the
video.
Example:
int driver,mode;
driver = 1;
mode * g;
initgraph(&driver,&mode," ");
1.2.5(b) putpixel(int x,int y,int color);
This function illuminates the pixel represented by x and y co­
ordinates in the represented by color.

50

1.2.6 Application of C - program
C - language has many applications as_ mathematical, Scientific,
Engineering and commerical. Application software is programs
written to solve specific problems. These application software is
of two types:
1. General purpose.
2. Specific purpose software.
Based on the effective utilization of the system, the specific
purpose software applications are divided in to two types, (a)
scientific applications and (b) administrative / business appli­
cations .
Scientific applications involve large number of calulations and
less input, output of data.Science laboratories of educational
institutions,industries dealing with many research oriented
projects, space technology etc. have benefitted by the use of c-
language.
1.2.7 Some examples of C-programs*.
Fig 1.9 : e.g of array
#include<stdio.h>
main()
{
int i[10];
int j ;
/* Array initialization*/
float p[10] = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.10};

51

for(j = 0;j<=10;j++) ■,
{
±[j] = j; /*This reserves 10 integers*/
printf ("i [j] =%d p[j]=%f",i[j] ,p[j]) ;
}}
Fig 1.10- e.g TO CALCULATE PEREODIC TIME OF ASTABLE MULTIVIBRATOR
#include<stdio.h>
#include<math.h>
#define A 0.693
#define C 0.01
main{)
{
int rl,r2,c;/*rl,r2,c represent resistances in ohm and capacity
in microfarad*/
int r ;
float t; /* t is periodic time*/
for(r2 = 1;r2 < 50;r2 ■ r2+l)
{
rl = 10;
r = rl+(2*r2);
t = A*r*c;
printf("rl=%d r2=%d t=%f",rl,r2,t);
}
getch();}

52

Fig 1.11 e.g- TO CALCULATE MODULATION INDEX
#include<stdio.h>
#include<math.h>
#define MAX 100
main()
{
int i ;
float m,n,mod;
float vmax, vmin;
printf ("Enter values of vmax and vmin11) ;
ford = 0;i < 2;i = i+1)
{
scanf("\n %f ",&vmax);
scanf("\n %f",&vmin);
}
for(i = 0;i < 2;i = i+1)
{
m = (vmax-vmin);
n = (vmax+vmin);
mod = m/n;
}
printf("\n vmax=%f vmin=%f mod=%f",vmax,vmin,mod);
}

53

CHAPTER - I

(1) E. Balagurusamy.

Programming in ANSIC, (2nd Ed.), (P. nos (1-3),
(18-29), (47 - 67), (85 - 87), (99 - 119), (129 - 134),
(142), (159 - 162), (280 - 284), (309 - 312)) Tataj
Me. Graw - Hill Publishing Company Limited. (1994).

(2) j. Jayasri.

The *C* Language trainer with C graphics and (++,
(P.nos. (192 - 195), (198), (200)) Wiley Eastern
Limited (1993).

