LIST OF FIGURES

Figure No.	Title	Page
No.		
1.1	Pyrochlores structure of general formula A ₂ B ₂ O ₇ showing	
	6 fold coordination of B and 8 fold coordination of A atoms.	3
1.2	Change in shape of coordination polyhedra of A and B ions	
	with 48 f oxygen parameter x in $A_2B_2O_6O$ Structure.	6
1.3	Variation of bond distances as a function of 48f oxygen	
	Parameters	8
1.4	Possible substitution at A and B sites of $A_2^{3+} B_2^{4+} O_7$	
	oxide Pyrochlores.	12
1.5	Stability field diagram for $A_2^{3+} B_2^{4+}O_7$ pyrochlores.	14
2.1	Standard flow chart of ceramic method	23
2.2	x-ray diffractometer.	34
2.3	x-ray diffraction pattern for sample Ce ₂ Ti ₂ O ₇ .	36
2.4	x-ray diffraction pattern for sample Ce _{1.8} Nd 0.2 Ti ₂ O ₇ .	37
2.5	x-ray diffraction pattern for sample. Ce _{1.6} Nd 0.4Ti ₂ O ₇ .	38
2.6	x-ray diffraction pattern for sample Ce1.4 Nd 0.6 Ti2 O7	39
2.7	x-ray diffraction pattern for sample Ce1.2Nd.8 Ti2 O7	40
2.8	x-ray diffraction pattern for sample Ce Nd Ti ₂ O ₇	41

3.1a	The conductivity cell.	55
3.16	Circuit diagram for electrical resistivitty	55
3.2	Experimental setup for the measurement of D.C. electrical	
	resistivitty.	56
3.3	Schematic diagram of experimental setup for the	
	measurement of thermoelectric power.	58
3.4	Experimental setup for the measurement of the	
	thermoelectric power.	60
3.5	Variation of log ρ with temp for (x=0) Ce ₂ Ti ₂ O ₇	62
3.6	Variation of log ρ with temp for (x=0.2) Ce _{1.8} Nd _{0.2} Ti ₂ O ₇	63
3.7	Variation of log ρ with temp for (x=0.4) Ce _{1.6} Nd _{0.4} Ti ₂ O ₇	64
3.8	Variation of log ρ with temp for (x=0.6) Ce _{1.4} Nd _{0.6} Ti ₂ O ₇	65
3.9	Variation of log ρ with temp for (x=0.8) Ce _{1.2} Nd _{0.8} Ti ₂ O ₇	66
3.10	Variation of log ρ with temp for (x=1) Ce Nd Ti ₂ O ₇	67
3.11	Variation of TEP with temperature for $(x=0)$ Ce ₂ Ti ₂ O ₇	70
3.12	Variation of TEP with temperature	
	for (x=0.4) Ce _{1.6} Nd $_{0.4}$ Ti ₂ O ₇	71
3.13	Variation of TEP with temperature	Υ.
	for (x=0.6) Ce _{1.4} Nd $_{0.6}$ Ti ₂ O ₇	72
4.1(a)	An atom without field.	80
4.1(b)	Electronic polarization.	80
4.2	Double Layer Capacitor.	85

4.3	Variation of ε with frequency (Log f) for all compositions	92
4.4	Variation of ε ` with frequency (log f) for all compositions.	93
4.5	Variation of tan δ with frequency (log f) for all samples.	94
4.6	Variation of ε with temperature for all compositions at 10 KHz.	96
4.7	Variation of tan δ with temperature for all composition 10 KHz.	97
4.8	Variation of ε ` with temperature for (x=0) Ce ₂ Ti ₂ O ₇ .	98
4.9	Variation of ε ` with temperature for (x=0.4) Ce _{1.6} Nd _{0.4} Ti ₂ O ₇ .	99
4.10	Variation of ε ` with temperature for (x=0.8) Ce _{1.2} Nd _{0.8} Ti ₂ O ₇ .	100

.

7