APPLICATIONS OF A CHI-SQUARE DISTRIBUTION TO INDUSTRIAL STATISTICS :

4.1 Introduction :

In this chapter, we concentrate on the applications of chi-square distribution in industrial statistics. In section 4.2 , we have used chi-square distribution to compute the probability of accepting a lot of quality θ. In the same section chi-square distribution is used to find the parameters n (sample size) and c (rejection number) of the single sampling plan by attributes, so that the resulting plan has oc (operating characteristic) function passing through the producer's risk point ($\theta_{1}, 1-\alpha$) and consumer's risk point $\left(\theta_{2}, \beta\right)$.

Section 4.3 deals with applications of chi-square distribution in acceptance sampling by variables for exponential distribution to find n and k so that the resulting plan has oc function passing through the producer's risk point $\left(\theta_{p}, 1-\alpha\right)$ and consumer's risk point $\left(\theta_{2}, \beta\right)$ when lower and upper specification limit is given. In last section application of chisquare distribution is given in case of variable plan for normal distribution with mean μ (known) and variance 6^{2} (unknown) to determine n and k, when lower and upper specification limit is given.

Single sampling plan : Here we shall explain single sampling plan by variables :

Suppose that a sample of n items are chosenat random without replacement from the lot. All the n items are measured.. Let $X_{1}, X_{2}, \ldots, x_{n}$ be the measurements. Using X_{1}, \ldots, x_{n} an estimate $\hat{\theta}$ of $\theta=F\left(L ; \eta\right.$) is obtained. If $\hat{\theta} \leqslant \theta_{0}$ (a given number) then the lot is accepted; otherwise the lot is rejected. Hence $\hat{\theta}$ is a function of $x_{1}, \ldots . x_{n}$. it is single sampling plan by variables and the probability of accepting the lot, which is a function of θ, based on the sampling plan $S P$, is called the operating characteristic (oc) function of the sampling plan sp. The oc function of the plan is denoted by $L_{s p}(\theta)$.

4.2 Applications of a chi-square distribution to determine

the parameters n and c :

In this section, we apply a chi-square distribution to determine the parameters n and c. where ' n ' is sample of size taken from a lot and ' c ' is the rejection number. The probability of accepting a lot of quality θ is,
$L(\theta)=$ Prob. [accepting the lot when the number of defective in the lot are Ne]
$=P\left[D_{n} \leq c \mid\right.$ when the lot quality is $\left.\theta\right]$
$=\sum_{d=0}^{c} p\left[D_{n}=d \mid\right.$ when the lot quality is $\left.\theta\right]$
$=\sum_{d=0}^{c}\left(\begin{array}{c}N \theta \\ a\end{array}\binom{N-N \theta}{n-d}\right.$
where $N=$ total number of items in a lot $d=$ number of defectives in the lot $D_{n}=$ number of defectives in the sample of size n.

If N is large the hypergeometric distribution can be approximated by binomial distribution Duncan (1970). So (4.2.1) can be written as

$$
\begin{equation*}
L(\theta) \simeq \sum_{k=0}^{c}\binom{n}{k} \theta^{k}(1-\theta)^{n-k} \tag{4.2.2}
\end{equation*}
$$

Replacing the binomial probabilities by poisson probability having the same mean, then (4.2.2) can be written as

$$
\begin{equation*}
L(\theta) \simeq \sum_{k=0}^{c} \exp (-n \theta)(n \theta)^{k} / k! \tag{4.2.3}
\end{equation*}
$$

In sub-section 1.3.3, we have shown the relationship of chi-square distribution and poisson distribution. Therefore (4.2.3) can be written as

$$
\begin{equation*}
L(\theta)=p\left[X_{2(c+1)}^{2} \geqslant 2 n \theta\right] \tag{4.2.4}
\end{equation*}
$$

where $\chi_{2(c+1)}^{2}$ is a chi-square variable with $2(c+1)$ d.f.
Now we use the equation (4.2.4) to find the parameters n and c of the single sampling plan by attributes, so that the resulting plan has of function passing through the producer's risk point ($\theta_{1}, 1-\alpha$) and consumer's risk point $\left(\theta_{2}, \beta\right)$. Since in (4.2.2) n and c are integers, we determine n and c such that
$\sum_{k=0}^{c}\binom{n}{k} \theta_{1}^{k}\left(1-\theta_{1}\right)^{n-k} \geqq 1-\alpha$
and $\sum_{k=0}^{c}\binom{n}{k} \theta_{2}^{k}\left(1-\theta_{2}\right)^{n-k} \leqslant \beta$

