
CHAPTER H

ANTENNA ARRAYS AND RELEVANT 
THEORY

2.1 INTRODUCTION:

When greater directivity is required like in the cases Of 

point to point communication one makes use of a system of Identical 

antennas, similarly oriented to enable the use of wave interference 

phenomenon to produce greater directivity than a single antenna. Such 

a system of identical antennas arranged in a regular geometric pattern 

is an array. At higher frequencies it is required to produce a narrow 

beam of energy, then we make use of linear arrays where all the 

identical antennas are spaced at uniform distance along a straight 

line.The array is called as uniform linear array when these antennas are 

fed by currents of same amplitude undergoing an uniform progressive 

phase shift along the line in which the antennas are located.

The techniques of producing directive beams by 

means of arrays of radiators that are suitably spaced and driven with 

appropriate relative amplitudes and phases has been used widely at the 

longer wavelengths.

The arrays that have been designed to date can be
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grouped into two general eases

(1 )End-fire arrays producing a beam directed along the axis of the

array and

(2)Broadside arrays producing beams the peak intensity of which is 

in a direction normal to or nearly normal to the axis.

In our case high directivity is required. To design high directive 

broadside antenna, we shall discuss some theory of the array antennas. 

First let us develop the theory of the thin linear antenna and next theory 

of the array antenna.

2.2 THE THIN LINEAR ANTENNA :

Let us develop expressions for the far-field patterns of 

thin linear antennas. Assume that the antennas are symmetrically fed at 

the center by a balanced two wire transmission line. The antennas may 

be of any length, but it is assumed that the current distributions is 

sinusoidal.

The retarded value of the current at any point z on the 

antenna referred to a point at a distance S is (Fig 2.1)

I {2.1}

In the eqn (2.1} the function,
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Fig. 2.1 - Shows the radiation for symmetrical,thin, 
linear, center fed antenna of length L.
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is the form factor for the current on the antenna. The expression (L + l
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is used when z < 0 and L/2-z is used when z > 0. By regarding the 

antenna as made up of a series of infinitesimal dipoles of length dz, the 

field of the entire antenna may be obtained by integrating the fields 

from all of the dipoles making up the antenna. The far fields dEu and

dH^at a distance S from the infinitesimal dipole dz are

d e0
j60nl sin&dz 

SX

dHtf> = jl sin 0dz 
2SX

{2.2}

{2.3}

The value of the magnetic field for the entire antenna is the integral 

of eqn {2.3} over the length of the antenna.

L/2

Thus, H+ = _________ {2.4}
-L/2

Introducing the value of I from {2.1} into {2.3} and substituting this 

into {2.4}, we have,
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{2.5}
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In eqn {2.5}, 1/S affects only the amplitude, and hence at 

a large it may be regarded as a constant. Also at a large distance, the 

difference between S & r can be neglected in its effect on the 

amplitude although its effect on the phase must be considered.

From, Fig{2.1},

S - r - zcos0 _________ {2.6}

Substituting {2.6} into {2.5} and also r for S in the amplitude factor, 

{2.5} becomes,

jl0 sin

2Xr
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{2.7}

Since fi a) _2k 
c X

and P_ = ±
4n 2X

Eqn. {2.7} may be written as

JPI g Sin Qe 
4 nr

ja>\H)

v

eJptcm0 sin
-L/2

L/2

P(H dz

+ | emaa0sm HK dz

{2.8}

The integrals are of the form

ox
\eaxSin{c + bx)dx = —------ [a sin{c + bx) - b cos{c + fee)]
J a + v

.{2.9}
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Where for the first integral

a = jficosO 
b = fi 
c = pLI2

For the second integral a and c are the same as in the first integral, but 

b = -fi, carrying through the integrations, adding the results and 

simplifying yields.

