मFGF AF FIGHEES

4.1	Variation of E_{r} with Temperature for		
	$\mathrm{BaSb}_{0.0125} \mathrm{Mr}_{0} .0125^{\text {Tio. }} 075 \mathrm{O}_{3}$		72
4.2	Variation of E_{r} with Temperature for		
	$\mathrm{BaSb}_{0.025} \mathrm{Mn}_{0} .025^{\mathrm{Ti}} 0.95 \mathrm{O}_{3}$		73
4.3	Variation of Er with Temperature for		
	$\mathrm{BaSb}_{0.0} 5^{\mathrm{Mn}_{0}} .05^{\mathrm{Ti}} 0.90^{0}$		74
4.4	Variation of \in with Temperature for		
	$\mathrm{BaSb}_{0.1} \mathrm{Mr}_{0.1}^{\mathrm{Ti}} 0.8 \mathrm{O}_{3}$		75
4.5	Variation of E_{r} with Temperature for		
	$\mathrm{BaSb}_{0.2} \mathrm{Mn}_{0.2} \mathrm{Ti}_{0.6 \mathrm{O}_{3}}$		75
4.6	Variation of Er with Temperature for	BaTi_{3}	77
4.7 a	Equivalent Eircuit with Capacitance		
	In Parallel with D.C. Resistance		73
4.7 b	Equivalent Eircuit with Additional		
	Capacitance In Shunt.		79
4.8	Variation of Er with Temperature for		
	$\mathrm{BaSb}_{0.0125} \mathrm{Co}_{0} .0125^{\mathrm{Ti}} 0.975 \mathrm{O}_{3}$		85
4.9	Variation of $\in ⿺$ with Temperature for		
	$\mathrm{BaSb}_{0} .025^{\mathrm{Co}} 0.025^{\text {Tio }} 0.95^{\circ}$		86
4.10	Variation of Et with Temperature for		
	BaSbo.05C00.05Tio.903		87
4.11	Variation of Er with Temperature for		
	$\mathrm{BaSb}_{0.1} \mathrm{Co}_{0.1} \mathrm{Ti}_{0.8} \mathrm{O}_{3}$		88
4.12	Variation of ϵ_{r} with Temperature for		
	$\mathrm{BaSb}_{0.2} \mathrm{Co}_{0.2} \mathrm{Ti}_{0.6} \mathrm{O}_{3}$		89
5.1	The Schematic of Band Model		103
5.2	Log 6 as a function (1/T) for		
	$\mathrm{BaSb}_{0} .0125^{\mathrm{Mr}_{0}} .0125^{\text {Ti }} 0.975 \mathrm{O}_{3}$		104

5.3 Log 6 as a function (1/T) for $\mathrm{BaSb}_{0} .025^{\mathrm{Mr}_{0}} 0.025^{\mathrm{Ti}} 0.95 \mathrm{O}_{3}$105
5.4 Log 6 as a function ($1 / T$) for
106
5.5
5.6
5.7
Loe 6 as a function ($1 / T$) for$\mathrm{BaSb}_{0.1} \mathrm{Mn}_{0.1} \mathrm{Ti}_{0.8} \mathrm{O}_{3}$107Log 6 as a function (1/T) for$\mathrm{BaSb} 0.2^{\mathrm{MnO}} .2^{\mathrm{Ti}} 0.6 \mathrm{O}_{3}$108Log 6 as a function (1/T) for$\mathrm{BaSb}_{0.0125 \mathrm{Co}_{0} .0125^{\mathrm{Ti}} 0.975 \mathrm{O}_{3}}$1095.85.9
5.125.13
5.8
5.9
Log 6 as a function (1/T) for
$\mathrm{BaSb}_{0.025 \mathrm{Co}_{0} .025 \mathrm{Ti}_{0.95} \mathrm{O}_{3}}$110
Log 6 as a function (1/T) for $\mathrm{BaSb}_{0.05} \mathrm{Co}_{0} .05^{\mathrm{Ti}} 0 . \mathrm{gO}_{3}$111
Log 6 as a function ($1 / T$) for $\mathrm{BaSb}_{0.1} \mathrm{CoO}_{0.1} \mathrm{Ti}_{0.8 \mathrm{O}_{3}}$112
Log 6 as a function ($1 / T$) for
$\mathrm{BaSb}_{0.2} \mathrm{CO}_{0} .2^{\mathrm{Ti}} 0.6^{\mathrm{O}_{3}}$113
Variation Q with T for
$\mathrm{BaSb}_{0} .0125^{\mathrm{Mr}_{0} 0.0125^{\mathrm{Ti}} 0.97 \mathrm{O}_{3}}$114
Variation Q with T for
$\mathrm{BaSb}_{0} .025^{\mathrm{Mn}} 0.025 \mathrm{Ti}_{0} .95_{3}$
Variation Q with T for
$\mathrm{BaSb}_{0.0} 5^{\mathrm{Mn}_{0}} 0.05^{\mathrm{Ti}} 0.9 \mathrm{O}_{3}$ 116
Variation Q with T for

Variation Q with T for $\mathrm{BaSb}_{0} .2^{\mathrm{Mr}_{0}} 0.2^{\mathrm{Ti}} 0.6^{\mathrm{O}_{3}}$122

5.17	Variation Q with T for	
	$\mathrm{BaSb}_{0} .0125^{\text {Co}} 0.0125^{\text {Tio }} 0.975 \mathrm{O}_{3}$	123
5.18	Variation Q with T for	
		124
5.19	Variation Q with T for	
		125
5.20	Variation Q with T for	
	$\mathrm{BaSb}_{0.1} \mathrm{Co}_{0.1} \mathrm{Ti}_{0.8} \mathrm{O}_{3}$	126
5.21	Variation Q with T for	
	$\mathrm{BaSb}_{0.2} \mathrm{Co}_{0.2} \mathrm{Ti}_{0.6 \mathrm{O}_{3}}$	127