Then n and c which satisfy the constraints (4.2.5) and (4.2.6), assume the producer's risk of atleast (1- α) and consumer's risk of atmost β. From (4.2.4) the inequalities $(4.2 .5)$ and $(4.2 .6)$ can be written as
and

$$
\begin{equation*}
p\left[X_{2(c+1)}^{2} \geq 2 n \theta_{1}\right] \geq 1-\alpha \tag{4.2.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{p}\left[\chi_{2(c+1)}^{2} \Rightarrow 2 n \theta_{2}\right] \leqslant \beta \tag{4.2.8}
\end{equation*}
$$

Let $X_{2}^{2}(c+1) \cdot p$ denote the lower $p^{\text {th }}$ quantile of chi-square distribution with $2(c+1)$ d.f.. that is

$$
\begin{equation*}
p\left(X_{2(c+1)}^{2} \leqslant X_{2(c+1)}^{2}, p\right)=p \tag{4.2.9}
\end{equation*}
$$

Using (4.2.9) in (4.2.7) and (4.2.8), we get

$$
p\left(X_{2(c+1)}^{2} \Rightarrow 2 n \theta_{1}\right) \geq p\left(X_{2(c+1)}^{2}>X_{2(c+1)}^{2} \cdot \alpha\right) \ldots(4 \cdot 2 \cdot 10)
$$

and $\left.p\left(X_{2(c+1)}^{2} \geq 2 n \theta_{2}\right) \leqslant p\left(X_{2(c+1)}^{2}\right\rangle X_{2(c+1)}^{2} \cdot 1-\beta\right) \ldots(4 \cdot 2.11)$ so that

$$
\begin{equation*}
{ }^{2 n} \theta_{1} \leq X_{2}^{2}(c+1) \cdot \alpha \tag{4.2.12}
\end{equation*}
$$

and $\left.\quad 2 n \theta_{2} \geq X_{2(c+1)}^{2} \cdot 1-\beta\right)$

By taking ratio of (4.2.12) and (4.2.13), we get

$$
\frac{2 n \theta_{2}}{2 n \theta_{1}} \Rightarrow \frac{x^{2}}{x_{2(c+1)}^{2} \cdot \alpha}
$$

That is

$$
\begin{equation*}
\frac{\theta_{2}}{\theta_{1}}=\frac{\chi_{2}^{2}}{\chi_{2(c+1)}^{2} \cdot \alpha}=r(c) \tag{4.2.14}
\end{equation*}
$$

From (4.2.14) it is observed that for various values of α and β such that $1-\beta>\alpha, \gamma(c)$ is decreasing function of c. This result is clear from tables I to IV given by S.N. Kulkarni (1987) in his dissertation. Since θ_{2} / θ_{1} is given we choose c such that $r(c-1)>\frac{\theta_{2}}{\theta_{1}} \geq r(c) \quad \ldots(4.2 .15)$ The ratio (4.2.15) is tabulated in Cameron (1952) for some chosen values of c, α and β. After determining $c ; n$ can be found out from (4.2.12) and (4.2.13) which give the condition that

$$
\begin{equation*}
\frac{x_{2(c+1)}^{2} \cdot 1-\beta}{2 \theta_{2}} \leqslant n \leqslant \frac{x^{2}}{2(c+1)} \frac{\alpha}{2 \theta_{1}} \tag{4.2.16}
\end{equation*}
$$

If there is no n satisfying (4.2.16) then increase the value of c until such a n can be found.

4.3 Applications of chi-square distribution in case of acceptance sampling by variables for exponential distribution :

In this section, we apply chi-square distribution when the measurements on the items in the lot has an exponential
distribution. Here we consider one parameter exponential distribution when lower specification limit L is given. Let X be the $\mathrm{r} . \mathrm{v}$. that follows an exponential distribution with p.d.f. is given by

$$
\begin{equation*}
f(x, \sigma)=\frac{1}{\sigma} \exp (-x / \sigma), x>0 \tag{4.3.1}
\end{equation*}
$$

where σ is the parameter of the distribution. Let θ be the probability of an item being defective, then

$$
\begin{aligned}
\theta & =P_{\sigma}\left(x_{1} \leq L\right) \\
& =P_{\sigma}\left(\frac{2 x_{1}}{\sigma} \leq \frac{2 L}{\sigma}\right) \\
& =Q_{2}\left(\frac{2 L}{\sigma}\right)
\end{aligned}
$$

That is

$$
\begin{equation*}
\frac{2 L}{\sigma}=\theta_{2}^{-1}(\theta) \tag{4.3.2}
\end{equation*}
$$

where $Q_{2}($.$) is a chi-square distribution with 2$ d.f.

