LIST OF FIGURES

Figure No.	Title	Page No.
1 1	Pyrochlore structure of general formula A-B-O-	5
1.1	showing the 6 fold operdination of R and 8 fold	5
1 0	Change in share of exercited to hold the of A	Ö
1.2	Change in shape of coordination polyhedra of A	8
	and B ions with 48 f oxygen parameter X in $A_2B_2O_6O^2$,
	Structure.	
1.3	Variation of bond distances and bond angles as a	9
	function of 48 f Oxygen parameters.	
1.4	The tunnel representation of pyrochlore structure	10
	projected along [111]	
1.5	Diagrammatic representation of a projection of	10
	the ideal pyrochlore structure along [100]	
1.6	Variation of electrostatic energy (E) Vs 48f	15-16
	oxygen X parameter for various oxide	
	pyrochlores	
1.7	Possible substitutions at the A and B sites of	18
	$A_2^{3+} B_2^{4+} O_7$ Oxide Pyrochlores	
1.8	Stability field diagram for A ₂ ³⁺ B ₂ ⁴⁺ O ₇ Pyrochlores	19
2.1	Ceramic Method	30
2.2	Principle of X-ray diffractometer and main features	39
2.3	Estwald's Sphere	40

.

,

	2.4	X-ray diffraction pattern for the sample $Ce_2Ti_2O_7$	42
	2.5	X-ray diffraction pattern for the sample Ce ₂ Sn ₂ O ₇	42
	2.6	X-ray diffraction pattern for the sample $Y_2Ti_2O_7$	43
	2.7	X-ray diffraction pattern for the sample $Y_2Sn_2O_7$	43
	2.8	X-ray diffraction pattern for the sample $Sm_2Ti_2O_7$	44
	2.9	X-ray diffraction pattern for the sample $Sm_2Sn_2O_7$	44
•	3.1 (a)	The conductivity cell	59
•	3.1 (b)	Circuit diagram for electrical resistivity	59
• •	3.2 c	Experimental setup for the measurement of DC	60
		electrical resistivity	
	3.3	Schematic diagram of experimental setup of for the	61
		measurement of thermo electric power.	
	3.4	Experimental setup for the measurement of	62
		thermoelectric power	
	3,5	Variation of log ρ Vs 1000/T for Ce ₂ Ti ₂ O ₇	65
: '	3,6	Variation of log ρ Vs 1000/T for Ce ₂ Sn ₂ O ₇	66
	3,7	Variation of log ρ Vs 1000/T for Y_2Ti_2O_7	67
	3,8	Variation of log ρ Vs 1000/T for Y ₂ Sn ₂ O ₇	68
	3,9	Variation of log ρ Vs 1000/T for Sm_2Ti_2O_7	69
	3,10	Variation of log ρ Vs 1000/T for Sm ₂ Sn ₂ O ₇	70
	3.11	Temperature variation of thermo electric	72
		power for Ce ₂ Sn ₂ O ₇	
· ·	3.12	Temperature variation of thermo electric	73
· .		power for $Y_2 Ti_2 O_7$	

· •

•	3.13	Temperature variation of thermo electric	74
		power for Y ₂ Sn ₂ O ₇	
	4.1	Double layer capacitor	81
	4.2	Variation of ϵ ', ϵ " and tan δ with log F for Y ₂ Ti ₂ O ₇	84
	4.3	Variation of ϵ [,] ϵ ["] and tan δ with log F for Ce ₂ Ti ₂ O ₇	85
	4.4	Variation of ϵ ', ϵ " and tan δ with log F for Sm ₂ Ti ₂ O ₇	86
• •	4.5	Variation of $\epsilon',\epsilon"$ and tan δ with log F for $Y_2Sn_2O_7$	87
•	4.6	Variation of ϵ ', ϵ " and tan δ with log F for Ce ₂ Sn ₂ O ₇	88
- - -	4.7	Variation of ϵ ', ϵ " and tan δ with log F for Sm ₂ Sn ₂ O ₇	89
۰	4.8	Variation of ϵ " Vs ϵ ' for Y ₂ Sn ₂ O ₇	91
	4.9	Variation of ϵ " Vs ϵ ' for Sm ₂ Sn ₂ O ₇	92
	4.10	Variation of ϵ " Vs ϵ ' for Y ₂ Ti ₂ O ₇	93
	4.11	Variation of ϵ " Vs ϵ ' for Ce ₂ Sn ₂ O ₇	94
	4.12	Variation of ϵ " Vs ϵ ' for Sm ₂ Ti ₂ O ₇	95
	4.13	Variation of ϵ " Vs ϵ ' for Ce ₂ Ti ₂ O ₇	96
	4.14	Temperature variation of dielectric constant	99
		for Y ₂ Ti ₂ O ₇	
	4.15	Temperature variation of dielectric constant	100
		for Ce ₂ Ti ₂ O ₇	
	4.16	Temperature variation of dielectric constant	101
		for Sm ₂ Ti ₂ O ₇	

r

•

· .

•

11

υ.

4.17	Temperature variation of dielectric constant	102
	for Y ₂ Sn ₂ O ₇	
4.18	Temperature variation of dielectric constant	103
	for Ce ₂ Sn ₂ O ₇	
4.19	Temperature variation of dielectric constant	104

9

for $Sm_2Sn_2O_7$.

. ,

-

~

•

· ·