LIST OF TABLES

TABLE No.	TITLE	PAGE No.
3.1	Calculated H_x values for $N=0$ mode $[2\rho=100~\mu m,~\lambda=0.85~\mu m]$	65
3.2	Calculated H_x values for $N=1$ mode $[2\rho=100~\mu m,~\lambda=0.85~\mu m]$	65
3.3	Calculated H_x values for $N=2$ mode $[2\rho=100~\mu m,~\lambda=0.85~\mu m]$	66
3.4	Calculated H_x values for $N=0$ mode $[2\rho=200~\mu m,~\lambda=0.85~\mu m]$	67
3,5	Calculated H_x values for $N=1$ mode $[2\rho=200~\mu m,~\lambda=0.85~\mu m]$	67
3.6	Calculated H_x values for $N=2$ mode $[2\rho=200~\mu m,~\lambda=0.85~\mu m]$	68
3.7	Calculated H_x values for $N=0$ mode $[2\rho=100~\mu m,~\lambda=1.3~\mu m]$	69
3.8	Calculated H_x values for $N=1$ mode $[2\rho=100~\mu m, \lambda=1.3~\mu m]$	69
3.9	Calculated H_x values for $N=2$ mode $[2\rho=100~\mu m,~\lambda=1.3~\mu m]$	70
4.1	Calculated values of $\in_2^{1/2} E(z) $ as a function of z/λ	99
4.2	Critical power of the surface wave for the linear and a positive nonlinear medium as a function of d/λ	100