Now we accept the lot if $\theta \leqslant \theta_{0}$ and reject it otherwise. If θ is known the problem is quite trivial, but if θ is unknown then we have to estimate $\hat{\theta}$ by choosing an appropriate method. By using Rao-Blackwell-lehmann-scheffe theorem and Basu's theorem the MVUE is given by

$$
\begin{equation*}
\hat{\theta}=1-\left(1-\frac{L}{n \bar{x}}\right)^{n-1} \tag{4.3.3}
\end{equation*}
$$

Using (4.3.3) the oc function can be written as
$L(\sigma)=P_{\sigma}($ accepting the lot)

$$
\begin{align*}
& =P_{\sigma}\left[1-\left(1-\frac{L}{n \bar{X}}\right)^{n-1} \leqslant \theta_{0}\right] \\
& =P_{\sigma}\left[1-\frac{L}{n \bar{X}} \geq\left(1-\theta_{0}\right)^{1 / n-1}\right] \\
& =p_{\sigma}\left[n \overline{\mathrm{X}} \cong \quad \begin{array}{c}
L \\
\left.1-\left(1-\theta_{0}\right)^{I 7 \bar{n}=1}\right]
\end{array}\right. \\
& =P_{\sigma}\left[\begin{array}{c}
2 n \bar{x} \\
-\bar{\sigma}
\end{array} \frac{2 L}{\sigma\left[1-\left(1-\theta_{0}\right)^{1 / n-1}\right]}\right] \\
& =P_{\sigma}\left[X_{2 n}^{2} \geq \frac{2 K L}{\sigma}\right] \\
& =1-Q_{2 n}\left(\frac{2 K L}{\sigma}\right) \tag{4.3.4}
\end{align*}
$$

1
where $K=-\cdots-\left(1-\theta_{0}\right) \overline{1} \overline{n-1} \quad$ and $Q_{2 n}$ is chi-square distribution with $2 n$ def. we find n and k so that the resulting plan has oc function passing through the producer's risk point $\left(\theta_{1}, 1-\alpha\right)$ and consumer's risk point (θ_{2}, β). Using (4.3.4) we get the following two equations

$$
\begin{align*}
\frac{2 \mathrm{KL}}{\sigma_{1}} & =0_{2 \mathrm{n}}^{-1}(\alpha) \\
& =\chi_{2 \mathrm{n}, \alpha}^{2} \tag{4.3.5}
\end{align*}
$$

and $\frac{2 K L}{\sigma^{2}}=Q_{2 n}^{-1}(1-\beta)$

$$
\begin{equation*}
=\chi^{2} 2 n, 1-\beta \tag{4.3.6}
\end{equation*}
$$

Using (4.3.2) in (4.3.5) and (4.3.6), we get

$$
K Q_{2}^{-1}\left(\theta_{1}\right)=Q_{2 n}^{-1}(\alpha)
$$

That is $k X_{2, \theta_{1}}^{2}=X_{2 n, \alpha}^{2}$
and $K \chi_{2, \theta_{2}}^{2}=\chi_{2 n^{\prime}}^{2} 1-\beta$
dividing (4.3.8) by (4.3.7), we get

$$
\begin{equation*}
\frac{\chi_{2}^{2}, \theta_{2}}{\chi_{2}^{2}, \theta_{1}}=\frac{\chi_{2 n}^{2},-\beta}{X_{2 n,}^{\alpha}} \tag{4.3.9}
\end{equation*}
$$

Using (4.3.9) by trial we can find the value of n and from (4.3.7) and (4.3.8) we get

$$
\begin{array}{rlr}
k & =\chi_{2 n,}^{2} \alpha / X_{2,}^{2} \theta_{1} & \ldots(4.3 .10) \\
\text { and } \quad k & =\chi_{2 n,}^{2} 1-\beta / X_{2,}^{2} e_{2} & \ldots(4.3 .11) \tag{4.3.11}
\end{array}
$$

It is found that from $(4.3 .10)$ the resulting oc function of the plan passes through the producer's risk point ($\theta_{1,1} 1-\alpha$) and from (4.3.11) it passes through the consumer's risk point $\left(\theta_{2}, \beta\right)$.

