(v)

LIST OF FIGURES

Fig.No.

<u>Description</u>

Page No.

1.1	Crystal structure of completely inverse ferrite.	-	5
1.2a	Fe ion on an A-site	-	9
1.2b	Fe ion or M ion on B-site	****	9
1.3	The spinel lattice		10
1.4	The variation of resistivity with firing temperature and iron stoichiometry.	-	22
1.5	The resistivities of samples before and after surface grinding.	-	23
2.1a,b	The application of Bragg's Law	-	39
2.2a	Ewald's sphere	-	43
2 .2b	Principle of the powder method (photo)		44
2 . 3a	Experimental set up for X-ray diffractometer (Photo)	-	46
2.3b	X-ray Diffractometer (Schematic) (Photo)		46
2.4	Diffractrometric record of CuFe ₂ 0 ₄	-	51
2.5	Diffractrometric record of Cu _{0.8} Fe _{2.2} O ₄		52
2.6	Diffractrometric Record of Cu _{O,6} Fe _{2,4} O ₄	-	53
2.7	Diffractrometric Record of Cu _{O,4} Fe _{2,6} O ₄		54
2.8	Diffractrometric Record of Cu _{D,2} Fe _{2,8} O ₄	-	5 5
2.9	The variation of Lattice parameters (a or c) with the percentage decrease of Cu ²⁺	-	61
3 . 1a	A schematic circuit diagram for I-V characteristic measurements.	-	67
3.1b	A block diagram of the Pellet holder	-	67
3.2	Schematic diagrams of three types of high field instability.		7 0
3.3	General nature of switching behaviour	-	74
3.4	A graph of first switching currents with switching temperatures.		7 5
3.5	I-V characteristics of slow cooled CuFe ₂ O ₄		78
3.6	I-V characteristics of CuFe ₂ O ₄ quenched at 400°C.	-	79
3 .7 , 3 . 8	I-V characteristics of CuFe ₂ O ₄ quenched at 600°C.	-	80 81

(vi)

List of Figures (contd.)

Fig.No.	Des	cr	iption	<u>P</u>	age No.
3.9	I-V characteristics at 800°C.	of	CuFe ₂ 0 ₄ quenched	-	82
3.10	I-V characteristics Cu _{O 8} Fe _{2 2} O ₄ .	of	slow cooled	-	88
3.11	I-V characteristics quenched at 400°C.	of	^{Cu} 0.8 ^{Fe} 2.2 ⁰ 4	-	89
3.12	I-V characteristics quenched at 600°C.	of	^{Cu} 0.8 ^{Fe} 2.2 ⁰ 4		90
3.13	I-V characteristics quenched at 800°C.	of	Cu _{0.8} Fe _{2.2} 04	-	91
3.14 3.15'	I-V characteristics Cu _{0.6} Fe _{2.4} 0 ₄	of	slow cooled	-	93, 94
3.16	I-V characteristics quenched at 400°C.	of	^{Cu} 0.6 ^{Fe} 2.4 ⁰ 4	-	95
3.17	I-V characteristics quenched at 600°C.	of	^{Cu} 0.6 ^{Fe} 2.4 ⁰ 4	-	96
3.18	I-V characteristics quenched at 800°C.	of	^{Cu} _{0.6} ^{Fe} _{2.4} ⁰ ₄	-	9 7
3.19, 3.20	I-V characteristics $Cu_{0} = A^{F}e_{2} = 6^{O}A$	of	slow cooled	-	101, 102
3.21	I-V characteristics quenched at 400°C.	of	^{Cu} O•4 ^{Fe} 2•6 ^O 4		103
3.22	I-V characteristics quenched at 600°C.	of	^{Cu} O. 4 ^{Fe} 2.6 ^O 4	-	104
3.23	I-V characteristics quenched at 800°C.	of	^{Cu} O.4 ^{Fe} 2.6 ^O 4	-	105
3.24, 3.25	I-V characteristics	of	slow cooled	-	107, 108
3.26, 3.27	I-V characteristics quenched at 400°C	of	^{Cu} O•2 ^{Fe} 2•8 ^O 4	-	109, 110
3.28, 3.29	I-V characteristics quenched at 600°C.	of	^{Cu} O. 2 ^{Fe} 2. 8 ^O 4	-	111, 112
3.30, 3.31	I-V characteristics quenched at 800°C.	of	^{Cu} 0.2 ^{Fe} 2.8 ^O 4	-	113, 114.
3.32	Graph of log I/log V CuFe ₂ 0 ₄	′ of	slow cooled	-	1 20

• • •

(vii)

List of Figures (contd.)

Fig.No.	Destription	<u>P</u>	age No.
3.33	Graph of log I/log V of CuFe ₂ 0 ₄ quenched at 400°C.	-	129
3, 34	Graph of log I/log V of CuFe ₂ 0 ₄ quenched at 600°C.	-	12 g
3.35	Graph of log I/log V of CuFe ₂ 0 ₄ quenched at 800°C.	-	129
3 . 3 6	Graph of log (I/V) versus voltage(v) of CuFe ₂ O ₄ , slow cooled, quenched at 400°C, 600°C and 800°C.	-	13 8
3.37	Graph of log (I/V) versus voltage(v) of slow cooled CuFe ₂ 0 ₄	-	134
3.38	Graph of log (I/V) versus voltage(v) of CuFe ₂ O ₄ quenched at 400°C.	-	132
3.39	Graph of log (I/V) versus voltage(v) of $CuFe_{2}O_{4}$ quenched at 600° C.	-	139
3.40	Graph of log (I/V) versus voltage(v) of $CuFe_2O_A$ quenched at $800^{\circ}C$.	-	134
3.41	Diffractrometric record of CuFe ₂ 0 ₄ after switching	-	118
3.42	Diffractrometric record of Cu _{0.4} Fe _{2.6} O ₄ after switching	-	119

. . .