LIST OF FIGURES

Fig.	Nc.	Title	Page
1.1		Shematic Representation of Ferroelectric Hysterisis Loop	13
1.2		Shematic Representation of Frequency Dependence of the Several	
2.1		Contribution to the Total Polarizability Phase Equilibria in the System BaTiO ₃	. 20 35
2.2 2.3		The Schematic of Sample Mount LF 357 Buffer Circuit.	4 2 4 7
3.1		The Unit Cell of the The Cubic Perovs type Structure BaTiO ₃	kite 54
3.2 3.3		X-Ray Diffraction of BaTiO ₃ X-Ray Diffraction of	56
3.4		$BaSb_{0.0125}Mn_{0.0125}Ti_{0.975}O_3$	5 7
3 5		$BaSb_{0.1}Mn_{0.1}Ti_{0.8}O_3$	58
5.5		BaSb _{0.2} $Mn_{0.2}Ti_{0.6}O_3$	59
3.0		BaSb _{0.0125} Co _{0.0125} Ti _{0.975} O ₃	6 0
3.7		X-Ray Diffraction of BaSb _{0.1} Co _{0.1} Ti _{0.8} 0 ₃	61
3.8		X-Ray Diffraction of	62
3.9		Variation of 'Lattice Parameter' with Concentration for SbMn and SbCo System.	63

4

4.1	Variation of Gr with Temperature for	
	BaSb _{0.0125} Mn _{0.0125} Ti _{0.975} O ₃	72
4.2	Variation of Gr with Temperature for	
	BaSb0.025Mn0.025Ti0.9503	73
4.3	Variation of Gr with Temperature for	
	$BaSb_{0.05}Mn_{0.05}Ti_{0.9}O_3$	74
4.4	Variation of Er with Temperature for	
	$BaSb_{0.1}Mn_{0.1}Ti_{0.8}O_3$	7 5
4.5	Variation of Er with Temperature for	
	$BaSb_{0.2}Mn_{0.2}Ti_{0.6}O_3$	75
4.6	Variation of Er with Temperature for BaTi ₃	77
4.7a	Equivalent Gircuit with Capacitance	
	In Parallel with D.C. Resistance	73
4.7Ъ	Equivalent Eircuit with Additional	
	Capacitance In Shunt.	79
4.8	Variation of Er with Temperature for	
	BaSb _{0.0125} Co _{0.0125} Ti _{0.975} O ₃	85
4.9	Variation of Er with Temperature for	
	BaSb0.025C00.025Ti0.9503	86
4.10	Variation of Er with Temperature for	
	BaSb0.05 ^{Co} 0.05 ^{Ti} 0.9 ⁰ 3	87
4.11	Variation of Er with Temperature for	
	$BaSb_{0.1}Co_{0.1}Ti_{0.8}O_3$	88
4.12	Variation of Er with Temperature for	
	$BaSb_{0.2}Co_{0.2}Ti_{0.6}O_3$	89
5.1	The Schematic of Band Model	103
5.2	Log 6 as a function $(1/T)$ for	
	$BaSb_{0.0125}Mn_{0.0125}Ti_{0.975}O_{3}$	104

5.3	Log 6 as a function $(1/T)$ for	
	BaSb _{0.025} Mn _{0.025} Ti _{0.95} O ₃	105
5.4	Log 6 as a function $(1/T)$ for	
	BaSb _{0.05} Mn _{0.05} Ti _{0.9} 0 ₃	106
5.5	Log 6 as a function $(1/T)$ for	
	$BaSb_{0.1}Mn_{0.1}Ti_{0.8}O_3$	107
5.6	Log 6 as a function $(1/T)$ for	
	$BaSb_{0.2}Mn_{0.2}Ti_{0.6}O_3$	108
5.7	Log 6 as a function $(1/T)$ for	
	BaSb0.0125C00.0125Ti0.97503	109
5.8	Log 6 as a function $(1/T)$ for	
	BaSb _{0.025} Co _{0.025} Ti _{0.95} O ₃	110
5.9	Log 6 as a function $(1/T)$ for	
	BaSb _{0.05} Co _{0.05} Ti _{0.9} O ₃	111
5.10	Log 6 as a function $(1/T)$ for	
	BaSb _{0.1} Co _{0.1} Ti _{0.8} 0 ₃	112
5.11	Log 6 as a function $(1/T)$ for	
	BaSb _{0.2} Co _{0.2} Ti _{0.6} 0 ₃	113
5.12	Variation Q with T for	
	BaSb _{0.0125} Mn _{0.0125} Ti _{0.975} 0 ₃	114
5.13	Variation Q with T for	
	BaSb _{0.025} Mn _{0.025} Ti _{0.95} 0 ₃	115
5.14	Variation Q with T for	
	BaSb _{0.05} Mn _{0.05} Ti _{0.9} 03	116
5.15	Variation Q with T for	
	$BaSb_{0.1}Mn_{0.1}Ti_{0.8}O_3$	117
5.16	Variation Q with T for	
	$BaSb_{0.2}Mn_{0.2}Ti_{0.6}O_3$	122

5.17	Variation Q with T for	
	BaSb0.0125C00.0125Ti0.97503	123
5.18	Variation Q with T for	
	BaSb0.025 ^{C0} 0.025 ^{Ti} 0.95 ^O 3	124
5.19	Variation Q with T for	
	BaSb _{0.05} Co _{0.05} Ti _{0.9} O ₃	125
5.20	Variation Q with T for	
	$BaSb_{0.1}Co_{0.1}Ti_{0.8}O_3$	126
5.21	Variation Q with T for	
	BaSb _{0.2} Co _{0.2} Ti _{0.6} 03	127