Similarly chi-square distribution is used when upper specification limit U is given for exponential distribution.

4.4 : Application of chi-square distribution in case of variable plan for normal distribution:

In this section, we apply chi-square distribution when the measurements on the items in the lot has a normal distri-
bution with mean μ (known) and variance σ^{2} unknown when lower specification limit L is given. Let X_{1}, \ldots, X_{n} be the measurements on the n items chosen at random from the lot and X_{1}, \ldots, X_{n} are lid normal with mean μ and variance 6^{2}.

Let θ be the probability of an item being defective, then

$$
\begin{align*}
\theta & =P_{\sigma}(x \leq L) \\
& =P_{\sigma}\left(\frac{x-\mu}{\sigma} \leq \frac{L-\mu}{\sigma}\right) \\
& =\varnothing\left(\frac{L-\mu}{\sigma}\right) \tag{4.4.1}
\end{align*}
$$

where $\varnothing($.$) is standard normal distribution function.$ By using Rao-Blackwell-Lehmann-Scheffe theorem and Basu's theorem, the MVUE of θ is given by

$$
\hat{\theta}=F_{t_{n-1}}\left[\begin{array}{l}
(n-1)^{1 / 2\left(\frac{(L-\mu)}{S}\right)} \\
\left.\cdots\left(\frac{L-\mu}{S}\right)^{2}\right)^{1 / 2}
\end{array}\right] \quad \ldots(4.4 .2)
$$

where $F_{t_{n-1}}(X)$ is the of of t variate with $(n-1)$ def. using the estimator $\hat{\theta}$, the criteria for accepting or rejecting the lot is as

Accept the lot if $\hat{\theta} \leq \theta_{0}$ and reject it otherwise. where $s^{2}=\sum_{i=1}^{n}\left(x_{1}-\mu\right)^{2 / n-1}$

But $\hat{\theta} \leq \theta_{0}$ iff $F_{t_{n-1}}\left[\begin{array}{c}(n-1)^{1 / 2}\left(\frac{L-\mu}{S}\right) \\ \left.\hdashline \cdots\left(\frac{L-\mu}{S}\right)^{2}\right)^{1 / 2}\end{array}\right] \leqslant \theta_{0}$
That is

$$
\begin{align*}
& { }^{s}(n-1)^{1 / 2}\left(\frac{L-\mu}{S}\right) \tag{4.4.3}\\
& \left(n-\left(\frac{L-\mu}{S}\right)^{2}\right)^{1 / 2} \\
& \hdashline-F_{t_{n-1}}^{-1}\left(\theta_{0}\right)
\end{align*}
$$

where $k^{\frac{1}{*}}=-F_{t_{n-1}}^{-1}\left(\theta_{0}\right)$. Solving (4.4.3) we get

$$
\begin{equation*}
s^{2}=\left(\frac{n-1}{k \cdot 2}+1\right)\left(\frac{(n-\mu)^{2}}{n}\right) \tag{4.4.4}
\end{equation*}
$$

Using (4.4.4) the oc function can be obtained as

$$
\begin{align*}
L(\sigma) & =p_{\sigma}(\text { Accepting the lot) } \\
& =p_{\sigma}\left[s^{2} \leqslant\left(\frac{n-1}{k^{\prime 2}}+1\right) \frac{(L-\mu)^{2}}{n}\right] \\
& =p_{\sigma}\left[(n-1) s^{2} / \sigma^{2} \leq \frac{(n-1)}{n}\left(\frac{n-1}{k^{\prime 2}}+1\right)\left(\frac{L-\mu}{--\infty}\right)^{2}\right] \\
& =p_{\sigma}\left[X_{n}^{2} \leq k z_{\theta}^{2}\right] \\
& =Q_{n}\left(k z_{\theta}^{2}\right) \tag{4.4.5}
\end{align*}
$$

where $k=\frac{(n-1)}{n}\left(\frac{n-1}{k \cdot 2}+1\right)$ and $Q_{n}(\cdot)$ chi-square distribution with n d.f., $z_{\theta}=\frac{L-\mu}{\sigma}$.