H, ih
2jtr

«w[(/SL cos o)/ 2] - cos{pL / 2)
sinO

H,
2 nr

cas[(/ZL cos &)/ 2] - cos{fiL / 2)
sin 9

{2.10}

Multiplying ffy by z = 120 n gives Ee as

r
cos cos 0)/2\ -cos (pLn) 

sinO
{2.11}

Equations {2.10} & {2.11} are expressions for the far fields, and Ee 

of a symmetrical centerfed thin linear antenna of length L.

In our case we want field pattern for full wave dipole 

antenna. Since the amplitude further is independent of the length only 

the relative field patterns has given by the pattern factor will be 

compared. Let us compare the field pattern for half wave and full wave
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dipole antenna.

CASE 1: A/2 ANTENNA

When L = A/2, the pattern factor becomes

£ _ cos[(n / 2) cqs 0] 

sin 9
{2.12}

This pattern is shown in Fig.(2.2a),

The beam width between half- power points of the A/2 antenna is 78°. 

CASE 2: FULL WAVE ANTENNA

When L =A,, the pattern factor becomes

g_ cos(ncosO) +1 
sin 9

This pattern is shown in Fig.(2.2b),

The half power beam width is 47°.

So, we need high gain low beam width antenna to study cosmic radio 

noise, so full wave dipole antenna is necessary for our study.

2.3 LINEAR ARRAYS :

For point to point communication at the higher 

frequencies the desired radiation pattern is a single narrow lobe or 

beam. To obtain such a characteristic a multielement linear is used. 

An array is linear when the elements of the array are spaced equally
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Fig. 2.2a - Shows far field pattern of U2 antenna.

Fig. 2.2b - Shows far field pattern of full wave antenna.
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along a straight line Fig {2.3}.

In a uniform linear array the elements are fed with 

currents of equal magnitude and having a uniform progressive phase 

shift along the line. The pattern of such an array can be obtained by 

adding vectorially the field strengths due to each of the elements. For 

a uniform array of non-directional elements the field strength would 

be

Et =E0[l + eip + ea* + +--------+ei{n~l)p] _________ {2.13}

Where, <p = pdcosy+a and a is the progressive phase shift 

between elements.(a is the angle by which the current in any element 

leads the current in the preceding element).The eqn {2,13} may be 

viewed as a geometric progression and written in the form

Et _ i-e** 
E0 ~ l-e,p sinif//2

{2.14}

The maximum value of this expression is n and occurs 

when vp — 0. This is the principal maximum of the array.

Since w = pdo.os<p + « the principal maximum occurs when,
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Fig. 2.3 - Shows four element linear array of 
non directional radiators.
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For a broadside array the maximum radiation occurs 

perpendicular to the line of the array at tp = 90 degrees, so a = 0 

degrees. The expression {2.14} is zero when

=±kjr k — 1,2,3,---------
2

These are the nulls of the pattern. Secondly maxima 

occur approximately midway between the nulls, when the numerator 

of expression {2.14} is maximum, that is when

- — ±{2m + /2 m — 1,2,3,
2

The first secondary maximum occurs when

w 3n 
— = +—
2 2n

The amplitude of first secondary lobe is

i___
rSit'

2n;

2n
3k

For large n

The amplitude of the principal maximum was n so the 

amplitude ratio of the first secondary maximum to principal maximum

is A = 0.212.
3n

This means that the first secondary maximum is about



13.5 db below the principal maximum, and this ratio is independent of 

the number of elements in the uniform array, as long as the number is 

large.

For all odd values of n, the smallest lobe (at yr— k) has 

an amplitude of unity.

The width of the principal lobe, measured between the 

first nulls, is twice the angle between the principal maximum and first 

null. This latter angle is given by

*Vi
2

-n or

For a broadside array

COStj) = W
fid

and the principal maximum occurs at

r 2

The first null occurs at an angle LUJ + A$

f
COS

% \
+ At|>

V (3d

”dn

where,

If A<j> is small, it is given approximately by

The width of the principal lobe is

2A$ = 2X
nd
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