Now we find n and k so that the resulting plan has oc function
passing through the producer's risk point $\left(\theta_{1}, 1-\alpha\right)$ and consumer's risk point $\left(\theta_{2}, \beta\right)$

Using (4.4.5), we get following two equations

$$
\begin{align*}
K z_{\theta_{1}}^{2} & =Q_{n}^{-1}(1-\alpha) \\
& =\chi_{n^{\prime}}^{2}(1-\alpha) \tag{4.4.6}
\end{align*}
$$

and $k z_{\theta_{2}}^{2}=\chi_{n^{\prime}}^{2} \beta$
From (4.4.6) and (4.4.7), we have

$$
\begin{equation*}
z_{\theta_{2}}^{2} / z_{\theta_{1}}^{2}=X_{n^{\prime}}^{2} \beta / X_{n^{\prime}}^{2} 1-\alpha \tag{4.4.8}
\end{equation*}
$$

and from (4.4.6), we get

$$
\begin{equation*}
K=\chi_{n^{\prime}}^{2} 1-\alpha / z_{\theta_{1}}^{2} \tag{4.4.9}
\end{equation*}
$$

and from (4.4.7), we have

$$
\begin{equation*}
K=\chi_{n}^{2} \cdot \beta / z_{\theta_{2}}^{2} \tag{4.4.10}
\end{equation*}
$$

It is found that from (4.4.9) the oc function of the plan passes through the producer's risk point $\left(\theta_{1}, 1-\alpha\right)$ and if it is found from (4.4.10) it passes through the consumer's risk point $\left(\theta_{2}, \beta\right)$.

Similarly chi-square distribution is used when upper specification limit is given for normal distribution with mean μ (known) and variance σ^{2} (unknwon).

REEERENCES

1. Akhlaghi M.R.A. and Parsian A. (1986) : A note on shortest confidence intervals. Communications in Statistics Vol. 15(2). 425-433.
2. Byron J.T. Morgan (1984) : Elements of simulation. Chapman and Hall, London.
3. Cramer Harold (1946) : Mathematical methods of Statistics, Princeten University Press.
4. Dudewitz E.J. (1976) : Introduction to statistics and Probability, Holt, Renehart and Winston 1,
5. Fisher R.A. (1950) : Contributions to Mathematical

Statistics, John Wiley and Sons.
6. Gibbons J.D., Olkin I., Sobel M. (1977) : Selecting and ordering populations, John Wiley and Sons.
7. Guenther w.C. (1969) : Shortest confidence intervals, The American Statistician 23(1), pp.22-25.
8. Guenther W.C. (1977) : Sampling inspection in Statistical quality control monograph No. 37 . Charles Gfiffin \& Company Ltd. London.
9. Gupta S.S. and Panchapkesan S. (1979) : Multiple decision procedures, John Wiley and Sons.
10. Johnson N.I. and Kotz S. (1970) : Continuous univariate distributions Vol. I, John Wiley and Sons.
11. Johnson N.L. and Kotz S. (1982) : Encyclopaedia of Statistical Sciences Vol. I and Vol.II. John Wiley and Sons.
12. Kendall M.G. and Stuart A. (1976) : The advanced theory of Statistics Vol. I., Griffin London.
13. Kulkarni Suresh N. (1987) : Acceptance sampling By Variables for attributes. M.Phil. unpublished dissertation submitted to Shivaji University, Kolhapur.
14. Lancaster H.O. (1969) : The chi-squared distribution. John Wiley and Sons, Sydney.
15. Lehmann E.L. (1959) : Testing of Statistical hypothesis. John Wiley and Sons, New York.
16. Moore D.S. and Spruill M C. (1975) : Unified large sample theory of general chi-squared statistics for tests of fit. The Annals of Statistics No.3. 599-616.
17. Pearson E.S. and Hartley H.O. (1976) : Biometrika Tables for statisticians, Vol. II. Charles Griffin and Company Limited.
18. Plackett R.L. (1983) : Karl Pearson and the chi-squared test, International Statistical Review 51. 59-72.
19. Rohatgi V.K. (1976) : An introduction to Probability theory and mathematical statistics. Wiley eastern Ltd.
20. Rao C.R. (1973) : Linear statistical inference and its applications (2nd Edn.). Wiley eastern Pvt. Ltd.
21. Silvey S.D. (1983) : Statistical inference (Monographs on statistics and applied probabilityl. Chapman and Hall, London.
22. Tate R.F. and Klett G.W. (1959) : Optimum confidence intervals for the variance of normal distribution. Journal of the American Statistical association 54, 674-682.
23. Wilks S.S. (1962) : Mathematical Statistics. John Wiley and Sons, New York.
24. Zacks S. (1971) : The theory of statistical inference, John wiley and Sons.

